123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799 |
- // SPDX-License-Identifier: GPL-2.0
- /*
- * pptt.c - parsing of Processor Properties Topology Table (PPTT)
- *
- * Copyright (C) 2018, ARM
- *
- * This file implements parsing of the Processor Properties Topology Table
- * which is optionally used to describe the processor and cache topology.
- * Due to the relative pointers used throughout the table, this doesn't
- * leverage the existing subtable parsing in the kernel.
- *
- * The PPTT structure is an inverted tree, with each node potentially
- * holding one or two inverted tree data structures describing
- * the caches available at that level. Each cache structure optionally
- * contains properties describing the cache at a given level which can be
- * used to override hardware probed values.
- */
- #define pr_fmt(fmt) "ACPI PPTT: " fmt
- #include <linux/acpi.h>
- #include <linux/cacheinfo.h>
- #include <acpi/processor.h>
- static struct acpi_subtable_header *fetch_pptt_subtable(struct acpi_table_header *table_hdr,
- u32 pptt_ref)
- {
- struct acpi_subtable_header *entry;
- /* there isn't a subtable at reference 0 */
- if (pptt_ref < sizeof(struct acpi_subtable_header))
- return NULL;
- if (pptt_ref + sizeof(struct acpi_subtable_header) > table_hdr->length)
- return NULL;
- entry = ACPI_ADD_PTR(struct acpi_subtable_header, table_hdr, pptt_ref);
- if (entry->length == 0)
- return NULL;
- if (pptt_ref + entry->length > table_hdr->length)
- return NULL;
- return entry;
- }
- static struct acpi_pptt_processor *fetch_pptt_node(struct acpi_table_header *table_hdr,
- u32 pptt_ref)
- {
- return (struct acpi_pptt_processor *)fetch_pptt_subtable(table_hdr, pptt_ref);
- }
- static struct acpi_pptt_cache *fetch_pptt_cache(struct acpi_table_header *table_hdr,
- u32 pptt_ref)
- {
- return (struct acpi_pptt_cache *)fetch_pptt_subtable(table_hdr, pptt_ref);
- }
- static struct acpi_subtable_header *acpi_get_pptt_resource(struct acpi_table_header *table_hdr,
- struct acpi_pptt_processor *node,
- int resource)
- {
- u32 *ref;
- if (resource >= node->number_of_priv_resources)
- return NULL;
- ref = ACPI_ADD_PTR(u32, node, sizeof(struct acpi_pptt_processor));
- ref += resource;
- return fetch_pptt_subtable(table_hdr, *ref);
- }
- static inline bool acpi_pptt_match_type(int table_type, int type)
- {
- return ((table_type & ACPI_PPTT_MASK_CACHE_TYPE) == type ||
- table_type & ACPI_PPTT_CACHE_TYPE_UNIFIED & type);
- }
- /**
- * acpi_pptt_walk_cache() - Attempt to find the requested acpi_pptt_cache
- * @table_hdr: Pointer to the head of the PPTT table
- * @local_level: passed res reflects this cache level
- * @res: cache resource in the PPTT we want to walk
- * @found: returns a pointer to the requested level if found
- * @level: the requested cache level
- * @type: the requested cache type
- *
- * Attempt to find a given cache level, while counting the max number
- * of cache levels for the cache node.
- *
- * Given a pptt resource, verify that it is a cache node, then walk
- * down each level of caches, counting how many levels are found
- * as well as checking the cache type (icache, dcache, unified). If a
- * level & type match, then we set found, and continue the search.
- * Once the entire cache branch has been walked return its max
- * depth.
- *
- * Return: The cache structure and the level we terminated with.
- */
- static unsigned int acpi_pptt_walk_cache(struct acpi_table_header *table_hdr,
- unsigned int local_level,
- struct acpi_subtable_header *res,
- struct acpi_pptt_cache **found,
- unsigned int level, int type)
- {
- struct acpi_pptt_cache *cache;
- if (res->type != ACPI_PPTT_TYPE_CACHE)
- return 0;
- cache = (struct acpi_pptt_cache *) res;
- while (cache) {
- local_level++;
- if (local_level == level &&
- cache->flags & ACPI_PPTT_CACHE_TYPE_VALID &&
- acpi_pptt_match_type(cache->attributes, type)) {
- if (*found != NULL && cache != *found)
- pr_warn("Found duplicate cache level/type unable to determine uniqueness\n");
- pr_debug("Found cache @ level %u\n", level);
- *found = cache;
- /*
- * continue looking at this node's resource list
- * to verify that we don't find a duplicate
- * cache node.
