clk-imx8qxp-lpcg.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377
  1. // SPDX-License-Identifier: GPL-2.0+
  2. /*
  3. * Copyright 2018 NXP
  4. * Dong Aisheng <[email protected]>
  5. */
  6. #include <linux/clk-provider.h>
  7. #include <linux/err.h>
  8. #include <linux/io.h>
  9. #include <linux/module.h>
  10. #include <linux/of.h>
  11. #include <linux/of_address.h>
  12. #include <linux/of_device.h>
  13. #include <linux/platform_device.h>
  14. #include <linux/pm_runtime.h>
  15. #include <linux/slab.h>
  16. #include "clk-scu.h"
  17. #include "clk-imx8qxp-lpcg.h"
  18. #include <dt-bindings/clock/imx8-clock.h>
  19. /*
  20. * struct imx8qxp_lpcg_data - Description of one LPCG clock
  21. * @id: clock ID
  22. * @name: clock name
  23. * @parent: parent clock name
  24. * @flags: common clock flags
  25. * @offset: offset of this LPCG clock
  26. * @bit_idx: bit index of this LPCG clock
  27. * @hw_gate: whether supports HW autogate
  28. *
  29. * This structure describes one LPCG clock
  30. */
  31. struct imx8qxp_lpcg_data {
  32. int id;
  33. char *name;
  34. char *parent;
  35. unsigned long flags;
  36. u32 offset;
  37. u8 bit_idx;
  38. bool hw_gate;
  39. };
  40. /*
  41. * struct imx8qxp_ss_lpcg - Description of one subsystem LPCG clocks
  42. * @lpcg: LPCG clocks array of one subsystem
  43. * @num_lpcg: the number of LPCG clocks
  44. * @num_max: the maximum number of LPCG clocks
  45. *
  46. * This structure describes each subsystem LPCG clocks information
  47. * which then will be used to create respective LPCGs clocks
  48. */
  49. struct imx8qxp_ss_lpcg {
  50. const struct imx8qxp_lpcg_data *lpcg;
  51. u8 num_lpcg;
  52. u8 num_max;
  53. };
  54. static const struct imx8qxp_lpcg_data imx8qxp_lpcg_adma[] = {
  55. { IMX_ADMA_LPCG_UART0_IPG_CLK, "uart0_lpcg_ipg_clk", "dma_ipg_clk_root", 0, ADMA_LPUART_0_LPCG, 16, 0, },
  56. { IMX_ADMA_LPCG_UART0_BAUD_CLK, "uart0_lpcg_baud_clk", "uart0_clk", 0, ADMA_LPUART_0_LPCG, 0, 0, },
  57. { IMX_ADMA_LPCG_UART1_IPG_CLK, "uart1_lpcg_ipg_clk", "dma_ipg_clk_root", 0, ADMA_LPUART_1_LPCG, 16, 0, },
  58. { IMX_ADMA_LPCG_UART1_BAUD_CLK, "uart1_lpcg_baud_clk", "uart1_clk", 0, ADMA_LPUART_1_LPCG, 0, 0, },
  59. { IMX_ADMA_LPCG_UART2_IPG_CLK, "uart2_lpcg_ipg_clk", "dma_ipg_clk_root", 0, ADMA_LPUART_2_LPCG, 16, 0, },
  60. { IMX_ADMA_LPCG_UART2_BAUD_CLK, "uart2_lpcg_baud_clk", "uart2_clk", 0, ADMA_LPUART_2_LPCG, 0, 0, },
