123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336 |
- // SPDX-License-Identifier: GPL-2.0-only
- /*
- * Copyright (C) Maxime Coquelin 2015
- * Author: Maxime Coquelin <[email protected]>
- *
- * Inspired by time-efm32.c from Uwe Kleine-Koenig
- */
- #include <linux/kernel.h>
- #include <linux/clocksource.h>
- #include <linux/clockchips.h>
- #include <linux/delay.h>
- #include <linux/irq.h>
- #include <linux/interrupt.h>
- #include <linux/of.h>
- #include <linux/of_address.h>
- #include <linux/of_irq.h>
- #include <linux/clk.h>
- #include <linux/reset.h>
- #include <linux/sched_clock.h>
- #include <linux/slab.h>
- #include "timer-of.h"
- #define TIM_CR1 0x00
- #define TIM_DIER 0x0c
- #define TIM_SR 0x10
- #define TIM_EGR 0x14
- #define TIM_CNT 0x24
- #define TIM_PSC 0x28
- #define TIM_ARR 0x2c
- #define TIM_CCR1 0x34
- #define TIM_CR1_CEN BIT(0)
- #define TIM_CR1_UDIS BIT(1)
- #define TIM_CR1_OPM BIT(3)
- #define TIM_CR1_ARPE BIT(7)
- #define TIM_DIER_UIE BIT(0)
- #define TIM_DIER_CC1IE BIT(1)
- #define TIM_SR_UIF BIT(0)
- #define TIM_EGR_UG BIT(0)
- #define TIM_PSC_MAX USHRT_MAX
- #define TIM_PSC_CLKRATE 10000
- struct stm32_timer_private {
- int bits;
- };
- /**
- * stm32_timer_of_bits_set - set accessor helper
- * @to: a timer_of structure pointer
- * @bits: the number of bits (16 or 32)
- *
- * Accessor helper to set the number of bits in the timer-of private
- * structure.
- *
- */
- static void stm32_timer_of_bits_set(struct timer_of *to, int bits)
- {
- struct stm32_timer_private *pd = to->private_data;
- pd->bits = bits;
- }
- /**
- * stm32_timer_of_bits_get - get accessor helper
- * @to: a timer_of structure pointer
- *
- * Accessor helper to get the number of bits in the timer-of private
- * structure.
- *
- * Returns an integer corresponding to the number of bits.
- */
- static int stm32_timer_of_bits_get(struct timer_of *to)
- {
- struct stm32_timer_private *pd = to->private_data;
- return pd->bits;
- }
- static void __iomem *stm32_timer_cnt __read_mostly;
- static u64 notrace stm32_read_sched_clock(void)
- {
- return readl_relaxed(stm32_timer_cnt);
- }
- static struct delay_timer stm32_timer_delay;
- static unsigned long stm32_read_delay(void)
- {
- return readl_relaxed(stm32_timer_cnt);
- }
- static void stm32_clock_event_disable(struct timer_of *to)
- {
- writel_relaxed(0, timer_of_base(to) + TIM_DIER);
- }
- /**
- * stm32_timer_start - Start the counter without event
- * @to: a timer_of structure pointer
- *
- * Start the timer in order to have the counter reset and start
- * incrementing but disable interrupt event when there is a counter
- * overflow. By default, the counter direction is used as upcounter.
- */
- static void stm32_timer_start(struct timer_of *to)
- {
- writel_relaxed(TIM_CR1_UDIS | TIM_CR1_CEN, timer_of_base(to) + TIM_CR1);
- }
- static int stm32_clock_event_shutdown(struct clock_event_device *clkevt)
- {
- struct timer_of *to = to_timer_of(clkevt);
- stm32_clock_event_disable(to);
- return 0;
- }
- static int stm32_clock_event_set_next_event(unsigned long evt,
- struct clock_event_device *clkevt)
- {
- struct timer_of *to = to_timer_of(clkevt);
- unsigned long now, next;
- next = readl_relaxed(timer_of_base(to) + TIM_CNT) + evt;
- writel_relaxed(next, timer_of_base(to) + TIM_CCR1);
- now = readl_relaxed(timer_of_base(to) + TIM_CNT);
- if ((next - now) > evt)
- return -ETIME;
- writel_relaxed(TIM_DIER_CC1IE, timer_of_base(to) + TIM_DIER);
- return 0;
- }
- static int stm32_clock_event_set_periodic(struct clock_event_device *clkevt)
- {
- struct timer_of *to = to_timer_of(clkevt);
- stm32_timer_start(to);
- return stm32_clock_event_set_next_event(timer_of_period(to), clkevt);
- }
- static int stm32_clock_event_set_oneshot(struct clock_event_device *clkevt)
- {
- struct timer_of *to = to_timer_of(clkevt);
- stm32_timer_start(to);
- return 0;
- }
- static irqreturn_t stm32_clock_event_handler(int irq, void *dev_id)
- {
- struct clock_event_device *clkevt = (struct clock_event_device *)dev_id;
- struct timer_of *to = to_timer_of(clkevt);
- writel_relaxed(0, timer_of_base(to) + TIM_SR);
- if (clockevent_state_periodic(clkevt))
- stm32_clock_event_set_periodic(clkevt);
- else
- stm32_clock_event_shutdown(clkevt);
- clkevt->event_handler(clkevt);
- return IRQ_HANDLED;
- }
- /**
- * stm32_timer_width - Sort out the timer width (32/16)
- * @to: a pointer to a timer-of structure
- *
- * Write the 32-bit max value and read/return the result. If the timer
- * is 32 bits wide, the result will be UINT_MAX, otherwise it will
- * be truncated by the 16-bit register to USHRT_MAX.