- */
- }
- cache = fetch_pptt_cache(table_hdr, cache->next_level_of_cache);
- }
- return local_level;
- }
- static struct acpi_pptt_cache *
- acpi_find_cache_level(struct acpi_table_header *table_hdr,
- struct acpi_pptt_processor *cpu_node,
- unsigned int *starting_level, unsigned int level,
- int type)
- {
- struct acpi_subtable_header *res;
- unsigned int number_of_levels = *starting_level;
- int resource = 0;
- struct acpi_pptt_cache *ret = NULL;
- unsigned int local_level;
- /* walk down from processor node */
- while ((res = acpi_get_pptt_resource(table_hdr, cpu_node, resource))) {
- resource++;
- local_level = acpi_pptt_walk_cache(table_hdr, *starting_level,
- res, &ret, level, type);
- /*
- * we are looking for the max depth. Since its potentially
- * possible for a given node to have resources with differing
- * depths verify that the depth we have found is the largest.
- */
- if (number_of_levels < local_level)
- number_of_levels = local_level;
- }
- if (number_of_levels > *starting_level)
- *starting_level = number_of_levels;
- return ret;
- }
- /**
- * acpi_count_levels() - Given a PPTT table, and a CPU node, count the caches
- * @table_hdr: Pointer to the head of the PPTT table
- * @cpu_node: processor node we wish to count caches for
- *
- * Given a processor node containing a processing unit, walk into it and count
- * how many levels exist solely for it, and then walk up each level until we hit
- * the root node (ignore the package level because it may be possible to have
- * caches that exist across packages). Count the number of cache levels that
- * exist at each level on the way up.
- *
- * Return: Total number of levels found.
- */
- static int acpi_count_levels(struct acpi_table_header *table_hdr,
- struct acpi_pptt_processor *cpu_node)
- {
- int total_levels = 0;
- do {
- acpi_find_cache_level(table_hdr, cpu_node, &total_levels, 0, 0);
- cpu_node = fetch_pptt_node(table_hdr, cpu_node->parent);
- } while (cpu_node);
- return total_levels;
- }
- /**
- * acpi_pptt_leaf_node() - Given a processor node, determine if its a leaf
- * @table_hdr: Pointer to the head of the PPTT table
- * @node: passed node is checked to see if its a leaf
- *
- * Determine if the *node parameter is a leaf node by iterating the
- * PPTT table, looking for nodes which reference it.
- *
- * Return: 0 if we find a node referencing the passed node (or table error),
- * or 1 if we don't.
- */
- static int acpi_pptt_leaf_node(struct acpi_table_header *table_hdr,
- struct acpi_pptt_processor *node)
- {
- struct acpi_subtable_header *entry;
- unsigned long table_end;
- u32 node_entry;
- struct acpi_pptt_processor *cpu_node;
- u32 proc_sz;
- if (table_hdr->revision > 1)
- return (node->flags & ACPI_PPTT_ACPI_LEAF_NODE);
- table_end = (unsigned long)table_hdr + table_hdr->length;
- node_entry = ACPI_PTR_DIFF(node, table_hdr);
- entry = ACPI_ADD_PTR(struct acpi_subtable_header, table_hdr,
- sizeof(struct acpi_table_pptt));
- proc_sz = sizeof(struct acpi_pptt_processor *);
- while ((unsigned long)entry + proc_sz < table_end) {
- cpu_node = (struct acpi_pptt_processor *)entry;
- if (entry->type == ACPI_PPTT_TYPE_PROCESSOR &&
- cpu_node->parent == node_entry)
- return 0;
- if (entry->length == 0)
- return 0;
- entry = ACPI_ADD_PTR(struct acpi_subtable_header, entry,
- entry->length);
- }
- return 1;
- }
- /**
- * acpi_find_processor_node() - Given a PPTT table find the requested processor
- * @table_hdr: Pointer to the head of the PPTT table
- * @acpi_cpu_id: CPU we are searching for
- *
- * Find the subtable entry describing the provided processor.
