mixer_quirks.c 97 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588
  1. // SPDX-License-Identifier: GPL-2.0-or-later
  2. /*
  3. * USB Audio Driver for ALSA
  4. *
  5. * Quirks and vendor-specific extensions for mixer interfaces
  6. *
  7. * Copyright (c) 2002 by Takashi Iwai <[email protected]>
  8. *
  9. * Many codes borrowed from audio.c by
  10. * Alan Cox ([email protected])
  11. * Thomas Sailer ([email protected])
  12. *
  13. * Audio Advantage Micro II support added by:
  14. * Przemek Rudy ([email protected])
  15. */
  16. #include <linux/hid.h>
  17. #include <linux/init.h>
  18. #include <linux/math64.h>
  19. #include <linux/slab.h>
  20. #include <linux/usb.h>
  21. #include <linux/usb/audio.h>
  22. #include <sound/asoundef.h>
  23. #include <sound/core.h>
  24. #include <sound/control.h>
  25. #include <sound/hda_verbs.h>
  26. #include <sound/hwdep.h>
  27. #include <sound/info.h>
  28. #include <sound/tlv.h>
  29. #include "usbaudio.h"
  30. #include "mixer.h"
  31. #include "mixer_quirks.h"
  32. #include "mixer_scarlett.h"
  33. #include "mixer_scarlett_gen2.h"
  34. #include "mixer_us16x08.h"
  35. #include "mixer_s1810c.h"
  36. #include "helper.h"
  37. struct std_mono_table {
  38. unsigned int unitid, control, cmask;
  39. int val_type;
  40. const char *name;
  41. snd_kcontrol_tlv_rw_t *tlv_callback;
  42. };
  43. /* This function allows for the creation of standard UAC controls.
  44. * See the quirks for M-Audio FTUs or Ebox-44.
  45. * If you don't want to set a TLV callback pass NULL.
  46. *
  47. * Since there doesn't seem to be a devices that needs a multichannel
  48. * version, we keep it mono for simplicity.
  49. */
  50. static int snd_create_std_mono_ctl_offset(struct usb_mixer_interface *mixer,
  51. unsigned int unitid,
  52. unsigned int control,
  53. unsigned int cmask,
  54. int val_type,
  55. unsigned int idx_off,
  56. const char *name,
  57. snd_kcontrol_tlv_rw_t *tlv_callback)
  58. {
  59. struct usb_mixer_elem_info *cval;
  60. struct snd_kcontrol *kctl;
  61. cval = kzalloc(sizeof(*cval), GFP_KERNEL);
  62. if (!cval)
  63. return -ENOMEM;
  64. snd_usb_mixer_elem_init_std(&cval->head, mixer, unitid);
  65. cval->val_type = val_type;
  66. cval->channels = 1;
  67. cval->control = control;
  68. cval->cmask = cmask;
  69. cval->idx_off = idx_off;
  70. /* get_min_max() is called only for integer volumes later,
  71. * so provide a short-cut for booleans */
  72. cval->min = 0;
  73. cval->max = 1;
  74. cval->res = 0;
  75. cval->dBmin = 0;
  76. cval->dBmax = 0;
  77. /* Create control */
  78. kctl = snd_ctl_new1(snd_usb_feature_unit_ctl, cval);
  79. if (!kctl) {
  80. kfree(cval);
  81. return -ENOMEM;
  82. }
  83. /* Set name */
  84. snprintf(kctl->id.name, sizeof(kctl->id.name), name);
  85. kctl->private_free = snd_usb_mixer_elem_free;
  86. /* set TLV */
  87. if (tlv_callback) {
  88. kctl->tlv.c = tlv_callback;
  89. kctl->vd[0].access |=
  90. SNDRV_CTL_ELEM_ACCESS_TLV_READ |
  91. SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK;
  92. }
  93. /* Add control to mixer */
  94. return snd_usb_mixer_add_control(&cval->head, kctl);
  95. }
  96. static int snd_create_std_mono_ctl(struct usb_mixer_interface *mixer,
  97. unsigned int unitid,
  98. unsigned int control,
  99. unsigned int cmask,
  100. int val_type,
  101. const char *name,
  102. snd_kcontrol_tlv_rw_t *tlv_callback)
  103. {
  104. return snd_create_std_mono_ctl_offset(mixer, unitid, control, cmask,
  105. val_type, 0 /* Offset */, name, tlv_callback);
  106. }
  107. /*
  108. * Create a set of standard UAC controls from a table
  109. */
  110. static int snd_create_std_mono_table(struct usb_mixer_interface *mixer,
  111. const struct std_mono_table *t)
  112. {
  113. int err;
  114. while (t->name != NULL) {
  115. err = snd_create_std_mono_ctl(mixer, t->unitid, t->control,
  116. t->cmask, t->val_type, t->name, t->tlv_callback);
  117. if (err < 0)
  118. return err;
  119. t++;
  120. }
  121. return 0;
  122. }
  123. static int add_single_ctl_with_resume(struct usb_mixer_interface *mixer,
  124. int id,
  125. usb_mixer_elem_resume_func_t resume,
  126. const struct snd_kcontrol_new *knew,
  127. struct usb_mixer_elem_list **listp)
  128. {
  129. struct usb_mixer_elem_list *list;
  130. struct snd_kcontrol *kctl;
  131. list = kzalloc(sizeof(*list), GFP_KERNEL);
  132. if (!list)
  133. return -ENOMEM;
  134. if (listp)
  135. *listp = list;
  136. list->mixer = mixer;
  137. list->id = id;
  138. list->resume = resume;
  139. kctl = snd_ctl_new1(knew, list);
  140. if (!kctl) {
  141. kfree(list);
  142. return -ENOMEM;
  143. }
  144. kctl->private_free = snd_usb_mixer_elem_free;
  145. /* don't use snd_usb_mixer_add_control() here, this is a special list element */