  61. { IMX_ADMA_LPCG_UART3_IPG_CLK, "uart3_lpcg_ipg_clk", "dma_ipg_clk_root", 0, ADMA_LPUART_3_LPCG, 16, 0, },
  62. { IMX_ADMA_LPCG_UART3_BAUD_CLK, "uart3_lpcg_baud_clk", "uart3_clk", 0, ADMA_LPUART_3_LPCG, 0, 0, },
  63. { IMX_ADMA_LPCG_I2C0_IPG_CLK, "i2c0_lpcg_ipg_clk", "dma_ipg_clk_root", 0, ADMA_LPI2C_0_LPCG, 16, 0, },
  64. { IMX_ADMA_LPCG_I2C0_CLK, "i2c0_lpcg_clk", "i2c0_clk", 0, ADMA_LPI2C_0_LPCG, 0, 0, },
  65. { IMX_ADMA_LPCG_I2C1_IPG_CLK, "i2c1_lpcg_ipg_clk", "dma_ipg_clk_root", 0, ADMA_LPI2C_1_LPCG, 16, 0, },
  66. { IMX_ADMA_LPCG_I2C1_CLK, "i2c1_lpcg_clk", "i2c1_clk", 0, ADMA_LPI2C_1_LPCG, 0, 0, },
  67. { IMX_ADMA_LPCG_I2C2_IPG_CLK, "i2c2_lpcg_ipg_clk", "dma_ipg_clk_root", 0, ADMA_LPI2C_2_LPCG, 16, 0, },
  68. { IMX_ADMA_LPCG_I2C2_CLK, "i2c2_lpcg_clk", "i2c2_clk", 0, ADMA_LPI2C_2_LPCG, 0, 0, },
  69. { IMX_ADMA_LPCG_I2C3_IPG_CLK, "i2c3_lpcg_ipg_clk", "dma_ipg_clk_root", 0, ADMA_LPI2C_3_LPCG, 16, 0, },
  70. { IMX_ADMA_LPCG_I2C3_CLK, "i2c3_lpcg_clk", "i2c3_clk", 0, ADMA_LPI2C_3_LPCG, 0, 0, },
  71. { IMX_ADMA_LPCG_DSP_CORE_CLK, "dsp_lpcg_core_clk", "dma_ipg_clk_root", 0, ADMA_HIFI_LPCG, 28, 0, },
  72. { IMX_ADMA_LPCG_DSP_IPG_CLK, "dsp_lpcg_ipg_clk", "dma_ipg_clk_root", 0, ADMA_HIFI_LPCG, 20, 0, },
  73. { IMX_ADMA_LPCG_DSP_ADB_CLK, "dsp_lpcg_adb_clk", "dma_ipg_clk_root", 0, ADMA_HIFI_LPCG, 16, 0, },
  74. { IMX_ADMA_LPCG_OCRAM_IPG_CLK, "ocram_lpcg_ipg_clk", "dma_ipg_clk_root", 0, ADMA_OCRAM_LPCG, 16, 0, },
  75. };
  76. static const struct imx8qxp_ss_lpcg imx8qxp_ss_adma = {
  77. .lpcg = imx8qxp_lpcg_adma,
  78. .num_lpcg = ARRAY_SIZE(imx8qxp_lpcg_adma),
  79. .num_max = IMX_ADMA_LPCG_CLK_END,
  80. };
  81. static const struct imx8qxp_lpcg_data imx8qxp_lpcg_conn[] = {
  82. { IMX_CONN_LPCG_SDHC0_PER_CLK, "sdhc0_lpcg_per_clk", "sdhc0_clk", 0, CONN_USDHC_0_LPCG, 0, 0, },
  83. { IMX_CONN_LPCG_SDHC0_IPG_CLK, "sdhc0_lpcg_ipg_clk", "conn_ipg_clk_root", 0, CONN_USDHC_0_LPCG, 16, 0, },
  84. { IMX_CONN_LPCG_SDHC0_HCLK, "sdhc0_lpcg_ahb_clk", "conn_axi_clk_root", 0, CONN_USDHC_0_LPCG, 20, 0, },
  85. { IMX_CONN_LPCG_SDHC1_PER_CLK, "sdhc1_lpcg_per_clk", "sdhc1_clk", 0, CONN_USDHC_1_LPCG, 0, 0, },
  86. { IMX_CONN_LPCG_SDHC1_IPG_CLK, "sdhc1_lpcg_ipg_clk", "conn_ipg_clk_root", 0, CONN_USDHC_1_LPCG, 16, 0, },
  87. { IMX_CONN_LPCG_SDHC1_HCLK, "sdhc1_lpcg_ahb_clk", "conn_axi_clk_root", 0, CONN_USDHC_1_LPCG, 20, 0, },
  88. { IMX_CONN_LPCG_SDHC2_PER_CLK, "sdhc2_lpcg_per_clk", "sdhc2_clk", 0, CONN_USDHC_2_LPCG, 0, 0, },
  89. { IMX_CONN_LPCG_SDHC2_IPG_CLK, "sdhc2_lpcg_ipg_clk", "conn_ipg_clk_root", 0, CONN_USDHC_2_LPCG, 16, 0, },