- * This is done by iterating the PPTT table looking for processor nodes
- * which have an acpi_processor_id that matches the acpi_cpu_id parameter
- * passed into the function. If we find a node that matches this criteria
- * we verify that its a leaf node in the topology rather than depending
- * on the valid flag, which doesn't need to be set for leaf nodes.
- *
- * Return: NULL, or the processors acpi_pptt_processor*
- */
- static struct acpi_pptt_processor *acpi_find_processor_node(struct acpi_table_header *table_hdr,
- u32 acpi_cpu_id)
- {
- struct acpi_subtable_header *entry;
- unsigned long table_end;
- struct acpi_pptt_processor *cpu_node;
- u32 proc_sz;
- table_end = (unsigned long)table_hdr + table_hdr->length;
- entry = ACPI_ADD_PTR(struct acpi_subtable_header, table_hdr,
- sizeof(struct acpi_table_pptt));
- proc_sz = sizeof(struct acpi_pptt_processor *);
- /* find the processor structure associated with this cpuid */
- while ((unsigned long)entry + proc_sz < table_end) {
- cpu_node = (struct acpi_pptt_processor *)entry;
- if (entry->length == 0) {
- pr_warn("Invalid zero length subtable\n");
- break;
- }
- if (entry->type == ACPI_PPTT_TYPE_PROCESSOR &&
- acpi_cpu_id == cpu_node->acpi_processor_id &&
- acpi_pptt_leaf_node(table_hdr, cpu_node)) {
- return (struct acpi_pptt_processor *)entry;
- }
- entry = ACPI_ADD_PTR(struct acpi_subtable_header, entry,
- entry->length);
- }
- return NULL;
- }
- static int acpi_find_cache_levels(struct acpi_table_header *table_hdr,
- u32 acpi_cpu_id)
- {
- int number_of_levels = 0;
- struct acpi_pptt_processor *cpu;
- cpu = acpi_find_processor_node(table_hdr, acpi_cpu_id);
- if (cpu)
- number_of_levels = acpi_count_levels(table_hdr, cpu);
- return number_of_levels;
- }
- static u8 acpi_cache_type(enum cache_type type)
- {
- switch (type) {
- case CACHE_TYPE_DATA:
- pr_debug("Looking for data cache\n");
- return ACPI_PPTT_CACHE_TYPE_DATA;
- case CACHE_TYPE_INST:
- pr_debug("Looking for instruction cache\n");
- return ACPI_PPTT_CACHE_TYPE_INSTR;
- default:
- case CACHE_TYPE_UNIFIED:
- pr_debug("Looking for unified cache\n");
- /*
- * It is important that ACPI_PPTT_CACHE_TYPE_UNIFIED
- * contains the bit pattern that will match both
- * ACPI unified bit patterns because we use it later
- * to match both cases.
- */
- return ACPI_PPTT_CACHE_TYPE_UNIFIED;
- }
- }
- static struct acpi_pptt_cache *acpi_find_cache_node(struct acpi_table_header *table_hdr,
- u32 acpi_cpu_id,
- enum cache_type type,
- unsigned int level,
- struct acpi_pptt_processor **node)
- {
- unsigned int total_levels = 0;
- struct acpi_pptt_cache *found = NULL;
- struct acpi_pptt_processor *cpu_node;
- u8 acpi_type = acpi_cache_type(type);
- pr_debug("Looking for CPU %d's level %u cache type %d\n",
- acpi_cpu_id, level, acpi_type);
- cpu_node = acpi_find_processor_node(table_hdr, acpi_cpu_id);
- while (cpu_node && !found) {
- found = acpi_find_cache_level(table_hdr, cpu_node,
- &total_levels, level, acpi_type);
- *node = cpu_node;
- cpu_node = fetch_pptt_node(table_hdr, cpu_node->parent);
- }
- return found;
- }
- /**
- * update_cache_properties() - Update cacheinfo for the given processor
- * @this_leaf: Kernel cache info structure being updated
- * @found_cache: The PPTT node describing this cache instance
- * @cpu_node: A unique reference to describe this cache instance
- * @revision: The revision of the PPTT table
- *
- * The ACPI spec implies that the fields in the cache structures are used to
- * extend and correct the information probed from the hardware. Lets only
- * set fields that we determine are VALID.