  146. return snd_usb_mixer_add_list(list, kctl, false);
  147. }
  148. /*
  149. * Sound Blaster remote control configuration
  150. *
  151. * format of remote control data:
  152. * Extigy: xx 00
  153. * Audigy 2 NX: 06 80 xx 00 00 00
  154. * Live! 24-bit: 06 80 xx yy 22 83
  155. */
  156. static const struct rc_config {
  157. u32 usb_id;
  158. u8 offset;
  159. u8 length;
  160. u8 packet_length;
  161. u8 min_packet_length; /* minimum accepted length of the URB result */
  162. u8 mute_mixer_id;
  163. u32 mute_code;
  164. } rc_configs[] = {
  165. { USB_ID(0x041e, 0x3000), 0, 1, 2, 1, 18, 0x0013 }, /* Extigy */
  166. { USB_ID(0x041e, 0x3020), 2, 1, 6, 6, 18, 0x0013 }, /* Audigy 2 NX */
  167. { USB_ID(0x041e, 0x3040), 2, 2, 6, 6, 2, 0x6e91 }, /* Live! 24-bit */
  168. { USB_ID(0x041e, 0x3042), 0, 1, 1, 1, 1, 0x000d }, /* Usb X-Fi S51 */
  169. { USB_ID(0x041e, 0x30df), 0, 1, 1, 1, 1, 0x000d }, /* Usb X-Fi S51 Pro */
  170. { USB_ID(0x041e, 0x3237), 0, 1, 1, 1, 1, 0x000d }, /* Usb X-Fi S51 Pro */
  171. { USB_ID(0x041e, 0x3263), 0, 1, 1, 1, 1, 0x000d }, /* Usb X-Fi S51 Pro */
  172. { USB_ID(0x041e, 0x3048), 2, 2, 6, 6, 2, 0x6e91 }, /* Toshiba SB0500 */
  173. };
  174. static void snd_usb_soundblaster_remote_complete(struct urb *urb)
  175. {
  176. struct usb_mixer_interface *mixer = urb->context;
  177. const struct rc_config *rc = mixer->rc_cfg;
  178. u32 code;
  179. if (urb->status < 0 || urb->actual_length < rc->min_packet_length)
  180. return;
  181. code = mixer->rc_buffer[rc->offset];
  182. if (rc->length == 2)
  183. code |= mixer->rc_buffer[rc->offset + 1] << 8;
  184. /* the Mute button actually changes the mixer control */
  185. if (code == rc->mute_code)
  186. snd_usb_mixer_notify_id(mixer, rc->mute_mixer_id);
  187. mixer->rc_code = code;
  188. wmb();
  189. wake_up(&mixer->rc_waitq);
  190. }
  191. static long snd_usb_sbrc_hwdep_read(struct snd_hwdep *hw, char __user *buf,
  192. long count, loff_t *offset)
  193. {
  194. struct usb_mixer_interface *mixer = hw->private_data;
  195. int err;
  196. u32 rc_code;
  197. if (count != 1 && count != 4)
  198. return -EINVAL;
  199. err = wait_event_interruptible(mixer->rc_waitq,
  200. (rc_code = xchg(&mixer->rc_code, 0)) != 0);
  201. if (err == 0) {
  202. if (count == 1)
  203. err = put_user(rc_code, buf);
  204. else
  205. err = put_user(rc_code, (u32 __user *)buf);
  206. }
  207. return err < 0 ? err : count;
  208. }
  209. static __poll_t snd_usb_sbrc_hwdep_poll(struct snd_hwdep *hw, struct file *file,
  210. poll_table *wait)
  211. {
  212. struct usb_mixer_interface *mixer = hw->private_data;
  213. poll_wait(file, &mixer->rc_waitq, wait);
  214. return mixer->rc_code ? EPOLLIN | EPOLLRDNORM : 0;
  215. }
  216. static int snd_usb_soundblaster_remote_init(struct usb_mixer_interface *mixer)
  217. {
  218. struct snd_hwdep *hwdep;
  219. int err, len, i;
  220. for (i = 0; i < ARRAY_SIZE(rc_configs); ++i)
  221. if (rc_configs[i].usb_id == mixer->chip->usb_id)
  222. break;
  223. if (i >= ARRAY_SIZE(rc_configs))
  224. return 0;
  225. mixer->rc_cfg = &rc_configs[i];
  226. len = mixer->rc_cfg->packet_length;
  227. init_waitqueue_head(&mixer->rc_waitq);
  228. err = snd_hwdep_new(mixer->chip->card, "SB remote control", 0, &hwdep);
  229. if (err < 0)
  230. return err;
  231. snprintf(hwdep->name, sizeof(hwdep->name),
  232. "%s remote control", mixer->chip->card->shortname);
  233. hwdep->iface = SNDRV_HWDEP_IFACE_SB_RC;
  234. hwdep->private_data = mixer;
  235. hwdep->ops.read = snd_usb_sbrc_hwdep_read;
  236. hwdep->ops.poll = snd_usb_sbrc_hwdep_poll;
  237. hwdep->exclusive = 1;
  238. mixer->rc_urb = usb_alloc_urb(0, GFP_KERNEL);
  239. if (!mixer->rc_urb)
  240. return -ENOMEM;
  241. mixer->rc_setup_packet = kmalloc(sizeof(*mixer->rc_setup_packet), GFP_KERNEL);
  242. if (!mixer->rc_setup_packet) {
  243. usb_free_urb(mixer->rc_urb);
  244. mixer->rc_urb = NULL;
  245. return -ENOMEM;
  246. }
  247. mixer->rc_setup_packet->bRequestType =
  248. USB_DIR_IN | USB_TYPE_CLASS | USB_RECIP_INTERFACE;
  249. mixer->rc_setup_packet->bRequest = UAC_GET_MEM;
  250. mixer->rc_setup_packet->wValue = cpu_to_le16(0);
  251. mixer->rc_setup_packet->wIndex = cpu_to_le16(0);
  252. mixer->rc_setup_packet->wLength = cpu_to_le16(len);
  253. usb_fill_control_urb(mixer->rc_urb, mixer->chip->dev,
  254. usb_rcvctrlpipe(mixer->chip->dev, 0),
  255. (u8*)mixer->rc_setup_packet, mixer->rc_buffer, len,
  256. snd_usb_soundblaster_remote_complete, mixer);
  257. return 0;
  258. }
  259. #define snd_audigy2nx_led_info snd_ctl_boolean_mono_info
  260. static int snd_audigy2nx_led_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
  261. {
