clkc.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Zynq clock controller
  4. *
  5. * Copyright (C) 2012 - 2013 Xilinx
  6. *
  7. * Sören Brinkmann <[email protected]>
  8. */
  9. #include <linux/clk/zynq.h>
  10. #include <linux/clk.h>
  11. #include <linux/clk-provider.h>
  12. #include <linux/of.h>
  13. #include <linux/of_address.h>
  14. #include <linux/slab.h>
  15. #include <linux/string.h>
  16. #include <linux/io.h>
  17. static void __iomem *zynq_clkc_base;
  18. #define SLCR_ARMPLL_CTRL (zynq_clkc_base + 0x00)
  19. #define SLCR_DDRPLL_CTRL (zynq_clkc_base + 0x04)
  20. #define SLCR_IOPLL_CTRL (zynq_clkc_base + 0x08)
  21. #define SLCR_PLL_STATUS (zynq_clkc_base + 0x0c)
  22. #define SLCR_ARM_CLK_CTRL (zynq_clkc_base + 0x20)
  23. #define SLCR_DDR_CLK_CTRL (zynq_clkc_base + 0x24)
  24. #define SLCR_DCI_CLK_CTRL (zynq_clkc_base + 0x28)
  25. #define SLCR_APER_CLK_CTRL (zynq_clkc_base + 0x2c)
  26. #define SLCR_GEM0_CLK_CTRL (zynq_clkc_base + 0x40)
  27. #define SLCR_GEM1_CLK_CTRL (zynq_clkc_base + 0x44)
  28. #define SLCR_SMC_CLK_CTRL (zynq_clkc_base + 0x48)
  29. #define SLCR_LQSPI_CLK_CTRL (zynq_clkc_base + 0x4c)
  30. #define SLCR_SDIO_CLK_CTRL (zynq_clkc_base + 0x50)
  31. #define SLCR_UART_CLK_CTRL (zynq_clkc_base + 0x54)
  32. #define SLCR_SPI_CLK_CTRL (zynq_clkc_base + 0x58)
  33. #define SLCR_CAN_CLK_CTRL (zynq_clkc_base + 0x5c)
  34. #define SLCR_CAN_MIOCLK_CTRL (zynq_clkc_base + 0x60)
  35. #define SLCR_DBG_CLK_CTRL (zynq_clkc_base + 0x64)
  36. #define SLCR_PCAP_CLK_CTRL (zynq_clkc_base + 0x68)
  37. #define SLCR_FPGA0_CLK_CTRL (zynq_clkc_base + 0x70)
  38. #define SLCR_621_TRUE (zynq_clkc_base + 0xc4)
  39. #define SLCR_SWDT_CLK_SEL (zynq_clkc_base + 0x204)
  40. #define NUM_MIO_PINS 54
  41. #define DBG_CLK_CTRL_CLKACT_TRC BIT(0)
  42. #define DBG_CLK_CTRL_CPU_1XCLKACT BIT(1)
  43. enum zynq_clk {
  44. armpll, ddrpll, iopll,
  45. cpu_6or4x, cpu_3or2x, cpu_2x, cpu_1x,
  46. ddr2x, ddr3x, dci,
  47. lqspi, smc, pcap, gem0, gem1, fclk0, fclk1, fclk2, fclk3, can0, can1,
  48. sdio0, sdio1, uart0, uart1, spi0, spi1, dma,
  49. usb0_aper, usb1_aper, gem0_aper, gem1_aper,
  50. sdio0_aper, sdio1_aper, spi0_aper, spi1_aper, can0_aper, can1_aper,
  51. i2c0_aper, i2c1_aper, uart0_aper, uart1_aper, gpio_aper, lqspi_aper,
  52. smc_aper, swdt, dbg_trc, dbg_apb, clk_max};
  53. static struct clk *ps_clk;
  54. static struct clk *clks[clk_max];
  55. static struct clk_onecell_data clk_data;
  56. static DEFINE_SPINLOCK(armpll_lock);
  57. static DEFINE_SPINLOCK(ddrpll_lock);
  58. static DEFINE_SPINLOCK(iopll_lock);
  59. static DEFINE_SPINLOCK(armclk_lock);
  60. static DEFINE_SPINLOCK(swdtclk_lock);
  61. static DEFINE_SPINLOCK(ddrclk_lock);
  62. static DEFINE_SPINLOCK(dciclk_lock);
  63. static DEFINE_SPINLOCK(gem0clk_lock);
  64. static DEFINE_SPINLOCK(gem1clk_lock);
  65. static DEFINE_SPINLOCK(canclk_lock);
  66. static DEFINE_SPINLOCK(canmioclk_lock);
  67. static DEFINE_SPINLOCK(dbgclk_lock);
  68. static DEFINE_SPINLOCK(aperclk_lock);