- *
- */
- static void __init stm32_timer_set_width(struct timer_of *to)
- {
- u32 width;
- writel_relaxed(UINT_MAX, timer_of_base(to) + TIM_ARR);
- width = readl_relaxed(timer_of_base(to) + TIM_ARR);
- stm32_timer_of_bits_set(to, width == UINT_MAX ? 32 : 16);
- }
- /**
- * stm32_timer_set_prescaler - Compute and set the prescaler register
- * @to: a pointer to a timer-of structure
- *
- * Depending on the timer width, compute the prescaler to always
- * target a 10MHz timer rate for 16 bits. 32-bit timers are
- * considered precise and long enough to not use the prescaler.
- */
- static void __init stm32_timer_set_prescaler(struct timer_of *to)
- {
- int prescaler = 1;
- if (stm32_timer_of_bits_get(to) != 32) {
- prescaler = DIV_ROUND_CLOSEST(timer_of_rate(to),
- TIM_PSC_CLKRATE);
- /*
- * The prescaler register is an u16, the variable
- * can't be greater than TIM_PSC_MAX, let's cap it in
- * this case.
- */
- prescaler = prescaler < TIM_PSC_MAX ? prescaler : TIM_PSC_MAX;
- }
- writel_relaxed(prescaler - 1, timer_of_base(to) + TIM_PSC);
- writel_relaxed(TIM_EGR_UG, timer_of_base(to) + TIM_EGR);
- writel_relaxed(0, timer_of_base(to) + TIM_SR);
- /* Adjust rate and period given the prescaler value */
- to->of_clk.rate = DIV_ROUND_CLOSEST(to->of_clk.rate, prescaler);
- to->of_clk.period = DIV_ROUND_UP(to->of_clk.rate, HZ);
- }
- static int __init stm32_clocksource_init(struct timer_of *to)
- {
- u32 bits = stm32_timer_of_bits_get(to);
- const char *name = to->np->full_name;
- /*
- * This driver allows to register several timers and relies on
- * the generic time framework to select the right one.
- * However, nothing allows to do the same for the
- * sched_clock. We are not interested in a sched_clock for the
- * 16-bit timers but only for the 32-bit one, so if no 32-bit
- * timer is registered yet, we select this 32-bit timer as a
- * sched_clock.
- */
- if (bits == 32 && !stm32_timer_cnt) {
- /*
- * Start immediately the counter as we will be using
- * it right after.
- */
- stm32_timer_start(to);
- stm32_timer_cnt = timer_of_base(to) + TIM_CNT;
- sched_clock_register(stm32_read_sched_clock, bits, timer_of_rate(to));
- pr_info("%s: STM32 sched_clock registered\n", name);
- stm32_timer_delay.read_current_timer = stm32_read_delay;
- stm32_timer_delay.freq = timer_of_rate(to);
- register_current_timer_delay(&stm32_timer_delay);
- pr_info("%s: STM32 delay timer registered\n", name);
- }
- return clocksource_mmio_init(timer_of_base(to) + TIM_CNT, name,
- timer_of_rate(to), bits == 32 ? 250 : 100,
- bits, clocksource_mmio_readl_up);
- }
- static void __init stm32_clockevent_init(struct timer_of *to)
- {
- u32 bits = stm32_timer_of_bits_get(to);
- to->clkevt.name = to->np->full_name;
- to->clkevt.features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
- to->clkevt.set_state_shutdown = stm32_clock_event_shutdown;
- to->clkevt.set_state_periodic = stm32_clock_event_set_periodic;
- to->clkevt.set_state_oneshot = stm32_clock_event_set_oneshot;
- to->clkevt.tick_resume = stm32_clock_event_shutdown;
- to->clkevt.set_next_event = stm32_clock_event_set_next_event;
- to->clkevt.rating = bits == 32 ? 250 : 100;
- clockevents_config_and_register(&to->clkevt, timer_of_rate(to), 0x1,
- (1 << bits) - 1);
- pr_info("%pOF: STM32 clockevent driver initialized (%d bits)\n",
- to->np, bits);
- }
- static int __init stm32_timer_init(struct device_node *node)
- {
- struct reset_control *rstc;
- struct timer_of *to;
- int ret;
- to = kzalloc(sizeof(*to), GFP_KERNEL);
- if (!to)
- return -ENOMEM;
- to->flags = TIMER_OF_IRQ | TIMER_OF_CLOCK | TIMER_OF_BASE;
- to->of_irq.handler = stm32_clock_event_handler;
- ret = timer_of_init(node, to);
- if (ret)
- goto err;
- to->private_data = kzalloc(sizeof(struct stm32_timer_private),
- GFP_KERNEL);
- if (!to->private_data) {
- ret = -ENOMEM;
- goto deinit;
- }
- rstc = of_reset_control_get(node, NULL);
- if (!IS_ERR(rstc)) {
- reset_control_assert(rstc);
- reset_control_deassert(rstc);
- }
- stm32_timer_set_width(to);
- stm32_timer_set_prescaler(to);
- ret = stm32_clocksource_init(to);
- if (ret)
- goto deinit;
- stm32_clockevent_init(to);
- return 0;
- deinit:
- timer_of_cleanup(to);
- err:
- kfree(to);
- return ret;
- }
- TIMER_OF_DECLARE(stm32, "st,stm32-timer", stm32_timer_init);
|