  262. ucontrol->value.integer.value[0] = kcontrol->private_value >> 8;
  263. return 0;
  264. }
  265. static int snd_audigy2nx_led_update(struct usb_mixer_interface *mixer,
  266. int value, int index)
  267. {
  268. struct snd_usb_audio *chip = mixer->chip;
  269. int err;
  270. err = snd_usb_lock_shutdown(chip);
  271. if (err < 0)
  272. return err;
  273. if (chip->usb_id == USB_ID(0x041e, 0x3042))
  274. err = snd_usb_ctl_msg(chip->dev,
  275. usb_sndctrlpipe(chip->dev, 0), 0x24,
  276. USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_OTHER,
  277. !value, 0, NULL, 0);
  278. /* USB X-Fi S51 Pro */
  279. if (chip->usb_id == USB_ID(0x041e, 0x30df))
  280. err = snd_usb_ctl_msg(chip->dev,
  281. usb_sndctrlpipe(chip->dev, 0), 0x24,
  282. USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_OTHER,
  283. !value, 0, NULL, 0);
  284. else
  285. err = snd_usb_ctl_msg(chip->dev,
  286. usb_sndctrlpipe(chip->dev, 0), 0x24,
  287. USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_OTHER,
  288. value, index + 2, NULL, 0);
  289. snd_usb_unlock_shutdown(chip);
  290. return err;
  291. }
  292. static int snd_audigy2nx_led_put(struct snd_kcontrol *kcontrol,
  293. struct snd_ctl_elem_value *ucontrol)
  294. {
  295. struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol);
  296. struct usb_mixer_interface *mixer = list->mixer;
  297. int index = kcontrol->private_value & 0xff;
  298. unsigned int value = ucontrol->value.integer.value[0];
  299. int old_value = kcontrol->private_value >> 8;
  300. int err;
  301. if (value > 1)
  302. return -EINVAL;
  303. if (value == old_value)
  304. return 0;
  305. kcontrol->private_value = (value << 8) | index;
  306. err = snd_audigy2nx_led_update(mixer, value, index);
  307. return err < 0 ? err : 1;
  308. }
  309. static int snd_audigy2nx_led_resume(struct usb_mixer_elem_list *list)
  310. {
  311. int priv_value = list->kctl->private_value;
  312. return snd_audigy2nx_led_update(list->mixer, priv_value >> 8,
  313. priv_value & 0xff);
  314. }
  315. /* name and private_value are set dynamically */
  316. static const struct snd_kcontrol_new snd_audigy2nx_control = {
  317. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  318. .info = snd_audigy2nx_led_info,
  319. .get = snd_audigy2nx_led_get,
  320. .put = snd_audigy2nx_led_put,
  321. };
  322. static const char * const snd_audigy2nx_led_names[] = {
  323. "CMSS LED Switch",
  324. "Power LED Switch",
  325. "Dolby Digital LED Switch",
  326. };
  327. static int snd_audigy2nx_controls_create(struct usb_mixer_interface *mixer)
  328. {
  329. int i, err;
  330. for (i = 0; i < ARRAY_SIZE(snd_audigy2nx_led_names); ++i) {
  331. struct snd_kcontrol_new knew;
  332. /* USB X-Fi S51 doesn't have a CMSS LED */
  333. if ((mixer->chip->usb_id == USB_ID(0x041e, 0x3042)) && i == 0)
  334. continue;
  335. /* USB X-Fi S51 Pro doesn't have one either */
  336. if ((mixer->chip->usb_id == USB_ID(0x041e, 0x30df)) && i == 0)
  337. continue;
  338. if (i > 1 && /* Live24ext has 2 LEDs only */
  339. (mixer->chip->usb_id == USB_ID(0x041e, 0x3040) ||
  340. mixer->chip->usb_id == USB_ID(0x041e, 0x3042) ||
  341. mixer->chip->usb_id == USB_ID(0x041e, 0x30df) ||
  342. mixer->chip->usb_id == USB_ID(0x041e, 0x3048)))
  343. break;
  344. knew = snd_audigy2nx_control;
  345. knew.name = snd_audigy2nx_led_names[i];
  346. knew.private_value = (1 << 8) | i; /* LED on as default */
  347. err = add_single_ctl_with_resume(mixer, 0,
  348. snd_audigy2nx_led_resume,
  349. &knew, NULL);
  350. if (err < 0)
  351. return err;
  352. }
  353. return 0;
  354. }
  355. static void snd_audigy2nx_proc_read(struct snd_info_entry *entry,
  356. struct snd_info_buffer *buffer)
  357. {
  358. static const struct sb_jack {
  359. int unitid;
  360. const char *name;
  361. } jacks_audigy2nx[] = {
  362. {4, "dig in "},
  363. {7, "line in"},
  364. {19, "spk out"},
  365. {20, "hph out"},
  366. {-1, NULL}
  367. }, jacks_live24ext[] = {
  368. {4, "line in"}, /* &1=Line, &2=Mic*/
  369. {3, "hph out"}, /* headphones */
  370. {0, "RC "}, /* last command, 6 bytes see rc_config above */
  371. {-1, NULL}
  372. };
  373. const struct sb_jack *jacks;
  374. struct usb_mixer_interface *mixer = entry->private_data;
  375. int i, err;
  376. u8 buf[3];
  377. snd_iprintf(buffer, "%s jacks\n\n", mixer->chip->card->shortname);
  378. if (mixer->chip->usb_id == USB_ID(0x041e, 0x3020))
  379. jacks = jacks_audigy2nx;
  380. else if (mixer->chip->usb_id == USB_ID(0x041e, 0x3040) ||
  381. mixer->chip->usb_id == USB_ID(0x041e, 0x3048))
  382. jacks = jacks_live24ext;
  383. else
  384. return;
  385. for (i = 0; jacks[i].name; ++i) {
  386. snd_iprintf(buffer, "%s: ", jacks[i].name);
  387. err = snd_usb_lock_shutdown(mixer->chip);