  69. static const char *const armpll_parents[] __initconst = {"armpll_int",
  70. "ps_clk"};
  71. static const char *const ddrpll_parents[] __initconst = {"ddrpll_int",
  72. "ps_clk"};
  73. static const char *const iopll_parents[] __initconst = {"iopll_int",
  74. "ps_clk"};
  75. static const char *gem0_mux_parents[] __initdata = {"gem0_div1", "dummy_name"};
  76. static const char *gem1_mux_parents[] __initdata = {"gem1_div1", "dummy_name"};
  77. static const char *const can0_mio_mux2_parents[] __initconst = {"can0_gate",
  78. "can0_mio_mux"};
  79. static const char *const can1_mio_mux2_parents[] __initconst = {"can1_gate",
  80. "can1_mio_mux"};
  81. static const char *dbg_emio_mux_parents[] __initdata = {"dbg_div",
  82. "dummy_name"};
  83. static const char *const dbgtrc_emio_input_names[] __initconst = {
  84. "trace_emio_clk"};
  85. static const char *const gem0_emio_input_names[] __initconst = {
  86. "gem0_emio_clk"};
  87. static const char *const gem1_emio_input_names[] __initconst = {
  88. "gem1_emio_clk"};
  89. static const char *const swdt_ext_clk_input_names[] __initconst = {
  90. "swdt_ext_clk"};
  91. static void __init zynq_clk_register_fclk(enum zynq_clk fclk,
  92. const char *clk_name, void __iomem *fclk_ctrl_reg,
  93. const char **parents, int enable)
  94. {
  95. u32 enable_reg;
  96. char *mux_name;
  97. char *div0_name;
  98. char *div1_name;
  99. spinlock_t *fclk_lock;
  100. spinlock_t *fclk_gate_lock;
  101. void __iomem *fclk_gate_reg = fclk_ctrl_reg + 8;
  102. fclk_lock = kmalloc(sizeof(*fclk_lock), GFP_KERNEL);
  103. if (!fclk_lock)
  104. goto err;
  105. fclk_gate_lock = kmalloc(sizeof(*fclk_gate_lock), GFP_KERNEL);
  106. if (!fclk_gate_lock)
  107. goto err_fclk_gate_lock;
  108. spin_lock_init(fclk_lock);
  109. spin_lock_init(fclk_gate_lock);
  110. mux_name = kasprintf(GFP_KERNEL, "%s_mux", clk_name);
  111. if (!mux_name)
  112. goto err_mux_name;
  113. div0_name = kasprintf(GFP_KERNEL, "%s_div0", clk_name);
  114. if (!div0_name)
  115. goto err_div0_name;
  116. div1_name = kasprintf(GFP_KERNEL, "%s_div1", clk_name);
  117. if (!div1_name)
  118. goto err_div1_name;
  119. clk_register_mux(NULL, mux_name, parents, 4,
  120. CLK_SET_RATE_NO_REPARENT, fclk_ctrl_reg, 4, 2, 0,
  121. fclk_lock);
  122. clk_register_divider(NULL, div0_name, mux_name,
  123. 0, fclk_ctrl_reg, 8, 6, CLK_DIVIDER_ONE_BASED |
  124. CLK_DIVIDER_ALLOW_ZERO, fclk_lock);
  125. clk_register_divider(NULL, div1_name, div0_name,
  126. CLK_SET_RATE_PARENT, fclk_ctrl_reg, 20, 6,
  127. CLK_DIVIDER_ONE_BASED | CLK_DIVIDER_ALLOW_ZERO,
  128. fclk_lock);
  129. clks[fclk] = clk_register_gate(NULL, clk_name,
  130. div1_name, CLK_SET_RATE_PARENT, fclk_gate_reg,
  131. 0, CLK_GATE_SET_TO_DISABLE, fclk_gate_lock);
  132. enable_reg = readl(fclk_gate_reg) & 1;
  133. if (enable && !enable_reg) {
  134. if (clk_prepare_enable(clks[fclk]))
  135. pr_warn("%s: FCLK%u enable failed\n", __func__,
  136. fclk - fclk0);
  137. }
  138. kfree(mux_name);