  90. { IMX_CONN_LPCG_SDHC2_HCLK, "sdhc2_lpcg_ahb_clk", "conn_axi_clk_root", 0, CONN_USDHC_2_LPCG, 20, 0, },
  91. { IMX_CONN_LPCG_ENET0_ROOT_CLK, "enet0_ipg_root_clk", "enet0_clk", 0, CONN_ENET_0_LPCG, 0, 0, },
  92. { IMX_CONN_LPCG_ENET0_TX_CLK, "enet0_tx_clk", "enet0_clk", 0, CONN_ENET_0_LPCG, 4, 0, },
  93. { IMX_CONN_LPCG_ENET0_AHB_CLK, "enet0_ahb_clk", "conn_axi_clk_root", 0, CONN_ENET_0_LPCG, 8, 0, },
  94. { IMX_CONN_LPCG_ENET0_IPG_S_CLK, "enet0_ipg_s_clk", "conn_ipg_clk_root", 0, CONN_ENET_0_LPCG, 20, 0, },
  95. { IMX_CONN_LPCG_ENET0_IPG_CLK, "enet0_ipg_clk", "enet0_ipg_s_clk", 0, CONN_ENET_0_LPCG, 16, 0, },
  96. { IMX_CONN_LPCG_ENET1_ROOT_CLK, "enet1_ipg_root_clk", "enet1_clk", 0, CONN_ENET_1_LPCG, 0, 0, },
  97. { IMX_CONN_LPCG_ENET1_TX_CLK, "enet1_tx_clk", "enet1_clk", 0, CONN_ENET_1_LPCG, 4, 0, },
  98. { IMX_CONN_LPCG_ENET1_AHB_CLK, "enet1_ahb_clk", "conn_axi_clk_root", 0, CONN_ENET_1_LPCG, 8, 0, },
  99. { IMX_CONN_LPCG_ENET1_IPG_S_CLK, "enet1_ipg_s_clk", "conn_ipg_clk_root", 0, CONN_ENET_1_LPCG, 20, 0, },
  100. { IMX_CONN_LPCG_ENET1_IPG_CLK, "enet1_ipg_clk", "enet0_ipg_s_clk", 0, CONN_ENET_1_LPCG, 16, 0, },
  101. };
  102. static const struct imx8qxp_ss_lpcg imx8qxp_ss_conn = {
  103. .lpcg = imx8qxp_lpcg_conn,
  104. .num_lpcg = ARRAY_SIZE(imx8qxp_lpcg_conn),
  105. .num_max = IMX_CONN_LPCG_CLK_END,
  106. };
  107. static const struct imx8qxp_lpcg_data imx8qxp_lpcg_lsio[] = {
  108. { IMX_LSIO_LPCG_PWM0_IPG_CLK, "pwm0_lpcg_ipg_clk", "pwm0_clk", 0, LSIO_PWM_0_LPCG, 0, 0, },
  109. { IMX_LSIO_LPCG_PWM0_IPG_HF_CLK, "pwm0_lpcg_ipg_hf_clk", "pwm0_clk", 0, LSIO_PWM_0_LPCG, 4, 0, },
  110. { IMX_LSIO_LPCG_PWM0_IPG_S_CLK, "pwm0_lpcg_ipg_s_clk", "pwm0_clk", 0, LSIO_PWM_0_LPCG, 16, 0, },
  111. { IMX_LSIO_LPCG_PWM0_IPG_SLV_CLK, "pwm0_lpcg_ipg_slv_clk", "lsio_bus_clk_root", 0, LSIO_PWM_0_LPCG, 20, 0, },
  112. { IMX_LSIO_LPCG_PWM0_IPG_MSTR_CLK, "pwm0_lpcg_ipg_mstr_clk", "pwm0_clk", 0, LSIO_PWM_0_LPCG, 24, 0, },
  113. { IMX_LSIO_LPCG_PWM1_IPG_CLK, "pwm1_lpcg_ipg_clk", "pwm1_clk", 0, LSIO_PWM_1_LPCG, 0, 0, },
  114. { IMX_LSIO_LPCG_PWM1_IPG_HF_CLK, "pwm1_lpcg_ipg_hf_clk", "pwm1_clk", 0, LSIO_PWM_1_LPCG, 4, 0, },
  115. { IMX_LSIO_LPCG_PWM1_IPG_S_CLK, "pwm1_lpcg_ipg_s_clk", "pwm1_clk", 0, LSIO_PWM_1_LPCG, 16, 0, },
  116. { IMX_LSIO_LPCG_PWM1_IPG_SLV_CLK, "pwm1_lpcg_ipg_slv_clk", "lsio_bus_clk_root", 0, LSIO_PWM_1_LPCG, 20, 0, },