  388. if (err < 0)
  389. return;
  390. err = snd_usb_ctl_msg(mixer->chip->dev,
  391. usb_rcvctrlpipe(mixer->chip->dev, 0),
  392. UAC_GET_MEM, USB_DIR_IN | USB_TYPE_CLASS |
  393. USB_RECIP_INTERFACE, 0,
  394. jacks[i].unitid << 8, buf, 3);
  395. snd_usb_unlock_shutdown(mixer->chip);
  396. if (err == 3 && (buf[0] == 3 || buf[0] == 6))
  397. snd_iprintf(buffer, "%02x %02x\n", buf[1], buf[2]);
  398. else
  399. snd_iprintf(buffer, "?\n");
  400. }
  401. }
  402. /* EMU0204 */
  403. static int snd_emu0204_ch_switch_info(struct snd_kcontrol *kcontrol,
  404. struct snd_ctl_elem_info *uinfo)
  405. {
  406. static const char * const texts[2] = {"1/2", "3/4"};
  407. return snd_ctl_enum_info(uinfo, 1, ARRAY_SIZE(texts), texts);
  408. }
  409. static int snd_emu0204_ch_switch_get(struct snd_kcontrol *kcontrol,
  410. struct snd_ctl_elem_value *ucontrol)
  411. {
  412. ucontrol->value.enumerated.item[0] = kcontrol->private_value;
  413. return 0;
  414. }
  415. static int snd_emu0204_ch_switch_update(struct usb_mixer_interface *mixer,
  416. int value)
  417. {
  418. struct snd_usb_audio *chip = mixer->chip;
  419. int err;
  420. unsigned char buf[2];
  421. err = snd_usb_lock_shutdown(chip);
  422. if (err < 0)
  423. return err;
  424. buf[0] = 0x01;
  425. buf[1] = value ? 0x02 : 0x01;
  426. err = snd_usb_ctl_msg(chip->dev,
  427. usb_sndctrlpipe(chip->dev, 0), UAC_SET_CUR,
  428. USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_OUT,
  429. 0x0400, 0x0e00, buf, 2);
  430. snd_usb_unlock_shutdown(chip);
  431. return err;
  432. }
  433. static int snd_emu0204_ch_switch_put(struct snd_kcontrol *kcontrol,
  434. struct snd_ctl_elem_value *ucontrol)
  435. {
  436. struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol);
  437. struct usb_mixer_interface *mixer = list->mixer;
  438. unsigned int value = ucontrol->value.enumerated.item[0];
  439. int err;
  440. if (value > 1)
  441. return -EINVAL;
  442. if (value == kcontrol->private_value)
  443. return 0;
  444. kcontrol->private_value = value;
  445. err = snd_emu0204_ch_switch_update(mixer, value);
  446. return err < 0 ? err : 1;
  447. }
  448. static int snd_emu0204_ch_switch_resume(struct usb_mixer_elem_list *list)
  449. {
  450. return snd_emu0204_ch_switch_update(list->mixer,
  451. list->kctl->private_value);
  452. }
  453. static const struct snd_kcontrol_new snd_emu0204_control = {
  454. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  455. .name = "Front Jack Channels",
  456. .info = snd_emu0204_ch_switch_info,
  457. .get = snd_emu0204_ch_switch_get,
  458. .put = snd_emu0204_ch_switch_put,
  459. .private_value = 0,
  460. };
  461. static int snd_emu0204_controls_create(struct usb_mixer_interface *mixer)
  462. {
  463. return add_single_ctl_with_resume(mixer, 0,
  464. snd_emu0204_ch_switch_resume,
  465. &snd_emu0204_control, NULL);
  466. }
  467. /* ASUS Xonar U1 / U3 controls */
  468. static int snd_xonar_u1_switch_get(struct snd_kcontrol *kcontrol,
  469. struct snd_ctl_elem_value *ucontrol)
  470. {
  471. ucontrol->value.integer.value[0] = !!(kcontrol->private_value & 0x02);
  472. return 0;
  473. }
  474. static int snd_xonar_u1_switch_update(struct usb_mixer_interface *mixer,
  475. unsigned char status)
  476. {
  477. struct snd_usb_audio *chip = mixer->chip;
  478. int err;
  479. err = snd_usb_lock_shutdown(chip);
  480. if (err < 0)
  481. return err;
  482. err = snd_usb_ctl_msg(chip->dev,
  483. usb_sndctrlpipe(chip->dev, 0), 0x08,
  484. USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_OTHER,
  485. 50, 0, &status, 1);
  486. snd_usb_unlock_shutdown(chip);
  487. return err;
  488. }
  489. static int snd_xonar_u1_switch_put(struct snd_kcontrol *kcontrol,
  490. struct snd_ctl_elem_value *ucontrol)
  491. {
  492. struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol);
  493. u8 old_status, new_status;
  494. int err;
  495. old_status = kcontrol->private_value;
  496. if (ucontrol->value.integer.value[0])
  497. new_status = old_status | 0x02;
  498. else
  499. new_status = old_status & ~0x02;
  500. if (new_status == old_status)
  501. return 0;
  502. kcontrol->private_value = new_status;
  503. err = snd_xonar_u1_switch_update(list->mixer, new_status);
  504. return err < 0 ? err : 1;
  505. }
  506. static int snd_xonar_u1_switch_resume(struct usb_mixer_elem_list *list)
  507. {
  508. return snd_xonar_u1_switch_update(list->mixer,
  509. list->kctl->private_value);
  510. }
  511. static const struct snd_kcontrol_new snd_xonar_u1_output_switch = {
  512. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  513. .name = "Digital Playback Switch",
  514. .info = snd_ctl_boolean_mono_info,
  515. .get = snd_xonar_u1_switch_get,
  516. .put = snd_xonar_u1_switch_put,