  139. kfree(div0_name);
  140. kfree(div1_name);
  141. return;
  142. err_div1_name:
  143. kfree(div0_name);
  144. err_div0_name:
  145. kfree(mux_name);
  146. err_mux_name:
  147. kfree(fclk_gate_lock);
  148. err_fclk_gate_lock:
  149. kfree(fclk_lock);
  150. err:
  151. clks[fclk] = ERR_PTR(-ENOMEM);
  152. }
  153. static void __init zynq_clk_register_periph_clk(enum zynq_clk clk0,
  154. enum zynq_clk clk1, const char *clk_name0,
  155. const char *clk_name1, void __iomem *clk_ctrl,
  156. const char **parents, unsigned int two_gates)
  157. {
  158. char *mux_name;
  159. char *div_name;
  160. spinlock_t *lock;
  161. lock = kmalloc(sizeof(*lock), GFP_KERNEL);
  162. if (!lock)
  163. goto err;
  164. spin_lock_init(lock);
  165. mux_name = kasprintf(GFP_KERNEL, "%s_mux", clk_name0);
  166. div_name = kasprintf(GFP_KERNEL, "%s_div", clk_name0);
  167. clk_register_mux(NULL, mux_name, parents, 4,
  168. CLK_SET_RATE_NO_REPARENT, clk_ctrl, 4, 2, 0, lock);
  169. clk_register_divider(NULL, div_name, mux_name, 0, clk_ctrl, 8, 6,
  170. CLK_DIVIDER_ONE_BASED | CLK_DIVIDER_ALLOW_ZERO, lock);
  171. clks[clk0] = clk_register_gate(NULL, clk_name0, div_name,
  172. CLK_SET_RATE_PARENT, clk_ctrl, 0, 0, lock);
  173. if (two_gates)
  174. clks[clk1] = clk_register_gate(NULL, clk_name1, div_name,
  175. CLK_SET_RATE_PARENT, clk_ctrl, 1, 0, lock);
  176. kfree(mux_name);
  177. kfree(div_name);
  178. return;
  179. err:
  180. clks[clk0] = ERR_PTR(-ENOMEM);
  181. if (two_gates)
  182. clks[clk1] = ERR_PTR(-ENOMEM);
  183. }
  184. static void __init zynq_clk_setup(struct device_node *np)
  185. {
  186. int i;
  187. u32 tmp;
  188. int ret;
  189. char *clk_name;
  190. unsigned int fclk_enable = 0;
  191. const char *clk_output_name[clk_max];
  192. const char *cpu_parents[4];
  193. const char *periph_parents[4];
  194. const char *swdt_ext_clk_mux_parents[2];
  195. const char *can_mio_mux_parents[NUM_MIO_PINS];
  196. const char *dummy_nm = "dummy_name";
  197. pr_info("Zynq clock init\n");
  198. /* get clock output names from DT */
  199. for (i = 0; i < clk_max; i++) {
  200. if (of_property_read_string_index(np, "clock-output-names",
  201. i, &clk_output_name[i])) {
  202. pr_err("%s: clock output name not in DT\n", __func__);
  203. BUG();
  204. }
  205. }
  206. cpu_parents[0] = clk_output_name[armpll];
  207. cpu_parents[1] = clk_output_name[armpll];
  208. cpu_parents[2] = clk_output_name[ddrpll];
  209. cpu_parents[3] = clk_output_name[iopll];
  210. periph_parents[0] = clk_output_name[iopll];
  211. periph_parents[1] = clk_output_name[iopll];
  212. periph_parents[2] = clk_output_name[armpll];
  213. periph_parents[3] = clk_output_name[ddrpll];
  214. of_property_read_u32(np, "fclk-enable", &fclk_enable);
  215. /* ps_clk */
  216. ret = of_property_read_u32(np, "ps-clk-frequency", &tmp);
  217. if (ret) {
  218. pr_warn("ps_clk frequency not specified, using 33 MHz.\n");
  219. tmp = 33333333;
  220. }
  221. ps_clk = clk_register_fixed_rate(NULL, "ps_clk", NULL, 0, tmp);