  117. { IMX_LSIO_LPCG_PWM1_IPG_MSTR_CLK, "pwm1_lpcg_ipg_mstr_clk", "pwm1_clk", 0, LSIO_PWM_1_LPCG, 24, 0, },
  118. { IMX_LSIO_LPCG_PWM2_IPG_CLK, "pwm2_lpcg_ipg_clk", "pwm2_clk", 0, LSIO_PWM_2_LPCG, 0, 0, },
  119. { IMX_LSIO_LPCG_PWM2_IPG_HF_CLK, "pwm2_lpcg_ipg_hf_clk", "pwm2_clk", 0, LSIO_PWM_2_LPCG, 4, 0, },
  120. { IMX_LSIO_LPCG_PWM2_IPG_S_CLK, "pwm2_lpcg_ipg_s_clk", "pwm2_clk", 0, LSIO_PWM_2_LPCG, 16, 0, },
  121. { IMX_LSIO_LPCG_PWM2_IPG_SLV_CLK, "pwm2_lpcg_ipg_slv_clk", "lsio_bus_clk_root", 0, LSIO_PWM_2_LPCG, 20, 0, },
  122. { IMX_LSIO_LPCG_PWM2_IPG_MSTR_CLK, "pwm2_lpcg_ipg_mstr_clk", "pwm2_clk", 0, LSIO_PWM_2_LPCG, 24, 0, },
  123. { IMX_LSIO_LPCG_PWM3_IPG_CLK, "pwm3_lpcg_ipg_clk", "pwm3_clk", 0, LSIO_PWM_3_LPCG, 0, 0, },
  124. { IMX_LSIO_LPCG_PWM3_IPG_HF_CLK, "pwm3_lpcg_ipg_hf_clk", "pwm3_clk", 0, LSIO_PWM_3_LPCG, 4, 0, },
  125. { IMX_LSIO_LPCG_PWM3_IPG_S_CLK, "pwm3_lpcg_ipg_s_clk", "pwm3_clk", 0, LSIO_PWM_3_LPCG, 16, 0, },
  126. { IMX_LSIO_LPCG_PWM3_IPG_SLV_CLK, "pwm3_lpcg_ipg_slv_clk", "lsio_bus_clk_root", 0, LSIO_PWM_3_LPCG, 20, 0, },
  127. { IMX_LSIO_LPCG_PWM3_IPG_MSTR_CLK, "pwm3_lpcg_ipg_mstr_clk", "pwm3_clk", 0, LSIO_PWM_3_LPCG, 24, 0, },
  128. { IMX_LSIO_LPCG_PWM4_IPG_CLK, "pwm4_lpcg_ipg_clk", "pwm4_clk", 0, LSIO_PWM_4_LPCG, 0, 0, },
  129. { IMX_LSIO_LPCG_PWM4_IPG_HF_CLK, "pwm4_lpcg_ipg_hf_clk", "pwm4_clk", 0, LSIO_PWM_4_LPCG, 4, 0, },
  130. { IMX_LSIO_LPCG_PWM4_IPG_S_CLK, "pwm4_lpcg_ipg_s_clk", "pwm4_clk", 0, LSIO_PWM_4_LPCG, 16, 0, },
  131. { IMX_LSIO_LPCG_PWM4_IPG_SLV_CLK, "pwm4_lpcg_ipg_slv_clk", "lsio_bus_clk_root", 0, LSIO_PWM_4_LPCG, 20, 0, },
  132. { IMX_LSIO_LPCG_PWM4_IPG_MSTR_CLK, "pwm4_lpcg_ipg_mstr_clk", "pwm4_clk", 0, LSIO_PWM_4_LPCG, 24, 0, },
  133. { IMX_LSIO_LPCG_PWM5_IPG_CLK, "pwm5_lpcg_ipg_clk", "pwm5_clk", 0, LSIO_PWM_5_LPCG, 0, 0, },
  134. { IMX_LSIO_LPCG_PWM5_IPG_HF_CLK, "pwm5_lpcg_ipg_hf_clk", "pwm5_clk", 0, LSIO_PWM_5_LPCG, 4, 0, },
  135. { IMX_LSIO_LPCG_PWM5_IPG_S_CLK, "pwm5_lpcg_ipg_s_clk", "pwm5_clk", 0, LSIO_PWM_5_LPCG, 16, 0, },
  136. { IMX_LSIO_LPCG_PWM5_IPG_SLV_CLK, "pwm5_lpcg_ipg_slv_clk", "lsio_bus_clk_root", 0, LSIO_PWM_5_LPCG, 20, 0, },
  137. { IMX_LSIO_LPCG_PWM5_IPG_MSTR_CLK, "pwm5_lpcg_ipg_mstr_clk", "pwm5_clk", 0, LSIO_PWM_5_LPCG, 24, 0, },
  138. { IMX_LSIO_LPCG_PWM6_IPG_CLK, "pwm6_lpcg_ipg_clk", "pwm6_clk", 0, LSIO_PWM_6_LPCG, 0, 0, },
  139. { IMX_LSIO_LPCG_PWM6_IPG_HF_CLK, "pwm6_lpcg_ipg_hf_clk", "pwm6_clk", 0, LSIO_PWM_6_LPCG, 4, 0, },
  140. { IMX_LSIO_LPCG_PWM6_IPG_S_CLK, "pwm6_lpcg_ipg_s_clk", "pwm6_clk", 0, LSIO_PWM_6_LPCG, 16, 0, },