  517. .private_value = 0x05,
  518. };
  519. static int snd_xonar_u1_controls_create(struct usb_mixer_interface *mixer)
  520. {
  521. return add_single_ctl_with_resume(mixer, 0,
  522. snd_xonar_u1_switch_resume,
  523. &snd_xonar_u1_output_switch, NULL);
  524. }
  525. /* Digidesign Mbox 1 helper functions */
  526. static int snd_mbox1_is_spdif_synced(struct snd_usb_audio *chip)
  527. {
  528. unsigned char buff[3];
  529. int err;
  530. int is_spdif_synced;
  531. /* Read clock source */
  532. err = snd_usb_ctl_msg(chip->dev,
  533. usb_rcvctrlpipe(chip->dev, 0), 0x81,
  534. USB_DIR_IN |
  535. USB_TYPE_CLASS |
  536. USB_RECIP_ENDPOINT, 0x100, 0x81, buff, 3);
  537. if (err < 0)
  538. return err;
  539. /* spdif sync: buff is all zeroes */
  540. is_spdif_synced = !(buff[0] | buff[1] | buff[2]);
  541. return is_spdif_synced;
  542. }
  543. static int snd_mbox1_set_clk_source(struct snd_usb_audio *chip, int rate_or_zero)
  544. {
  545. /* 2 possibilities: Internal -> expects sample rate
  546. * S/PDIF sync -> expects rate = 0
  547. */
  548. unsigned char buff[3];
  549. buff[0] = (rate_or_zero >> 0) & 0xff;
  550. buff[1] = (rate_or_zero >> 8) & 0xff;
  551. buff[2] = (rate_or_zero >> 16) & 0xff;
  552. /* Set clock source */
  553. return snd_usb_ctl_msg(chip->dev,
  554. usb_sndctrlpipe(chip->dev, 0), 0x1,
  555. USB_TYPE_CLASS |
  556. USB_RECIP_ENDPOINT, 0x100, 0x81, buff, 3);
  557. }
  558. static int snd_mbox1_is_spdif_input(struct snd_usb_audio *chip)
  559. {
  560. /* Hardware gives 2 possibilities: ANALOG Source -> 0x01
  561. * S/PDIF Source -> 0x02
  562. */
  563. int err;
  564. unsigned char source[1];
  565. /* Read input source */
  566. err = snd_usb_ctl_msg(chip->dev,
  567. usb_rcvctrlpipe(chip->dev, 0), 0x81,
  568. USB_DIR_IN |
  569. USB_TYPE_CLASS |
  570. USB_RECIP_INTERFACE, 0x00, 0x500, source, 1);
  571. if (err < 0)
  572. return err;
  573. return (source[0] == 2);
  574. }
  575. static int snd_mbox1_set_input_source(struct snd_usb_audio *chip, int is_spdif)
  576. {
  577. /* NB: Setting the input source to S/PDIF resets the clock source to S/PDIF
  578. * Hardware expects 2 possibilities: ANALOG Source -> 0x01
  579. * S/PDIF Source -> 0x02
  580. */
  581. unsigned char buff[1];
  582. buff[0] = (is_spdif & 1) + 1;
  583. /* Set input source */
  584. return snd_usb_ctl_msg(chip->dev,
  585. usb_sndctrlpipe(chip->dev, 0), 0x1,
  586. USB_TYPE_CLASS |
  587. USB_RECIP_INTERFACE, 0x00, 0x500, buff, 1);
  588. }
  589. /* Digidesign Mbox 1 clock source switch (internal/spdif) */
  590. static int snd_mbox1_clk_switch_get(struct snd_kcontrol *kctl,
  591. struct snd_ctl_elem_value *ucontrol)
  592. {
  593. struct usb_mixer_elem_list *list = snd_kcontrol_chip(kctl);
  594. struct snd_usb_audio *chip = list->mixer->chip;
  595. int err;
  596. err = snd_usb_lock_shutdown(chip);
  597. if (err < 0)
  598. goto err;
  599. err = snd_mbox1_is_spdif_synced(chip);
  600. if (err < 0)
  601. goto err;
  602. kctl->private_value = err;
  603. err = 0;
  604. ucontrol->value.enumerated.item[0] = kctl->private_value;
  605. err:
  606. snd_usb_unlock_shutdown(chip);
  607. return err;
  608. }
  609. static int snd_mbox1_clk_switch_update(struct usb_mixer_interface *mixer, int is_spdif_sync)
  610. {
  611. struct snd_usb_audio *chip = mixer->chip;
  612. int err;
  613. err = snd_usb_lock_shutdown(chip);
  614. if (err < 0)
  615. return err;
  616. err = snd_mbox1_is_spdif_input(chip);
  617. if (err < 0)
  618. goto err;
  619. err = snd_mbox1_is_spdif_synced(chip);
  620. if (err < 0)
  621. goto err;
  622. /* FIXME: hardcoded sample rate */
  623. err = snd_mbox1_set_clk_source(chip, is_spdif_sync ? 0 : 48000);
  624. if (err < 0)
  625. goto err;
  626. err = snd_mbox1_is_spdif_synced(chip);
  627. err:
  628. snd_usb_unlock_shutdown(chip);
  629. return err;
  630. }
  631. static int snd_mbox1_clk_switch_put(struct snd_kcontrol *kctl,
  632. struct snd_ctl_elem_value *ucontrol)
  633. {
  634. struct usb_mixer_elem_list *list = snd_kcontrol_chip(kctl);
  635. struct usb_mixer_interface *mixer = list->mixer;
  636. int err;
  637. bool cur_val, new_val;
  638. cur_val = kctl->private_value;
  639. new_val = ucontrol->value.enumerated.item[0];
  640. if (cur_val == new_val)
  641. return 0;
  642. kctl->private_value = new_val;
  643. err = snd_mbox1_clk_switch_update(mixer, new_val);
  644. return err < 0 ? err : 1;
  645. }
  646. static int snd_mbox1_clk_switch_info(struct snd_kcontrol *kcontrol,
  647. struct snd_ctl_elem_info *uinfo)
  648. {
  649. static const char *const texts[2] = {
  650. "Internal",
  651. "S/PDIF"
  652. };
  653. return snd_ctl_enum_info(uinfo, 1, ARRAY_SIZE(texts), texts);
  654. }