  222. /* PLLs */
  223. clk_register_zynq_pll("armpll_int", "ps_clk", SLCR_ARMPLL_CTRL,
  224. SLCR_PLL_STATUS, 0, &armpll_lock);
  225. clks[armpll] = clk_register_mux(NULL, clk_output_name[armpll],
  226. armpll_parents, 2, CLK_SET_RATE_NO_REPARENT,
  227. SLCR_ARMPLL_CTRL, 4, 1, 0, &armpll_lock);
  228. clk_register_zynq_pll("ddrpll_int", "ps_clk", SLCR_DDRPLL_CTRL,
  229. SLCR_PLL_STATUS, 1, &ddrpll_lock);
  230. clks[ddrpll] = clk_register_mux(NULL, clk_output_name[ddrpll],
  231. ddrpll_parents, 2, CLK_SET_RATE_NO_REPARENT,
  232. SLCR_DDRPLL_CTRL, 4, 1, 0, &ddrpll_lock);
  233. clk_register_zynq_pll("iopll_int", "ps_clk", SLCR_IOPLL_CTRL,
  234. SLCR_PLL_STATUS, 2, &iopll_lock);
  235. clks[iopll] = clk_register_mux(NULL, clk_output_name[iopll],
  236. iopll_parents, 2, CLK_SET_RATE_NO_REPARENT,
  237. SLCR_IOPLL_CTRL, 4, 1, 0, &iopll_lock);
  238. /* CPU clocks */
  239. tmp = readl(SLCR_621_TRUE) & 1;
  240. clk_register_mux(NULL, "cpu_mux", cpu_parents, 4,
  241. CLK_SET_RATE_NO_REPARENT, SLCR_ARM_CLK_CTRL, 4, 2, 0,
  242. &armclk_lock);
  243. clk_register_divider(NULL, "cpu_div", "cpu_mux", 0,
  244. SLCR_ARM_CLK_CTRL, 8, 6, CLK_DIVIDER_ONE_BASED |
  245. CLK_DIVIDER_ALLOW_ZERO, &armclk_lock);
  246. clks[cpu_6or4x] = clk_register_gate(NULL, clk_output_name[cpu_6or4x],
  247. "cpu_div", CLK_SET_RATE_PARENT | CLK_IGNORE_UNUSED,
  248. SLCR_ARM_CLK_CTRL, 24, 0, &armclk_lock);
  249. clk_register_fixed_factor(NULL, "cpu_3or2x_div", "cpu_div", 0,
  250. 1, 2);
  251. clks[cpu_3or2x] = clk_register_gate(NULL, clk_output_name[cpu_3or2x],
  252. "cpu_3or2x_div", CLK_IGNORE_UNUSED,
  253. SLCR_ARM_CLK_CTRL, 25, 0, &armclk_lock);
  254. clk_register_fixed_factor(NULL, "cpu_2x_div", "cpu_div", 0, 1,
  255. 2 + tmp);
  256. clks[cpu_2x] = clk_register_gate(NULL, clk_output_name[cpu_2x],
  257. "cpu_2x_div", CLK_IGNORE_UNUSED, SLCR_ARM_CLK_CTRL,
  258. 26, 0, &armclk_lock);
  259. clk_prepare_enable(clks[cpu_2x]);
  260. clk_register_fixed_factor(NULL, "cpu_1x_div", "cpu_div", 0, 1,
  261. 4 + 2 * tmp);
  262. clks[cpu_1x] = clk_register_gate(NULL, clk_output_name[cpu_1x],
  263. "cpu_1x_div", CLK_IGNORE_UNUSED, SLCR_ARM_CLK_CTRL, 27,
  264. 0, &armclk_lock);
  265. /* Timers */
  266. swdt_ext_clk_mux_parents[0] = clk_output_name[cpu_1x];
  267. for (i = 0; i < ARRAY_SIZE(swdt_ext_clk_input_names); i++) {
  268. int idx = of_property_match_string(np, "clock-names",
  269. swdt_ext_clk_input_names[i]);
  270. if (idx >= 0)
  271. swdt_ext_clk_mux_parents[i + 1] =
  272. of_clk_get_parent_name(np, idx);
  273. else
  274. swdt_ext_clk_mux_parents[i + 1] = dummy_nm;
  275. }
  276. clks[swdt] = clk_register_mux(NULL, clk_output_name[swdt],
  277. swdt_ext_clk_mux_parents, 2, CLK_SET_RATE_PARENT |
  278. CLK_SET_RATE_NO_REPARENT, SLCR_SWDT_CLK_SEL, 0, 1, 0,
  279. &swdtclk_lock);
  280. /* DDR clocks */
  281. clk_register_divider(NULL, "ddr2x_div", "ddrpll", 0,
  282. SLCR_DDR_CLK_CTRL, 26, 6, CLK_DIVIDER_ONE_BASED |
  283. CLK_DIVIDER_ALLOW_ZERO, &ddrclk_lock);