  141. { IMX_LSIO_LPCG_PWM6_IPG_SLV_CLK, "pwm6_lpcg_ipg_slv_clk", "lsio_bus_clk_root", 0, LSIO_PWM_6_LPCG, 20, 0, },
  142. { IMX_LSIO_LPCG_PWM6_IPG_MSTR_CLK, "pwm6_lpcg_ipg_mstr_clk", "pwm6_clk", 0, LSIO_PWM_6_LPCG, 24, 0, },
  143. };
  144. static const struct imx8qxp_ss_lpcg imx8qxp_ss_lsio = {
  145. .lpcg = imx8qxp_lpcg_lsio,
  146. .num_lpcg = ARRAY_SIZE(imx8qxp_lpcg_lsio),
  147. .num_max = IMX_LSIO_LPCG_CLK_END,
  148. };
  149. #define IMX_LPCG_MAX_CLKS 8
  150. static struct clk_hw *imx_lpcg_of_clk_src_get(struct of_phandle_args *clkspec,
  151. void *data)
  152. {
  153. struct clk_hw_onecell_data *hw_data = data;
  154. unsigned int idx = clkspec->args[0] / 4;
  155. if (idx >= hw_data->num) {
  156. pr_err("%s: invalid index %u\n", __func__, idx);
  157. return ERR_PTR(-EINVAL);
  158. }
  159. return hw_data->hws[idx];
  160. }
  161. static int imx_lpcg_parse_clks_from_dt(struct platform_device *pdev,
  162. struct device_node *np)
  163. {
  164. const char *output_names[IMX_LPCG_MAX_CLKS];
  165. const char *parent_names[IMX_LPCG_MAX_CLKS];
  166. unsigned int bit_offset[IMX_LPCG_MAX_CLKS];
  167. struct clk_hw_onecell_data *clk_data;
  168. struct clk_hw **clk_hws;
  169. struct resource *res;
  170. void __iomem *base;
  171. int count;
  172. int idx;
  173. int ret;
  174. int i;
  175. if (!of_device_is_compatible(np, "fsl,imx8qxp-lpcg"))
  176. return -EINVAL;
  177. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  178. base = devm_ioremap_resource(&pdev->dev, res);
  179. if (IS_ERR(base))
  180. return PTR_ERR(base);
  181. count = of_property_count_u32_elems(np, "clock-indices");
  182. if (count < 0) {
  183. dev_err(&pdev->dev, "failed to count clocks\n");
  184. return -EINVAL;
  185. }
  186. /*
  187. * A trick here is that we set the num of clks to the MAX instead
  188. * of the count from clock-indices because one LPCG supports up to
  189. * 8 clock outputs which each of them is fixed to 4 bits. Then we can
  190. * easily get the clock by clk-indices (bit-offset) / 4.
  191. * And the cost is very limited few pointers.
  192. */
  193. clk_data = devm_kzalloc(&pdev->dev, struct_size(clk_data, hws,
  194. IMX_LPCG_MAX_CLKS), GFP_KERNEL);
  195. if (!clk_data)
  196. return -ENOMEM;
  197. clk_data->num = IMX_LPCG_MAX_CLKS;
  198. clk_hws = clk_data->hws;
  199. ret = of_property_read_u32_array(np, "clock-indices", bit_offset,
  200. count);
  201. if (ret < 0) {