  655. static int snd_mbox1_clk_switch_resume(struct usb_mixer_elem_list *list)
  656. {
  657. return snd_mbox1_clk_switch_update(list->mixer, list->kctl->private_value);
  658. }
  659. /* Digidesign Mbox 1 input source switch (analog/spdif) */
  660. static int snd_mbox1_src_switch_get(struct snd_kcontrol *kctl,
  661. struct snd_ctl_elem_value *ucontrol)
  662. {
  663. ucontrol->value.enumerated.item[0] = kctl->private_value;
  664. return 0;
  665. }
  666. static int snd_mbox1_src_switch_update(struct usb_mixer_interface *mixer, int is_spdif_input)
  667. {
  668. struct snd_usb_audio *chip = mixer->chip;
  669. int err;
  670. err = snd_usb_lock_shutdown(chip);
  671. if (err < 0)
  672. return err;
  673. err = snd_mbox1_is_spdif_input(chip);
  674. if (err < 0)
  675. goto err;
  676. err = snd_mbox1_set_input_source(chip, is_spdif_input);
  677. if (err < 0)
  678. goto err;
  679. err = snd_mbox1_is_spdif_input(chip);
  680. if (err < 0)
  681. goto err;
  682. err = snd_mbox1_is_spdif_synced(chip);
  683. err:
  684. snd_usb_unlock_shutdown(chip);
  685. return err;
  686. }
  687. static int snd_mbox1_src_switch_put(struct snd_kcontrol *kctl,
  688. struct snd_ctl_elem_value *ucontrol)
  689. {
  690. struct usb_mixer_elem_list *list = snd_kcontrol_chip(kctl);
  691. struct usb_mixer_interface *mixer = list->mixer;
  692. int err;
  693. bool cur_val, new_val;
  694. cur_val = kctl->private_value;
  695. new_val = ucontrol->value.enumerated.item[0];
  696. if (cur_val == new_val)
  697. return 0;
  698. kctl->private_value = new_val;
  699. err = snd_mbox1_src_switch_update(mixer, new_val);
  700. return err < 0 ? err : 1;
  701. }
  702. static int snd_mbox1_src_switch_info(struct snd_kcontrol *kcontrol,
  703. struct snd_ctl_elem_info *uinfo)
  704. {
  705. static const char *const texts[2] = {
  706. "Analog",
  707. "S/PDIF"
  708. };
  709. return snd_ctl_enum_info(uinfo, 1, ARRAY_SIZE(texts), texts);
  710. }
  711. static int snd_mbox1_src_switch_resume(struct usb_mixer_elem_list *list)
  712. {
  713. return snd_mbox1_src_switch_update(list->mixer, list->kctl->private_value);
  714. }
  715. static const struct snd_kcontrol_new snd_mbox1_clk_switch = {
  716. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  717. .name = "Clock Source",
  718. .index = 0,
  719. .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
  720. .info = snd_mbox1_clk_switch_info,
  721. .get = snd_mbox1_clk_switch_get,
  722. .put = snd_mbox1_clk_switch_put,
  723. .private_value = 0
  724. };
  725. static const struct snd_kcontrol_new snd_mbox1_src_switch = {
  726. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  727. .name = "Input Source",
  728. .index = 1,
  729. .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
  730. .info = snd_mbox1_src_switch_info,
  731. .get = snd_mbox1_src_switch_get,
  732. .put = snd_mbox1_src_switch_put,
  733. .private_value = 0
  734. };
  735. static int snd_mbox1_controls_create(struct usb_mixer_interface *mixer)
  736. {
  737. int err;
  738. err = add_single_ctl_with_resume(mixer, 0,
  739. snd_mbox1_clk_switch_resume,
  740. &snd_mbox1_clk_switch, NULL);
  741. if (err < 0)
  742. return err;
  743. return add_single_ctl_with_resume(mixer, 1,
  744. snd_mbox1_src_switch_resume,
  745. &snd_mbox1_src_switch, NULL);
  746. }
  747. /* Native Instruments device quirks */
  748. #define _MAKE_NI_CONTROL(bRequest,wIndex) ((bRequest) << 16 | (wIndex))
  749. static int snd_ni_control_init_val(struct usb_mixer_interface *mixer,
  750. struct snd_kcontrol *kctl)
  751. {
  752. struct usb_device *dev = mixer->chip->dev;
  753. unsigned int pval = kctl->private_value;
  754. u8 value;
  755. int err;
  756. err = snd_usb_ctl_msg(dev, usb_rcvctrlpipe(dev, 0),
  757. (pval >> 16) & 0xff,
  758. USB_TYPE_VENDOR | USB_RECIP_DEVICE | USB_DIR_IN,
  759. 0, pval & 0xffff, &value, 1);
  760. if (err < 0) {
  761. dev_err(&dev->dev,
  762. "unable to issue vendor read request (ret = %d)", err);
  763. return err;
  764. }
  765. kctl->private_value |= ((unsigned int)value << 24);
  766. return 0;
  767. }
  768. static int snd_nativeinstruments_control_get(struct snd_kcontrol *kcontrol,
  769. struct snd_ctl_elem_value *ucontrol)
  770. {
  771. ucontrol->value.integer.value[0] = kcontrol->private_value >> 24;
  772. return 0;
  773. }
  774. static int snd_ni_update_cur_val(struct usb_mixer_elem_list *list)
  775. {
  776. struct snd_usb_audio *chip = list->mixer->chip;
  777. unsigned int pval = list->kctl->private_value;
  778. int err;
  779. err = snd_usb_lock_shutdown(chip);
  780. if (err < 0)
  781. return err;
  782. err = usb_control_msg(chip->dev, usb_sndctrlpipe(chip->dev, 0),
  783. (pval >> 16) & 0xff,
  784. USB_TYPE_VENDOR | USB_RECIP_DEVICE | USB_DIR_OUT,