  284. clks[ddr2x] = clk_register_gate(NULL, clk_output_name[ddr2x],
  285. "ddr2x_div", 0, SLCR_DDR_CLK_CTRL, 1, 0, &ddrclk_lock);
  286. clk_prepare_enable(clks[ddr2x]);
  287. clk_register_divider(NULL, "ddr3x_div", "ddrpll", 0,
  288. SLCR_DDR_CLK_CTRL, 20, 6, CLK_DIVIDER_ONE_BASED |
  289. CLK_DIVIDER_ALLOW_ZERO, &ddrclk_lock);
  290. clks[ddr3x] = clk_register_gate(NULL, clk_output_name[ddr3x],
  291. "ddr3x_div", 0, SLCR_DDR_CLK_CTRL, 0, 0, &ddrclk_lock);
  292. clk_prepare_enable(clks[ddr3x]);
  293. clk_register_divider(NULL, "dci_div0", "ddrpll", 0,
  294. SLCR_DCI_CLK_CTRL, 8, 6, CLK_DIVIDER_ONE_BASED |
  295. CLK_DIVIDER_ALLOW_ZERO, &dciclk_lock);
  296. clk_register_divider(NULL, "dci_div1", "dci_div0",
  297. CLK_SET_RATE_PARENT, SLCR_DCI_CLK_CTRL, 20, 6,
  298. CLK_DIVIDER_ONE_BASED | CLK_DIVIDER_ALLOW_ZERO,
  299. &dciclk_lock);
  300. clks[dci] = clk_register_gate(NULL, clk_output_name[dci], "dci_div1",
  301. CLK_SET_RATE_PARENT, SLCR_DCI_CLK_CTRL, 0, 0,
  302. &dciclk_lock);
  303. clk_prepare_enable(clks[dci]);
  304. /* Peripheral clocks */
  305. for (i = fclk0; i <= fclk3; i++) {
  306. int enable = !!(fclk_enable & BIT(i - fclk0));
  307. zynq_clk_register_fclk(i, clk_output_name[i],
  308. SLCR_FPGA0_CLK_CTRL + 0x10 * (i - fclk0),
  309. periph_parents, enable);
  310. }
  311. zynq_clk_register_periph_clk(lqspi, clk_max, clk_output_name[lqspi], NULL,
  312. SLCR_LQSPI_CLK_CTRL, periph_parents, 0);
  313. zynq_clk_register_periph_clk(smc, clk_max, clk_output_name[smc], NULL,
  314. SLCR_SMC_CLK_CTRL, periph_parents, 0);
  315. zynq_clk_register_periph_clk(pcap, clk_max, clk_output_name[pcap], NULL,
  316. SLCR_PCAP_CLK_CTRL, periph_parents, 0);
  317. zynq_clk_register_periph_clk(sdio0, sdio1, clk_output_name[sdio0],
  318. clk_output_name[sdio1], SLCR_SDIO_CLK_CTRL,
  319. periph_parents, 1);
  320. zynq_clk_register_periph_clk(uart0, uart1, clk_output_name[uart0],
  321. clk_output_name[uart1], SLCR_UART_CLK_CTRL,
  322. periph_parents, 1);
  323. zynq_clk_register_periph_clk(spi0, spi1, clk_output_name[spi0],
  324. clk_output_name[spi1], SLCR_SPI_CLK_CTRL,
  325. periph_parents, 1);
  326. for (i = 0; i < ARRAY_SIZE(gem0_emio_input_names); i++) {
  327. int idx = of_property_match_string(np, "clock-names",
  328. gem0_emio_input_names[i]);
  329. if (idx >= 0)
  330. gem0_mux_parents[i + 1] = of_clk_get_parent_name(np,
  331. idx);
  332. }
  333. clk_register_mux(NULL, "gem0_mux", periph_parents, 4,
  334. CLK_SET_RATE_NO_REPARENT, SLCR_GEM0_CLK_CTRL, 4, 2, 0,
  335. &gem0clk_lock);
  336. clk_register_divider(NULL, "gem0_div0", "gem0_mux", 0,
  337. SLCR_GEM0_CLK_CTRL, 8, 6, CLK_DIVIDER_ONE_BASED |
  338. CLK_DIVIDER_ALLOW_ZERO, &gem0clk_lock);
  339. clk_register_divider(NULL, "gem0_div1", "gem0_div0",
  340. CLK_SET_RATE_PARENT, SLCR_GEM0_CLK_CTRL, 20, 6,
  341. CLK_DIVIDER_ONE_BASED | CLK_DIVIDER_ALLOW_ZERO,
  342. &gem0clk_lock);
  343. clk_register_mux(NULL, "gem0_emio_mux", gem0_mux_parents, 2,
  344. CLK_SET_RATE_PARENT | CLK_SET_RATE_NO_REPARENT,
