sec_battery_ttf.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413
  1. /*
  2. * sec_battery_ttf.c
  3. * Samsung Mobile Battery Driver
  4. *
  5. * Copyright (C) 2019 Samsung Electronics
  6. *
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License version 2 as
  10. * published by the Free Software Foundation.
  11. */
  12. #include "sec_battery.h"
  13. #include "sec_battery_ttf.h"
  14. #define is_ttf_thermal_zone(thermal_zone) ( \
  15. thermal_zone == BAT_THERMAL_NORMAL || \
  16. thermal_zone == BAT_THERMAL_COOL1 || \
  17. thermal_zone == BAT_THERMAL_COOL2)
  18. static bool skip_ttf_event(unsigned int misc_event)
  19. {
  20. return (misc_event & BATT_MISC_EVENT_PASS_THROUGH);
  21. }
  22. static bool check_ttf_state(unsigned int capacity, int bat_sts)
  23. {
  24. return ((bat_sts == POWER_SUPPLY_STATUS_CHARGING) ||
  25. (bat_sts == POWER_SUPPLY_STATUS_FULL && capacity != 100));
  26. }
  27. static int get_cc_cv_time(struct sec_battery_info * battery, int ttf_curr, int soc, bool minimum)
  28. {
  29. struct sec_cv_slope *cv_data = battery->ttf_d->cv_data;
  30. int i, design_cap = battery->ttf_d->ttf_capacity;
  31. int cc_time = 0, cv_time = 0;
  32. int minimum_time = 0;
  33. for (i = 0; i < battery->ttf_d->cv_data_length; i++) {
  34. if (ttf_curr >= cv_data[i].fg_current)
  35. break;
  36. }
  37. i = i >= battery->ttf_d->cv_data_length ? battery->ttf_d->cv_data_length - 1 : i;
  38. if (cv_data[i].soc < soc) {
  39. for (i = 0; i < battery->ttf_d->cv_data_length; i++) {
  40. if (soc <= cv_data[i].soc)
  41. break;
  42. }
  43. cv_time =
  44. ((cv_data[i - 1].time - cv_data[i].time) * (cv_data[i].soc - soc)
  45. / (cv_data[i].soc - cv_data[i - 1].soc)) + cv_data[i].time;
  46. } else { /* CC mode || NONE */
  47. cv_time = cv_data[i].time;
  48. cc_time =
  49. design_cap * (cv_data[i].soc - soc) / ttf_curr * 3600 / 1000;
  50. pr_debug("%s: cc_time: %d\n", __func__, cc_time);
  51. if (cc_time < 0)
  52. cc_time = 0;
  53. }
  54. pr_info("%s: cap: %d, soc: %4d, T: %6d, avg: %4d, cv soc: %4d, i: %4d, val: %d, minimum:%d\n",
  55. __func__, design_cap, soc, cv_time + cc_time,
  56. battery->current_avg, cv_data[i].soc, i, ttf_curr, minimum);
  57. if (minimum)
  58. minimum_time = 60;
  59. return ((cc_time + cv_time >= 0) ? (cc_time + cv_time + minimum_time) : minimum_time);
  60. }
  61. static int get_current_soc( char *name)
  62. {
  63. union power_supply_propval value = {0, };
  64. value.intval = SEC_FUELGAUGE_CAPACITY_TYPE_DYNAMIC_SCALE;
  65. psy_do_property(name, get,
  66. POWER_SUPPLY_PROP_CAPACITY, value);
  67. return value.intval;
  68. }
  69. int sec_calc_ttf(struct sec_battery_info * battery, unsigned int ttf_curr)
  70. {
  71. struct sec_cv_slope *cv_data = battery->ttf_d->cv_data;
  72. int total_time;
  73. if (!cv_data || (ttf_curr <= 0)) {
  74. pr_info("%s: no cv_data or val: %d\n", __func__, ttf_curr);
  75. return -1;
  76. }
  77. total_time = get_cc_cv_time(battery, ttf_curr, get_current_soc(battery->pdata->fuelgauge_name), true);
  78. if (is_full_capacity(battery->fs)) {
  79. int now_full_cap = get_full_capacity(battery->fs);
  80. pr_info("%s: time to %d percent\n", __func__, now_full_cap);
  81. total_time -= get_cc_cv_time(battery, ttf_curr, (now_full_cap * 10), false);
  82. }
  83. return total_time;
  84. }
  85. int sec_get_ttf_standard_curr(struct sec_battery_info *battery)