  785. pval >> 24, pval & 0xffff, NULL, 0, 1000);
  786. snd_usb_unlock_shutdown(chip);
  787. return err;
  788. }
  789. static int snd_nativeinstruments_control_put(struct snd_kcontrol *kcontrol,
  790. struct snd_ctl_elem_value *ucontrol)
  791. {
  792. struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol);
  793. u8 oldval = (kcontrol->private_value >> 24) & 0xff;
  794. u8 newval = ucontrol->value.integer.value[0];
  795. int err;
  796. if (oldval == newval)
  797. return 0;
  798. kcontrol->private_value &= ~(0xff << 24);
  799. kcontrol->private_value |= (unsigned int)newval << 24;
  800. err = snd_ni_update_cur_val(list);
  801. return err < 0 ? err : 1;
  802. }
  803. static const struct snd_kcontrol_new snd_nativeinstruments_ta6_mixers[] = {
  804. {
  805. .name = "Direct Thru Channel A",
  806. .private_value = _MAKE_NI_CONTROL(0x01, 0x03),
  807. },
  808. {
  809. .name = "Direct Thru Channel B",
  810. .private_value = _MAKE_NI_CONTROL(0x01, 0x05),
  811. },
  812. {
  813. .name = "Phono Input Channel A",
  814. .private_value = _MAKE_NI_CONTROL(0x02, 0x03),
  815. },
  816. {
  817. .name = "Phono Input Channel B",
  818. .private_value = _MAKE_NI_CONTROL(0x02, 0x05),
  819. },
  820. };
  821. static const struct snd_kcontrol_new snd_nativeinstruments_ta10_mixers[] = {
  822. {
  823. .name = "Direct Thru Channel A",
  824. .private_value = _MAKE_NI_CONTROL(0x01, 0x03),
  825. },
  826. {
  827. .name = "Direct Thru Channel B",
  828. .private_value = _MAKE_NI_CONTROL(0x01, 0x05),
  829. },
  830. {
  831. .name = "Direct Thru Channel C",
  832. .private_value = _MAKE_NI_CONTROL(0x01, 0x07),
  833. },
  834. {
  835. .name = "Direct Thru Channel D",
  836. .private_value = _MAKE_NI_CONTROL(0x01, 0x09),
  837. },
  838. {
  839. .name = "Phono Input Channel A",
  840. .private_value = _MAKE_NI_CONTROL(0x02, 0x03),
  841. },
  842. {
  843. .name = "Phono Input Channel B",
  844. .private_value = _MAKE_NI_CONTROL(0x02, 0x05),
  845. },
  846. {
  847. .name = "Phono Input Channel C",
  848. .private_value = _MAKE_NI_CONTROL(0x02, 0x07),
  849. },
  850. {
  851. .name = "Phono Input Channel D",
  852. .private_value = _MAKE_NI_CONTROL(0x02, 0x09),
  853. },
  854. };
  855. static int snd_nativeinstruments_create_mixer(struct usb_mixer_interface *mixer,
  856. const struct snd_kcontrol_new *kc,
  857. unsigned int count)
  858. {
  859. int i, err = 0;
  860. struct snd_kcontrol_new template = {
  861. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  862. .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
  863. .get = snd_nativeinstruments_control_get,
  864. .put = snd_nativeinstruments_control_put,
  865. .info = snd_ctl_boolean_mono_info,
  866. };
  867. for (i = 0; i < count; i++) {
  868. struct usb_mixer_elem_list *list;
  869. template.name = kc[i].name;
  870. template.private_value = kc[i].private_value;
  871. err = add_single_ctl_with_resume(mixer, 0,
  872. snd_ni_update_cur_val,
  873. &template, &list);
  874. if (err < 0)
  875. break;
  876. snd_ni_control_init_val(mixer, list->kctl);
  877. }
  878. return err;
  879. }
  880. /* M-Audio FastTrack Ultra quirks */
  881. /* FTU Effect switch (also used by C400/C600) */
  882. static int snd_ftu_eff_switch_info(struct snd_kcontrol *kcontrol,
  883. struct snd_ctl_elem_info *uinfo)
  884. {
  885. static const char *const texts[8] = {
  886. "Room 1", "Room 2", "Room 3", "Hall 1",
  887. "Hall 2", "Plate", "Delay", "Echo"
  888. };
  889. return snd_ctl_enum_info(uinfo, 1, ARRAY_SIZE(texts), texts);
  890. }
  891. static int snd_ftu_eff_switch_init(struct usb_mixer_interface *mixer,
  892. struct snd_kcontrol *kctl)
  893. {
  894. struct usb_device *dev = mixer->chip->dev;
  895. unsigned int pval = kctl->private_value;
  896. int err;
  897. unsigned char value[2];
  898. value[0] = 0x00;
  899. value[1] = 0x00;
  900. err = snd_usb_ctl_msg(dev, usb_rcvctrlpipe(dev, 0), UAC_GET_CUR,
  901. USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_IN,
  902. pval & 0xff00,
  903. snd_usb_ctrl_intf(mixer->chip) | ((pval & 0xff) << 8),
  904. value, 2);
  905. if (err < 0)
  906. return err;
  907. kctl->private_value |= (unsigned int)value[0] << 24;
  908. return 0;
  909. }
  910. static int snd_ftu_eff_switch_get(struct snd_kcontrol *kctl,
  911. struct snd_ctl_elem_value *ucontrol)
  912. {
  913. ucontrol->value.enumerated.item[0] = kctl->private_value >> 24;
  914. return 0;
  915. }
  916. static int snd_ftu_eff_switch_update(struct usb_mixer_elem_list *list)
  917. {
  918. struct snd_usb_audio *chip = list->mixer->chip;
  919. unsigned int pval = list->kctl->private_value;
  920. unsigned char value[2];
  921. int err;
  922. value[0] = pval >> 24;
  923. value[1] = 0;