- *
- * Return: nothing. Side effect of updating the global cacheinfo
- */
- static void update_cache_properties(struct cacheinfo *this_leaf,
- struct acpi_pptt_cache *found_cache,
- struct acpi_pptt_processor *cpu_node,
- u8 revision)
- {
- struct acpi_pptt_cache_v1* found_cache_v1;
- this_leaf->fw_token = cpu_node;
- if (found_cache->flags & ACPI_PPTT_SIZE_PROPERTY_VALID)
- this_leaf->size = found_cache->size;
- if (found_cache->flags & ACPI_PPTT_LINE_SIZE_VALID)
- this_leaf->coherency_line_size = found_cache->line_size;
- if (found_cache->flags & ACPI_PPTT_NUMBER_OF_SETS_VALID)
- this_leaf->number_of_sets = found_cache->number_of_sets;
- if (found_cache->flags & ACPI_PPTT_ASSOCIATIVITY_VALID)
- this_leaf->ways_of_associativity = found_cache->associativity;
- if (found_cache->flags & ACPI_PPTT_WRITE_POLICY_VALID) {
- switch (found_cache->attributes & ACPI_PPTT_MASK_WRITE_POLICY) {
- case ACPI_PPTT_CACHE_POLICY_WT:
- this_leaf->attributes = CACHE_WRITE_THROUGH;
- break;
- case ACPI_PPTT_CACHE_POLICY_WB:
- this_leaf->attributes = CACHE_WRITE_BACK;
- break;
- }
- }
- if (found_cache->flags & ACPI_PPTT_ALLOCATION_TYPE_VALID) {
- switch (found_cache->attributes & ACPI_PPTT_MASK_ALLOCATION_TYPE) {
- case ACPI_PPTT_CACHE_READ_ALLOCATE:
- this_leaf->attributes |= CACHE_READ_ALLOCATE;
- break;
- case ACPI_PPTT_CACHE_WRITE_ALLOCATE:
- this_leaf->attributes |= CACHE_WRITE_ALLOCATE;
- break;
- case ACPI_PPTT_CACHE_RW_ALLOCATE:
- case ACPI_PPTT_CACHE_RW_ALLOCATE_ALT:
- this_leaf->attributes |=
- CACHE_READ_ALLOCATE | CACHE_WRITE_ALLOCATE;
- break;
- }
- }
- /*
- * If cache type is NOCACHE, then the cache hasn't been specified
- * via other mechanisms. Update the type if a cache type has been
- * provided.
- *
- * Note, we assume such caches are unified based on conventional system
- * design and known examples. Significant work is required elsewhere to
- * fully support data/instruction only type caches which are only
- * specified in PPTT.
- */
- if (this_leaf->type == CACHE_TYPE_NOCACHE &&
- found_cache->flags & ACPI_PPTT_CACHE_TYPE_VALID)
- this_leaf->type = CACHE_TYPE_UNIFIED;
- if (revision >= 3 && (found_cache->flags & ACPI_PPTT_CACHE_ID_VALID)) {
- found_cache_v1 = ACPI_ADD_PTR(struct acpi_pptt_cache_v1,
- found_cache, sizeof(struct acpi_pptt_cache));
- this_leaf->id = found_cache_v1->cache_id;
- this_leaf->attributes |= CACHE_ID;
- }
- }
- static void cache_setup_acpi_cpu(struct acpi_table_header *table,
- unsigned int cpu)
- {
- struct acpi_pptt_cache *found_cache;
- struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
- u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu);
- struct cacheinfo *this_leaf;
- unsigned int index = 0;
- struct acpi_pptt_processor *cpu_node = NULL;
- while (index < get_cpu_cacheinfo(cpu)->num_leaves) {
- this_leaf = this_cpu_ci->info_list + index;
- found_cache = acpi_find_cache_node(table, acpi_cpu_id,
- this_leaf->type,
- this_leaf->level,
- &cpu_node);
- pr_debug("found = %p %p\n", found_cache, cpu_node);
- if (found_cache)
- update_cache_properties(this_leaf, found_cache,
- ACPI_TO_POINTER(ACPI_PTR_DIFF(cpu_node, table)),
- table->revision);
- index++;
- }
- }
- static bool flag_identical(struct acpi_table_header *table_hdr,
- struct acpi_pptt_processor *cpu)
- {
- struct acpi_pptt_processor *next;
- /* heterogeneous machines must use PPTT revision > 1 */
- if (table_hdr->revision < 2)
- return false;
- /* Locate the last node in the tree with IDENTICAL set */