  86. {
  87. int charge = 0;
  88. if (is_hv_wire_12v_type(battery->cable_type)) {
  89. charge = battery->ttf_d->ttf_hv_12v_charge_current;
  90. #if IS_ENABLED(CONFIG_WIRELESS_CHARGING)
  91. } else if (battery->cable_type == SEC_BATTERY_CABLE_WIRELESS_EPP ||
  92. battery->cable_type == SEC_BATTERY_CABLE_WIRELESS_EPP_FAKE) {
  93. if (battery->wc20_rx_power >= WFC21_WIRELESS_POWER) // need to fix hardcoding
  94. charge = battery->ttf_d->ttf_wc21_wireless_charge_current;
  95. else if (battery->wc20_rx_power >= WFC20_WIRELESS_POWER)
  96. charge = battery->ttf_d->ttf_wc20_wireless_charge_current;
  97. else if (battery->wc20_rx_power >= WFC10_WIRELESS_POWER)
  98. charge = battery->ttf_d->ttf_hv_wireless_charge_current;
  99. else
  100. charge = battery->ttf_d->ttf_wireless_charge_current;
  101. } else if (is_hv_wireless_type(battery->cable_type) ||
  102. battery->cable_type == SEC_BATTERY_CABLE_PREPARE_WIRELESS_HV ||
  103. battery->cable_type == SEC_BATTERY_CABLE_PREPARE_WIRELESS_20) {
  104. unsigned int wc_budg_pwr;
  105. union power_supply_propval value = {0, };
  106. psy_do_property(battery->pdata->wireless_charger_name, get,
  107. POWER_SUPPLY_EXT_PROP_TX_PWR_BUDG, value);
  108. wc_budg_pwr = value.intval;
  109. pr_info("%s : POWER_SUPPLY_EXT_PROP_TX_PWR_BUDG(%d)\n",
  110. __func__, wc_budg_pwr);
  111. if (sec_bat_hv_wc_normal_mode_check(battery))
  112. charge = battery->ttf_d->ttf_wireless_charge_current;
  113. else if ((battery->cable_type == SEC_BATTERY_CABLE_PREPARE_WIRELESS_20 && !sec_bat_get_lpmode()) ||
  114. battery->cable_type == SEC_BATTERY_CABLE_HV_WIRELESS_20) {
  115. if (battery->wc20_rx_power >= WFC21_WIRELESS_POWER || wc_budg_pwr >= RX_POWER_15W)
  116. charge = battery->ttf_d->ttf_wc21_wireless_charge_current;
  117. else if (battery->wc20_rx_power >= WFC20_WIRELESS_POWER || wc_budg_pwr >= RX_POWER_12W)
  118. charge = battery->ttf_d->ttf_wc20_wireless_charge_current;
  119. else if (battery->wc20_rx_power >= WFC10_WIRELESS_POWER || wc_budg_pwr >= RX_POWER_7_5W)
  120. charge = battery->ttf_d->ttf_hv_wireless_charge_current;
  121. else
  122. charge = battery->ttf_d->ttf_wireless_charge_current;
  123. }
  124. else
  125. charge = battery->ttf_d->ttf_hv_wireless_charge_current;
  126. } else if (is_nv_wireless_type(battery->cable_type)) {
  127. charge = battery->ttf_d->ttf_wireless_charge_current;
  128. #endif
  129. } else if (is_hv_wire_type(battery->cable_type)) {
  130. charge = battery->ttf_d->ttf_hv_charge_current;
  131. } else if (is_pd_apdo_wire_type(battery->cable_type) ||
  132. (is_pd_fpdo_wire_type(battery->cable_type) && battery->hv_pdo)) {
  133. if (battery->pd_max_charge_power > HV_CHARGER_STATUS_STANDARD4) {
  134. charge = battery->ttf_d->ttf_dc45_charge_current;
  135. } else if (battery->pd_max_charge_power > HV_CHARGER_STATUS_STANDARD3) {
  136. charge = battery->ttf_d->ttf_dc25_charge_current;
  137. } else if (battery->pd_max_charge_power <= battery->pdata->pd_charging_charge_power &&
  138. battery->pdata->charging_current[battery->cable_type].fast_charging_current >= \
  139. battery->pdata->max_charging_current) { /* same PD power with AFC */
  140. charge = battery->ttf_d->ttf_hv_charge_current;
  141. } else { /* other PD charging */
  142. charge = (battery->pd_max_charge_power / 5) > battery->pdata->charging_current[battery->cable_type].fast_charging_current ?