  202. dev_err(&pdev->dev, "failed to read clock-indices\n");
  203. return -EINVAL;
  204. }
  205. ret = of_clk_parent_fill(np, parent_names, count);
  206. if (ret != count) {
  207. dev_err(&pdev->dev, "failed to get clock parent names\n");
  208. return count;
  209. }
  210. ret = of_property_read_string_array(np, "clock-output-names",
  211. output_names, count);
  212. if (ret != count) {
  213. dev_err(&pdev->dev, "failed to read clock-output-names\n");
  214. return -EINVAL;
  215. }
  216. pm_runtime_get_noresume(&pdev->dev);
  217. pm_runtime_set_active(&pdev->dev);
  218. pm_runtime_set_autosuspend_delay(&pdev->dev, 500);
  219. pm_runtime_use_autosuspend(&pdev->dev);
  220. pm_runtime_enable(&pdev->dev);
  221. for (i = 0; i < count; i++) {
  222. idx = bit_offset[i] / 4;
  223. if (idx >= IMX_LPCG_MAX_CLKS) {
  224. dev_warn(&pdev->dev, "invalid bit offset of clock %d\n",
  225. i);
  226. ret = -EINVAL;
  227. goto unreg;
  228. }
  229. clk_hws[idx] = imx_clk_lpcg_scu_dev(&pdev->dev, output_names[i],
  230. parent_names[i], 0, base,
  231. bit_offset[i], false);
  232. if (IS_ERR(clk_hws[idx])) {
  233. dev_warn(&pdev->dev, "failed to register clock %d\n",
  234. idx);
  235. ret = PTR_ERR(clk_hws[idx]);
  236. goto unreg;
  237. }
  238. }
  239. ret = devm_of_clk_add_hw_provider(&pdev->dev, imx_lpcg_of_clk_src_get,
  240. clk_data);
  241. if (ret)
  242. goto unreg;
  243. pm_runtime_mark_last_busy(&pdev->dev);
  244. pm_runtime_put_autosuspend(&pdev->dev);
  245. return 0;
  246. unreg:
  247. while (--i >= 0) {
  248. idx = bit_offset[i] / 4;
  249. if (clk_hws[idx])
  250. imx_clk_lpcg_scu_unregister(clk_hws[idx]);
  251. }
  252. pm_runtime_disable(&pdev->dev);
  253. return ret;
  254. }
  255. static int imx8qxp_lpcg_clk_probe(struct platform_device *pdev)
  256. {
  257. struct device *dev = &pdev->dev;
  258. struct device_node *np = dev->of_node;
  259. struct clk_hw_onecell_data *clk_data;
  260. const struct imx8qxp_ss_lpcg *ss_lpcg;
  261. const struct imx8qxp_lpcg_data *lpcg;
  262. struct resource *res;
  263. struct clk_hw **clks;
  264. void __iomem *base;
  265. int ret;
  266. int i;
  267. /* try new binding to parse clocks from device tree first */
  268. ret = imx_lpcg_parse_clks_from_dt(pdev, np);
  269. if (!ret)
  270. return 0;
  271. ss_lpcg = of_device_get_match_data(dev);
  272. if (!ss_lpcg)
  273. return -ENODEV;
  274. /*
  275. * Please don't replace this with devm_platform_ioremap_resource.