  345. SLCR_GEM0_CLK_CTRL, 6, 1, 0,
  346. &gem0clk_lock);
  347. clks[gem0] = clk_register_gate(NULL, clk_output_name[gem0],
  348. "gem0_emio_mux", CLK_SET_RATE_PARENT,
  349. SLCR_GEM0_CLK_CTRL, 0, 0, &gem0clk_lock);
  350. for (i = 0; i < ARRAY_SIZE(gem1_emio_input_names); i++) {
  351. int idx = of_property_match_string(np, "clock-names",
  352. gem1_emio_input_names[i]);
  353. if (idx >= 0)
  354. gem1_mux_parents[i + 1] = of_clk_get_parent_name(np,
  355. idx);
  356. }
  357. clk_register_mux(NULL, "gem1_mux", periph_parents, 4,
  358. CLK_SET_RATE_NO_REPARENT, SLCR_GEM1_CLK_CTRL, 4, 2, 0,
  359. &gem1clk_lock);
  360. clk_register_divider(NULL, "gem1_div0", "gem1_mux", 0,
  361. SLCR_GEM1_CLK_CTRL, 8, 6, CLK_DIVIDER_ONE_BASED |
  362. CLK_DIVIDER_ALLOW_ZERO, &gem1clk_lock);
  363. clk_register_divider(NULL, "gem1_div1", "gem1_div0",
  364. CLK_SET_RATE_PARENT, SLCR_GEM1_CLK_CTRL, 20, 6,
  365. CLK_DIVIDER_ONE_BASED | CLK_DIVIDER_ALLOW_ZERO,
  366. &gem1clk_lock);
  367. clk_register_mux(NULL, "gem1_emio_mux", gem1_mux_parents, 2,
  368. CLK_SET_RATE_PARENT | CLK_SET_RATE_NO_REPARENT,
  369. SLCR_GEM1_CLK_CTRL, 6, 1, 0,
  370. &gem1clk_lock);
  371. clks[gem1] = clk_register_gate(NULL, clk_output_name[gem1],
  372. "gem1_emio_mux", CLK_SET_RATE_PARENT,
  373. SLCR_GEM1_CLK_CTRL, 0, 0, &gem1clk_lock);
  374. tmp = strlen("mio_clk_00x");
  375. clk_name = kmalloc(tmp, GFP_KERNEL);
  376. for (i = 0; i < NUM_MIO_PINS; i++) {
  377. int idx;
  378. snprintf(clk_name, tmp, "mio_clk_%2.2d", i);
  379. idx = of_property_match_string(np, "clock-names", clk_name);
  380. if (idx >= 0)
  381. can_mio_mux_parents[i] = of_clk_get_parent_name(np,
  382. idx);
  383. else
  384. can_mio_mux_parents[i] = dummy_nm;
  385. }
  386. kfree(clk_name);
  387. clk_register_mux(NULL, "can_mux", periph_parents, 4,
  388. CLK_SET_RATE_NO_REPARENT, SLCR_CAN_CLK_CTRL, 4, 2, 0,
  389. &canclk_lock);
  390. clk_register_divider(NULL, "can_div0", "can_mux", 0,
  391. SLCR_CAN_CLK_CTRL, 8, 6, CLK_DIVIDER_ONE_BASED |
  392. CLK_DIVIDER_ALLOW_ZERO, &canclk_lock);
  393. clk_register_divider(NULL, "can_div1", "can_div0",
  394. CLK_SET_RATE_PARENT, SLCR_CAN_CLK_CTRL, 20, 6,
  395. CLK_DIVIDER_ONE_BASED | CLK_DIVIDER_ALLOW_ZERO,
  396. &canclk_lock);
  397. clk_register_gate(NULL, "can0_gate", "can_div1",
  398. CLK_SET_RATE_PARENT, SLCR_CAN_CLK_CTRL, 0, 0,
  399. &canclk_lock);
  400. clk_register_gate(NULL, "can1_gate", "can_div1",
  401. CLK_SET_RATE_PARENT, SLCR_CAN_CLK_CTRL, 1, 0,
  402. &canclk_lock);
  403. clk_register_mux(NULL, "can0_mio_mux",
  404. can_mio_mux_parents, 54, CLK_SET_RATE_PARENT |
  405. CLK_SET_RATE_NO_REPARENT, SLCR_CAN_MIOCLK_CTRL, 0, 6, 0,
  406. &canmioclk_lock);
  407. clk_register_mux(NULL, "can1_mio_mux",
  408. can_mio_mux_parents, 54, CLK_SET_RATE_PARENT |
  409. CLK_SET_RATE_NO_REPARENT, SLCR_CAN_MIOCLK_CTRL, 16, 6,
  410. 0, &canmioclk_lock);
  411. clks[can0] = clk_register_mux(NULL, clk_output_name[can0],
  412. can0_mio_mux2_parents, 2, CLK_SET_RATE_PARENT |