- if (cpu->flags & ACPI_PPTT_ACPI_IDENTICAL) {
- next = fetch_pptt_node(table_hdr, cpu->parent);
- if (!(next && next->flags & ACPI_PPTT_ACPI_IDENTICAL))
- return true;
- }
- return false;
- }
- /* Passing level values greater than this will result in search termination */
- #define PPTT_ABORT_PACKAGE 0xFF
- static struct acpi_pptt_processor *acpi_find_processor_tag(struct acpi_table_header *table_hdr,
- struct acpi_pptt_processor *cpu,
- int level, int flag)
- {
- struct acpi_pptt_processor *prev_node;
- while (cpu && level) {
- /* special case the identical flag to find last identical */
- if (flag == ACPI_PPTT_ACPI_IDENTICAL) {
- if (flag_identical(table_hdr, cpu))
- break;
- } else if (cpu->flags & flag)
- break;
- pr_debug("level %d\n", level);
- prev_node = fetch_pptt_node(table_hdr, cpu->parent);
- if (prev_node == NULL)
- break;
- cpu = prev_node;
- level--;
- }
- return cpu;
- }
- static void acpi_pptt_warn_missing(void)
- {
- pr_warn_once("No PPTT table found, CPU and cache topology may be inaccurate\n");
- }
- /**
- * topology_get_acpi_cpu_tag() - Find a unique topology value for a feature
- * @table: Pointer to the head of the PPTT table
- * @cpu: Kernel logical CPU number
- * @level: A level that terminates the search
- * @flag: A flag which terminates the search
- *
- * Get a unique value given a CPU, and a topology level, that can be
- * matched to determine which cpus share common topological features
- * at that level.
- *
- * Return: Unique value, or -ENOENT if unable to locate CPU
- */
- static int topology_get_acpi_cpu_tag(struct acpi_table_header *table,
- unsigned int cpu, int level, int flag)
- {
- struct acpi_pptt_processor *cpu_node;
- u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu);
- cpu_node = acpi_find_processor_node(table, acpi_cpu_id);
- if (cpu_node) {
- cpu_node = acpi_find_processor_tag(table, cpu_node,
- level, flag);
- /*
- * As per specification if the processor structure represents
- * an actual processor, then ACPI processor ID must be valid.
- * For processor containers ACPI_PPTT_ACPI_PROCESSOR_ID_VALID
- * should be set if the UID is valid
- */
- if (level == 0 ||
- cpu_node->flags & ACPI_PPTT_ACPI_PROCESSOR_ID_VALID)
- return cpu_node->acpi_processor_id;
- return ACPI_PTR_DIFF(cpu_node, table);
- }
- pr_warn_once("PPTT table found, but unable to locate core %d (%d)\n",
- cpu, acpi_cpu_id);
- return -ENOENT;
- }
- static struct acpi_table_header *acpi_get_pptt(void)
- {
- static struct acpi_table_header *pptt;
- static bool is_pptt_checked;
- acpi_status status;
- /*
- * PPTT will be used at runtime on every CPU hotplug in path, so we
- * don't need to call acpi_put_table() to release the table mapping.
- */
- if (!pptt && !is_pptt_checked) {
- status = acpi_get_table(ACPI_SIG_PPTT, 0, &pptt);
- if (ACPI_FAILURE(status))
- acpi_pptt_warn_missing();
- is_pptt_checked = true;
- }
- return pptt;
- }
- static int find_acpi_cpu_topology_tag(unsigned int cpu, int level, int flag)
- {
- struct acpi_table_header *table;
- int retval;
- table = acpi_get_pptt();
- if (!table)
- return -ENOENT;
- retval = topology_get_acpi_cpu_tag(table, cpu, level, flag);
- pr_debug("Topology Setup ACPI CPU %d, level %d ret = %d\n",
- cpu, level, retval);
- return retval;
- }
- /**
- * check_acpi_cpu_flag() - Determine if CPU node has a flag set
- * @cpu: Kernel logical CPU number
- * @rev: The minimum PPTT revision defining the flag
- * @flag: The flag itself
- *
- * Check the node representing a CPU for a given flag.