  143. battery->pdata->charging_current[battery->cable_type].fast_charging_current : (battery->pd_max_charge_power / 5);
  144. }
  145. } else {
  146. charge = (battery->max_charge_power / 5) > battery->pdata->charging_current[battery->cable_type].fast_charging_current ?
  147. battery->pdata->charging_current[battery->cable_type].fast_charging_current : (battery->max_charge_power / 5);
  148. }
  149. if (battery->cable_type == SEC_BATTERY_CABLE_FPDO_DC)
  150. charge = battery->ttf_d->ttf_fpdo_dc_charge_current;
  151. return charge;
  152. }
  153. EXPORT_SYMBOL_KUNIT(sec_get_ttf_standard_curr);
  154. static int check_ttf_valid(struct sec_ttf_data *ttf_d, int ttf)
  155. {
  156. if (ttf_d->timetofull < 0) {
  157. ttf_d->old_timetofull = ttf;
  158. return ttf;
  159. }
  160. if (ttf > ttf_d->timetofull) {
  161. if (ttf > ttf_d->old_timetofull) {
  162. int ret = ttf_d->old_timetofull;
  163. ttf_d->old_timetofull = ttf;
  164. return ret;
  165. }
  166. }
  167. ttf_d->old_timetofull = ttf;
  168. return ttf;
  169. }
  170. static void init_ttf(struct sec_ttf_data *ttf_d)
  171. {
  172. ttf_d->timetofull = -1;
  173. ttf_d->old_timetofull = -1;
  174. }
  175. void sec_bat_calc_time_to_full(struct sec_battery_info * battery)
  176. {
  177. if (delayed_work_pending(&battery->ttf_d->timetofull_work)) {
  178. pr_info("%s: keep time_to_full(%5d sec)\n", __func__, battery->ttf_d->timetofull);
  179. } else if (check_ttf_state(battery->capacity, battery->status) &&
  180. !battery->wc_tx_enable && !skip_ttf_event(battery->misc_event)) {
  181. int charge = 0, ttf = 0;
  182. charge = sec_get_ttf_standard_curr(battery);
  183. ttf = sec_calc_ttf(battery, charge);
  184. battery->ttf_d->timetofull = check_ttf_valid(battery->ttf_d, ttf);
  185. dev_info(battery->dev, "%s: T: %5d|%5d sec, passed time: %5ld, current: %d\n",
  186. __func__, battery->ttf_d->timetofull, ttf, battery->charging_passed_time, charge);
  187. } else {
  188. init_ttf(battery->ttf_d);
  189. }
  190. }
  191. int sec_ttf_parse_dt(struct sec_battery_info *battery)
  192. {
  193. struct device_node *np;
  194. struct sec_ttf_data *pdata = battery->ttf_d;
  195. sec_battery_platform_data_t *bpdata = battery->pdata;
  196. int ret = 0, len = 0;
  197. const u32 *p;
  198. pdata->pdev = battery;
  199. np = of_find_node_by_name(NULL, "battery");
  200. if (!np) {
  201. pr_info("%s: np NULL\n", __func__);
  202. return 1;
  203. }
  204. ret = of_property_read_u32(np, "battery,ttf_hv_12v_charge_current",
  205. &pdata->ttf_hv_12v_charge_current);
  206. if (ret) {
  207. pdata->ttf_hv_12v_charge_current =
  208. bpdata->charging_current[SEC_BATTERY_CABLE_12V_TA].fast_charging_current;
  209. pr_info("%s: ttf_hv_12v_charge_current is Empty, Default value %d\n",
  210. __func__, pdata->ttf_hv_12v_charge_current);
  211. }
  212. ret = of_property_read_u32(np, "battery,ttf_hv_charge_current",
  213. &pdata->ttf_hv_charge_current);
  214. if (ret) {
  215. pdata->ttf_hv_charge_current =
  216. bpdata->charging_current[SEC_BATTERY_CABLE_9V_TA].fast_charging_current;
  217. pr_info("%s: ttf_hv_charge_current is Empty, Default value %d\n",