  276. *
  277. * devm_platform_ioremap_resource calls devm_ioremap_resource which
  278. * differs from devm_ioremap by also calling devm_request_mem_region
  279. * and preventing other mappings in the same area.
  280. *
  281. * On imx8 the LPCG nodes map entire subsystems and overlap
  282. * peripherals, this means that using devm_platform_ioremap_resource
  283. * will cause many devices to fail to probe including serial ports.
  284. */
  285. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  286. if (!res)
  287. return -EINVAL;
  288. base = devm_ioremap(dev, res->start, resource_size(res));
  289. if (!base)
  290. return -ENOMEM;
  291. clk_data = devm_kzalloc(&pdev->dev, struct_size(clk_data, hws,
  292. ss_lpcg->num_max), GFP_KERNEL);
  293. if (!clk_data)
  294. return -ENOMEM;
  295. clk_data->num = ss_lpcg->num_max;
  296. clks = clk_data->hws;
  297. for (i = 0; i < ss_lpcg->num_lpcg; i++) {
  298. lpcg = ss_lpcg->lpcg + i;
  299. clks[lpcg->id] = imx_clk_lpcg_scu(lpcg->name, lpcg->parent,
  300. lpcg->flags, base + lpcg->offset,
  301. lpcg->bit_idx, lpcg->hw_gate);
  302. }
  303. for (i = 0; i < clk_data->num; i++) {
  304. if (IS_ERR(clks[i]))
  305. pr_warn("i.MX clk %u: register failed with %ld\n",
  306. i, PTR_ERR(clks[i]));
  307. }
  308. return of_clk_add_hw_provider(np, of_clk_hw_onecell_get, clk_data);
  309. }
  310. static const struct of_device_id imx8qxp_lpcg_match[] = {
  311. { .compatible = "fsl,imx8qxp-lpcg-adma", &imx8qxp_ss_adma, },
  312. { .compatible = "fsl,imx8qxp-lpcg-conn", &imx8qxp_ss_conn, },
  313. { .compatible = "fsl,imx8qxp-lpcg-lsio", &imx8qxp_ss_lsio, },
  314. { .compatible = "fsl,imx8qxp-lpcg", NULL },
  315. { /* sentinel */ }
  316. };
  317. static struct platform_driver imx8qxp_lpcg_clk_driver = {
  318. .driver = {
  319. .name = "imx8qxp-lpcg-clk",
  320. .of_match_table = imx8qxp_lpcg_match,
  321. .pm = &imx_clk_lpcg_scu_pm_ops,
  322. .suppress_bind_attrs = true,
  323. },
  324. .probe = imx8qxp_lpcg_clk_probe,
  325. };
  326. module_platform_driver(imx8qxp_lpcg_clk_driver);
  327. MODULE_AUTHOR("Aisheng Dong <[email protected]>");
  328. MODULE_DESCRIPTION("NXP i.MX8QXP LPCG clock driver");
  329. MODULE_LICENSE("GPL v2");