  413. CLK_SET_RATE_NO_REPARENT, SLCR_CAN_MIOCLK_CTRL, 6, 1, 0,
  414. &canmioclk_lock);
  415. clks[can1] = clk_register_mux(NULL, clk_output_name[can1],
  416. can1_mio_mux2_parents, 2, CLK_SET_RATE_PARENT |
  417. CLK_SET_RATE_NO_REPARENT, SLCR_CAN_MIOCLK_CTRL, 22, 1,
  418. 0, &canmioclk_lock);
  419. for (i = 0; i < ARRAY_SIZE(dbgtrc_emio_input_names); i++) {
  420. int idx = of_property_match_string(np, "clock-names",
  421. dbgtrc_emio_input_names[i]);
  422. if (idx >= 0)
  423. dbg_emio_mux_parents[i + 1] = of_clk_get_parent_name(np,
  424. idx);
  425. }
  426. clk_register_mux(NULL, "dbg_mux", periph_parents, 4,
  427. CLK_SET_RATE_NO_REPARENT, SLCR_DBG_CLK_CTRL, 4, 2, 0,
  428. &dbgclk_lock);
  429. clk_register_divider(NULL, "dbg_div", "dbg_mux", 0,
  430. SLCR_DBG_CLK_CTRL, 8, 6, CLK_DIVIDER_ONE_BASED |
  431. CLK_DIVIDER_ALLOW_ZERO, &dbgclk_lock);
  432. clk_register_mux(NULL, "dbg_emio_mux", dbg_emio_mux_parents, 2,
  433. CLK_SET_RATE_NO_REPARENT, SLCR_DBG_CLK_CTRL, 6, 1, 0,
  434. &dbgclk_lock);
  435. clks[dbg_trc] = clk_register_gate(NULL, clk_output_name[dbg_trc],
  436. "dbg_emio_mux", CLK_SET_RATE_PARENT, SLCR_DBG_CLK_CTRL,
  437. 0, 0, &dbgclk_lock);
  438. clks[dbg_apb] = clk_register_gate(NULL, clk_output_name[dbg_apb],
  439. clk_output_name[cpu_1x], 0, SLCR_DBG_CLK_CTRL, 1, 0,
  440. &dbgclk_lock);
  441. /* leave debug clocks in the state the bootloader set them up to */
  442. tmp = readl(SLCR_DBG_CLK_CTRL);
  443. if (tmp & DBG_CLK_CTRL_CLKACT_TRC)
  444. if (clk_prepare_enable(clks[dbg_trc]))
  445. pr_warn("%s: trace clk enable failed\n", __func__);
  446. if (tmp & DBG_CLK_CTRL_CPU_1XCLKACT)
  447. if (clk_prepare_enable(clks[dbg_apb]))
  448. pr_warn("%s: debug APB clk enable failed\n", __func__);
  449. /* One gated clock for all APER clocks. */
  450. clks[dma] = clk_register_gate(NULL, clk_output_name[dma],
  451. clk_output_name[cpu_2x], 0, SLCR_APER_CLK_CTRL, 0, 0,
  452. &aperclk_lock);
  453. clks[usb0_aper] = clk_register_gate(NULL, clk_output_name[usb0_aper],
  454. clk_output_name[cpu_1x], 0, SLCR_APER_CLK_CTRL, 2, 0,
  455. &aperclk_lock);
  456. clks[usb1_aper] = clk_register_gate(NULL, clk_output_name[usb1_aper],
  457. clk_output_name[cpu_1x], 0, SLCR_APER_CLK_CTRL, 3, 0,
  458. &aperclk_lock);
  459. clks[gem0_aper] = clk_register_gate(NULL, clk_output_name[gem0_aper],
  460. clk_output_name[cpu_1x], 0, SLCR_APER_CLK_CTRL, 6, 0,
  461. &aperclk_lock);
  462. clks[gem1_aper] = clk_register_gate(NULL, clk_output_name[gem1_aper],
  463. clk_output_name[cpu_1x], 0, SLCR_APER_CLK_CTRL, 7, 0,
  464. &aperclk_lock);
  465. clks[sdio0_aper] = clk_register_gate(NULL, clk_output_name[sdio0_aper],
  466. clk_output_name[cpu_1x], 0, SLCR_APER_CLK_CTRL, 10, 0,
  467. &aperclk_lock);
  468. clks[sdio1_aper] = clk_register_gate(NULL, clk_output_name[sdio1_aper],
  469. clk_output_name[cpu_1x], 0, SLCR_APER_CLK_CTRL, 11, 0,
  470. &aperclk_lock);
  471. clks[spi0_aper] = clk_register_gate(NULL, clk_output_name[spi0_aper],