- *
- * Return: -ENOENT if the PPTT doesn't exist, the CPU cannot be found or
- * the table revision isn't new enough.
- * 1, any passed flag set
- * 0, flag unset
- */
- static int check_acpi_cpu_flag(unsigned int cpu, int rev, u32 flag)
- {
- struct acpi_table_header *table;
- u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu);
- struct acpi_pptt_processor *cpu_node = NULL;
- int ret = -ENOENT;
- table = acpi_get_pptt();
- if (!table)
- return -ENOENT;
- if (table->revision >= rev)
- cpu_node = acpi_find_processor_node(table, acpi_cpu_id);
- if (cpu_node)
- ret = (cpu_node->flags & flag) != 0;
- return ret;
- }
- /**
- * acpi_find_last_cache_level() - Determines the number of cache levels for a PE
- * @cpu: Kernel logical CPU number
- *
- * Given a logical CPU number, returns the number of levels of cache represented
- * in the PPTT. Errors caused by lack of a PPTT table, or otherwise, return 0
- * indicating we didn't find any cache levels.
- *
- * Return: Cache levels visible to this core.
- */
- int acpi_find_last_cache_level(unsigned int cpu)
- {
- u32 acpi_cpu_id;
- struct acpi_table_header *table;
- int number_of_levels = 0;
- table = acpi_get_pptt();
- if (!table)
- return -ENOENT;
- pr_debug("Cache Setup find last level CPU=%d\n", cpu);
- acpi_cpu_id = get_acpi_id_for_cpu(cpu);
- number_of_levels = acpi_find_cache_levels(table, acpi_cpu_id);
- pr_debug("Cache Setup find last level level=%d\n", number_of_levels);
- return number_of_levels;
- }
- /**
- * cache_setup_acpi() - Override CPU cache topology with data from the PPTT
- * @cpu: Kernel logical CPU number
- *
- * Updates the global cache info provided by cpu_get_cacheinfo()
- * when there are valid properties in the acpi_pptt_cache nodes. A
- * successful parse may not result in any updates if none of the
- * cache levels have any valid flags set. Further, a unique value is
- * associated with each known CPU cache entry. This unique value
- * can be used to determine whether caches are shared between CPUs.
- *
- * Return: -ENOENT on failure to find table, or 0 on success
- */
- int cache_setup_acpi(unsigned int cpu)
- {
- struct acpi_table_header *table;
- table = acpi_get_pptt();
- if (!table)
- return -ENOENT;
- pr_debug("Cache Setup ACPI CPU %d\n", cpu);
- cache_setup_acpi_cpu(table, cpu);
- return 0;
- }
- /**
- * acpi_pptt_cpu_is_thread() - Determine if CPU is a thread
- * @cpu: Kernel logical CPU number
- *
- * Return: 1, a thread
- * 0, not a thread
- * -ENOENT ,if the PPTT doesn't exist, the CPU cannot be found or
- * the table revision isn't new enough.
- */
- int acpi_pptt_cpu_is_thread(unsigned int cpu)
- {
- return check_acpi_cpu_flag(cpu, 2, ACPI_PPTT_ACPI_PROCESSOR_IS_THREAD);
- }
- /**
- * find_acpi_cpu_topology() - Determine a unique topology value for a given CPU
- * @cpu: Kernel logical CPU number
- * @level: The topological level for which we would like a unique ID
- *
- * Determine a topology unique ID for each thread/core/cluster/mc_grouping
- * /socket/etc. This ID can then be used to group peers, which will have
- * matching ids.
- *
- * The search terminates when either the requested level is found or
- * we reach a root node. Levels beyond the termination point will return the
- * same unique ID. The unique id for level 0 is the acpi processor id. All
- * other levels beyond this use a generated value to uniquely identify
- * a topological feature.