  218. __func__, pdata->ttf_hv_charge_current);
  219. }
  220. ret = of_property_read_u32(np, "battery,ttf_hv_wireless_charge_current",
  221. &pdata->ttf_hv_wireless_charge_current);
  222. if (ret) {
  223. pdata->ttf_hv_wireless_charge_current =
  224. bpdata->charging_current[SEC_BATTERY_CABLE_HV_WIRELESS].fast_charging_current - 300;
  225. pr_info("%s: ttf_hv_wireless_charge_current is Empty, Default value %d\n",
  226. __func__, pdata->ttf_hv_wireless_charge_current);
  227. }
  228. ret = of_property_read_u32(np, "battery,ttf_wc20_wireless_charge_current",
  229. &pdata->ttf_wc20_wireless_charge_current);
  230. if (ret) {
  231. pdata->ttf_wc20_wireless_charge_current =
  232. bpdata->charging_current[SEC_BATTERY_CABLE_HV_WIRELESS_20].fast_charging_current - 300;
  233. pr_info("%s: ttf_wc20_wireless_charge_current is Empty, Default value %d\n",
  234. __func__, pdata->ttf_wc20_wireless_charge_current);
  235. }
  236. ret = of_property_read_u32(np, "battery,ttf_wc21_wireless_charge_current",
  237. &pdata->ttf_wc21_wireless_charge_current);
  238. if (ret) {
  239. pdata->ttf_wc21_wireless_charge_current =
  240. bpdata->charging_current[SEC_BATTERY_CABLE_HV_WIRELESS_20].fast_charging_current - 300;
  241. pr_info("%s: ttf_wc21_wireless_charge_current is Empty, Default value %d\n",
  242. __func__, pdata->ttf_wc21_wireless_charge_current);
  243. }
  244. ret = of_property_read_u32(np, "battery,ttf_wireless_charge_current",
  245. &pdata->ttf_wireless_charge_current);
  246. if (ret) {
  247. pdata->ttf_wireless_charge_current =
  248. bpdata->charging_current[SEC_BATTERY_CABLE_WIRELESS].input_current_limit;
  249. pr_info("%s: ttf_wireless_charge_current is Empty, Default value %d\n",
  250. __func__, pdata->ttf_wireless_charge_current);
  251. }
  252. ret = of_property_read_u32(np, "battery,ttf_dc25_charge_current",
  253. &pdata->ttf_dc25_charge_current);
  254. if (ret) {
  255. pdata->ttf_dc25_charge_current =
  256. bpdata->charging_current[SEC_BATTERY_CABLE_9V_TA].fast_charging_current;
  257. pr_info("%s: ttf_dc25_charge_current is Empty, Default value %d\n",
  258. __func__, pdata->ttf_dc25_charge_current);
  259. }
  260. ret = of_property_read_u32(np, "battery,ttf_dc45_charge_current",
  261. &pdata->ttf_dc45_charge_current);
  262. if (ret) {
  263. pdata->ttf_dc45_charge_current = pdata->ttf_dc25_charge_current;
  264. pr_info("%s: ttf_dc45_charge_current is Empty, Default value %d \n",
  265. __func__, pdata->ttf_dc45_charge_current);
  266. }
  267. ret = of_property_read_u32(np, "battery,ttf_fpdo_dc_charge_current",
  268. &pdata->ttf_fpdo_dc_charge_current);
  269. if (ret) {
  270. pdata->ttf_fpdo_dc_charge_current = pdata->ttf_hv_charge_current;
  271. pr_info("%s: ttf_fpdo_dc_charge_current is Empty, Default value %d\n",
  272. __func__, pdata->ttf_fpdo_dc_charge_current);
  273. }
  274. ret = of_property_read_u32(np, "battery,ttf_capacity",
  275. &pdata->ttf_capacity);
  276. if (ret < 0) {
  277. pr_err("%s error reading capacity_calculation_type %d\n", __func__, ret);
  278. pdata->ttf_capacity = bpdata->battery_full_capacity;