  472. clk_output_name[cpu_1x], 0, SLCR_APER_CLK_CTRL, 14, 0,
  473. &aperclk_lock);
  474. clks[spi1_aper] = clk_register_gate(NULL, clk_output_name[spi1_aper],
  475. clk_output_name[cpu_1x], 0, SLCR_APER_CLK_CTRL, 15, 0,
  476. &aperclk_lock);
  477. clks[can0_aper] = clk_register_gate(NULL, clk_output_name[can0_aper],
  478. clk_output_name[cpu_1x], 0, SLCR_APER_CLK_CTRL, 16, 0,
  479. &aperclk_lock);
  480. clks[can1_aper] = clk_register_gate(NULL, clk_output_name[can1_aper],
  481. clk_output_name[cpu_1x], 0, SLCR_APER_CLK_CTRL, 17, 0,
  482. &aperclk_lock);
  483. clks[i2c0_aper] = clk_register_gate(NULL, clk_output_name[i2c0_aper],
  484. clk_output_name[cpu_1x], 0, SLCR_APER_CLK_CTRL, 18, 0,
  485. &aperclk_lock);
  486. clks[i2c1_aper] = clk_register_gate(NULL, clk_output_name[i2c1_aper],
  487. clk_output_name[cpu_1x], 0, SLCR_APER_CLK_CTRL, 19, 0,
  488. &aperclk_lock);
  489. clks[uart0_aper] = clk_register_gate(NULL, clk_output_name[uart0_aper],
  490. clk_output_name[cpu_1x], 0, SLCR_APER_CLK_CTRL, 20, 0,
  491. &aperclk_lock);
  492. clks[uart1_aper] = clk_register_gate(NULL, clk_output_name[uart1_aper],
  493. clk_output_name[cpu_1x], 0, SLCR_APER_CLK_CTRL, 21, 0,
  494. &aperclk_lock);
  495. clks[gpio_aper] = clk_register_gate(NULL, clk_output_name[gpio_aper],
  496. clk_output_name[cpu_1x], 0, SLCR_APER_CLK_CTRL, 22, 0,
  497. &aperclk_lock);
  498. clks[lqspi_aper] = clk_register_gate(NULL, clk_output_name[lqspi_aper],
  499. clk_output_name[cpu_1x], 0, SLCR_APER_CLK_CTRL, 23, 0,
  500. &aperclk_lock);
  501. clks[smc_aper] = clk_register_gate(NULL, clk_output_name[smc_aper],
  502. clk_output_name[cpu_1x], 0, SLCR_APER_CLK_CTRL, 24, 0,
  503. &aperclk_lock);
  504. for (i = 0; i < ARRAY_SIZE(clks); i++) {
  505. if (IS_ERR(clks[i])) {
  506. pr_err("Zynq clk %d: register failed with %ld\n",
  507. i, PTR_ERR(clks[i]));
  508. BUG();
  509. }
  510. }
  511. clk_data.clks = clks;
  512. clk_data.clk_num = ARRAY_SIZE(clks);
  513. of_clk_add_provider(np, of_clk_src_onecell_get, &clk_data);
  514. }
  515. CLK_OF_DECLARE(zynq_clkc, "xlnx,ps7-clkc", zynq_clk_setup);
  516. void __init zynq_clock_init(void)
  517. {
  518. struct device_node *np;
  519. struct device_node *slcr;
  520. struct resource res;
  521. np = of_find_compatible_node(NULL, NULL, "xlnx,ps7-clkc");
  522. if (!np) {
  523. pr_err("%s: clkc node not found\n", __func__);
  524. goto np_err;
  525. }
  526. if (of_address_to_resource(np, 0, &res)) {
  527. pr_err("%pOFn: failed to get resource\n", np);
  528. goto np_err;
  529. }
  530. slcr = of_get_parent(np);
  531. if (slcr->data) {
  532. zynq_clkc_base = (__force void __iomem *)slcr->data + res.start;
  533. } else {
  534. pr_err("%pOFn: Unable to get I/O memory\n", np);
  535. of_node_put(slcr);
  536. goto np_err;
  537. }
  538. pr_info("%s: clkc starts at %p\n", __func__, zynq_clkc_base);
  539. of_node_put(slcr);
  540. of_node_put(np);
  541. return;
  542. np_err:
  543. of_node_put(np);
  544. BUG();
  545. }