- *
- * Return: -ENOENT if the PPTT doesn't exist, or the CPU cannot be found.
- * Otherwise returns a value which represents a unique topological feature.
- */
- int find_acpi_cpu_topology(unsigned int cpu, int level)
- {
- return find_acpi_cpu_topology_tag(cpu, level, 0);
- }
- /**
- * find_acpi_cpu_topology_package() - Determine a unique CPU package value
- * @cpu: Kernel logical CPU number
- *
- * Determine a topology unique package ID for the given CPU.
- * This ID can then be used to group peers, which will have matching ids.
- *
- * The search terminates when either a level is found with the PHYSICAL_PACKAGE
- * flag set or we reach a root node.
- *
- * Return: -ENOENT if the PPTT doesn't exist, or the CPU cannot be found.
- * Otherwise returns a value which represents the package for this CPU.
- */
- int find_acpi_cpu_topology_package(unsigned int cpu)
- {
- return find_acpi_cpu_topology_tag(cpu, PPTT_ABORT_PACKAGE,
- ACPI_PPTT_PHYSICAL_PACKAGE);
- }
- /**
- * find_acpi_cpu_topology_cluster() - Determine a unique CPU cluster value
- * @cpu: Kernel logical CPU number
- *
- * Determine a topology unique cluster ID for the given CPU/thread.
- * This ID can then be used to group peers, which will have matching ids.
- *
- * The cluster, if present is the level of topology above CPUs. In a
- * multi-thread CPU, it will be the level above the CPU, not the thread.
- * It may not exist in single CPU systems. In simple multi-CPU systems,
- * it may be equal to the package topology level.
- *
- * Return: -ENOENT if the PPTT doesn't exist, the CPU cannot be found
- * or there is no toplogy level above the CPU..
- * Otherwise returns a value which represents the package for this CPU.
- */
- int find_acpi_cpu_topology_cluster(unsigned int cpu)
- {
- struct acpi_table_header *table;
- struct acpi_pptt_processor *cpu_node, *cluster_node;
- u32 acpi_cpu_id;
- int retval;
- int is_thread;
- table = acpi_get_pptt();
- if (!table)
- return -ENOENT;
- acpi_cpu_id = get_acpi_id_for_cpu(cpu);
- cpu_node = acpi_find_processor_node(table, acpi_cpu_id);
- if (!cpu_node || !cpu_node->parent)
- return -ENOENT;
- is_thread = cpu_node->flags & ACPI_PPTT_ACPI_PROCESSOR_IS_THREAD;
- cluster_node = fetch_pptt_node(table, cpu_node->parent);
- if (!cluster_node)
- return -ENOENT;
- if (is_thread) {
- if (!cluster_node->parent)
- return -ENOENT;
- cluster_node = fetch_pptt_node(table, cluster_node->parent);
- if (!cluster_node)
- return -ENOENT;
- }
- if (cluster_node->flags & ACPI_PPTT_ACPI_PROCESSOR_ID_VALID)
- retval = cluster_node->acpi_processor_id;
- else
- retval = ACPI_PTR_DIFF(cluster_node, table);
- return retval;
- }
- /**
- * find_acpi_cpu_topology_hetero_id() - Get a core architecture tag
- * @cpu: Kernel logical CPU number
- *
- * Determine a unique heterogeneous tag for the given CPU. CPUs with the same
- * implementation should have matching tags.
- *
- * The returned tag can be used to group peers with identical implementation.
- *
- * The search terminates when a level is found with the identical implementation
- * flag set or we reach a root node.
- *
- * Due to limitations in the PPTT data structure, there may be rare situations
- * where two cores in a heterogeneous machine may be identical, but won't have
- * the same tag.
- *
- * Return: -ENOENT if the PPTT doesn't exist, or the CPU cannot be found.
- * Otherwise returns a value which represents a group of identical cores
- * similar to this CPU.
- */
- int find_acpi_cpu_topology_hetero_id(unsigned int cpu)
- {
- return find_acpi_cpu_topology_tag(cpu, PPTT_ABORT_PACKAGE,
- ACPI_PPTT_ACPI_IDENTICAL);
- }
|