  279. }
  280. p = of_get_property(np, "battery,cv_data", &len);
  281. if (p) {
  282. pdata->cv_data = kzalloc(len, GFP_KERNEL);
  283. pdata->cv_data_length = len / sizeof(struct sec_cv_slope);
  284. pr_err("%s: len= %ld, length= %d, %d\n", __func__,
  285. sizeof(int) * len, len, pdata->cv_data_length);
  286. ret = of_property_read_u32_array(np, "battery,cv_data",
  287. (u32 *)pdata->cv_data, len / sizeof(u32));
  288. if (ret) {
  289. pr_err("%s: failed to read battery->cv_data: %d\n",
  290. __func__, ret);
  291. kfree(pdata->cv_data);
  292. pdata->cv_data = NULL;
  293. }
  294. } else {
  295. pr_err("%s: there is not cv_data\n", __func__);
  296. }
  297. return 0;
  298. }
  299. void sec_bat_time_to_full_work(struct work_struct *work)
  300. {
  301. struct sec_ttf_data *dev = container_of(work,
  302. struct sec_ttf_data, timetofull_work.work);
  303. struct sec_battery_info *battery = dev->pdev;
  304. union power_supply_propval value = {0, };
  305. psy_do_property(battery->pdata->charger_name, get,
  306. POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT, value);
  307. battery->current_max = value.intval;
  308. value.intval = SEC_BATTERY_CURRENT_MA;
  309. psy_do_property(battery->pdata->fuelgauge_name, get,
  310. POWER_SUPPLY_PROP_CURRENT_NOW, value);
  311. battery->current_now = value.intval;
  312. value.intval = SEC_BATTERY_CURRENT_MA;
  313. psy_do_property(battery->pdata->fuelgauge_name, get,
  314. POWER_SUPPLY_PROP_CURRENT_AVG, value);
  315. battery->current_avg = value.intval;
  316. sec_bat_calc_time_to_full(battery);
  317. dev_info(battery->dev, "%s:\n",__func__);
  318. if (battery->voltage_now > 0)
  319. battery->voltage_now--;
  320. power_supply_changed(battery->psy_bat);
  321. }
  322. void ttf_work_start(struct sec_battery_info *battery)
  323. {
  324. if (sec_bat_get_lpmode()) {
  325. cancel_delayed_work(&battery->ttf_d->timetofull_work);
  326. if (battery->current_event & SEC_BAT_CURRENT_EVENT_AFC) {
  327. int work_delay = 0;
  328. if (!is_wireless_type(battery->cable_type)) {
  329. work_delay = battery->pdata->pre_afc_work_delay;
  330. } else {
  331. work_delay = battery->pdata->pre_wc_afc_work_delay;
  332. }
  333. queue_delayed_work(battery->monitor_wqueue,
  334. &battery->ttf_d->timetofull_work, msecs_to_jiffies(work_delay));
  335. }
  336. }
  337. }
  338. int ttf_display(unsigned int capacity, int bat_sts, int thermal_zone, int time)
  339. {
  340. if (capacity == 100)
  341. return 0;
  342. if (check_ttf_state(capacity, bat_sts) &&
  343. is_ttf_thermal_zone(thermal_zone))
  344. return time;
  345. return 0;
  346. }
  347. EXPORT_SYMBOL_KUNIT(ttf_display);
  348. void ttf_init(struct sec_battery_info *battery)
  349. {
  350. battery->ttf_d = kzalloc(sizeof(struct sec_ttf_data),
  351. GFP_KERNEL);
  352. if (!battery->ttf_d) {
  353. pr_err("Failed to allocate memory\n");
  354. }
  355. sec_ttf_parse_dt(battery);
  356. init_ttf(battery->ttf_d);
  357. INIT_DELAYED_WORK(&battery->ttf_d->timetofull_work, sec_bat_time_to_full_work);
  358. }
  359. EXPORT_SYMBOL_KUNIT(ttf_init);