  924. err = snd_usb_lock_shutdown(chip);
  925. if (err < 0)
  926. return err;
  927. err = snd_usb_ctl_msg(chip->dev,
  928. usb_sndctrlpipe(chip->dev, 0),
  929. UAC_SET_CUR,
  930. USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_OUT,
  931. pval & 0xff00,
  932. snd_usb_ctrl_intf(chip) | ((pval & 0xff) << 8),
  933. value, 2);
  934. snd_usb_unlock_shutdown(chip);
  935. return err;
  936. }
  937. static int snd_ftu_eff_switch_put(struct snd_kcontrol *kctl,
  938. struct snd_ctl_elem_value *ucontrol)
  939. {
  940. struct usb_mixer_elem_list *list = snd_kcontrol_chip(kctl);
  941. unsigned int pval = list->kctl->private_value;
  942. int cur_val, err, new_val;
  943. cur_val = pval >> 24;
  944. new_val = ucontrol->value.enumerated.item[0];
  945. if (cur_val == new_val)
  946. return 0;
  947. kctl->private_value &= ~(0xff << 24);
  948. kctl->private_value |= new_val << 24;
  949. err = snd_ftu_eff_switch_update(list);
  950. return err < 0 ? err : 1;
  951. }
  952. static int snd_ftu_create_effect_switch(struct usb_mixer_interface *mixer,
  953. int validx, int bUnitID)
  954. {
  955. static struct snd_kcontrol_new template = {
  956. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  957. .name = "Effect Program Switch",
  958. .index = 0,
  959. .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
  960. .info = snd_ftu_eff_switch_info,
  961. .get = snd_ftu_eff_switch_get,
  962. .put = snd_ftu_eff_switch_put
  963. };
  964. struct usb_mixer_elem_list *list;
  965. int err;
  966. err = add_single_ctl_with_resume(mixer, bUnitID,
  967. snd_ftu_eff_switch_update,
  968. &template, &list);
  969. if (err < 0)
  970. return err;
  971. list->kctl->private_value = (validx << 8) | bUnitID;
  972. snd_ftu_eff_switch_init(mixer, list->kctl);
  973. return 0;
  974. }
  975. /* Create volume controls for FTU devices*/
  976. static int snd_ftu_create_volume_ctls(struct usb_mixer_interface *mixer)
  977. {
  978. char name[64];
  979. unsigned int control, cmask;
  980. int in, out, err;
  981. const unsigned int id = 5;
  982. const int val_type = USB_MIXER_S16;
  983. for (out = 0; out < 8; out++) {
  984. control = out + 1;
  985. for (in = 0; in < 8; in++) {
  986. cmask = 1 << in;
  987. snprintf(name, sizeof(name),
  988. "AIn%d - Out%d Capture Volume",
  989. in + 1, out + 1);
  990. err = snd_create_std_mono_ctl(mixer, id, control,
  991. cmask, val_type, name,
  992. &snd_usb_mixer_vol_tlv);
  993. if (err < 0)
  994. return err;
  995. }
  996. for (in = 8; in < 16; in++) {
  997. cmask = 1 << in;
  998. snprintf(name, sizeof(name),
  999. "DIn%d - Out%d Playback Volume",
  1000. in - 7, out + 1);
  1001. err = snd_create_std_mono_ctl(mixer, id, control,
  1002. cmask, val_type, name,
  1003. &snd_usb_mixer_vol_tlv);
  1004. if (err < 0)
  1005. return err;
  1006. }
  1007. }
  1008. return 0;
  1009. }
  1010. /* This control needs a volume quirk, see mixer.c */
  1011. static int snd_ftu_create_effect_volume_ctl(struct usb_mixer_interface *mixer)
  1012. {
  1013. static const char name[] = "Effect Volume";
  1014. const unsigned int id = 6;
  1015. const int val_type = USB_MIXER_U8;
  1016. const unsigned int control = 2;
  1017. const unsigned int cmask = 0;
  1018. return snd_create_std_mono_ctl(mixer, id, control, cmask, val_type,
  1019. name, snd_usb_mixer_vol_tlv);
  1020. }
  1021. /* This control needs a volume quirk, see mixer.c */
  1022. static int snd_ftu_create_effect_duration_ctl(struct usb_mixer_interface *mixer)
  1023. {
  1024. static const char name[] = "Effect Duration";
  1025. const unsigned int id = 6;
  1026. const int val_type = USB_MIXER_S16;
  1027. const unsigned int control = 3;
  1028. const unsigned int cmask = 0;
  1029. return snd_create_std_mono_ctl(mixer, id, control, cmask, val_type,
  1030. name, snd_usb_mixer_vol_tlv);
  1031. }
  1032. /* This control needs a volume quirk, see mixer.c */
  1033. static int snd_ftu_create_effect_feedback_ctl(struct usb_mixer_interface *mixer)
  1034. {
  1035. static const char name[] = "Effect Feedback Volume";
  1036. const unsigned int id = 6;
  1037. const int val_type = USB_MIXER_U8;
  1038. const unsigned int control = 4;
  1039. const unsigned int cmask = 0;
  1040. return snd_create_std_mono_ctl(mixer, id, control, cmask, val_type,
  1041. name, NULL);
  1042. }
  1043. static int snd_ftu_create_effect_return_ctls(struct usb_mixer_interface *mixer)
  1044. {
  1045. unsigned int cmask;
  1046. int err, ch;
  1047. char name[48];
  1048. const unsigned int id = 7;
  1049. const int val_type = USB_MIXER_S16;
  1050. const unsigned int control = 7;
  1051. for (ch = 0; ch < 4; ++ch) {
  1052. cmask = 1 << ch;
  1053. snprintf(name, sizeof(name),
  1054. "Effect Return %d Volume", ch + 1);
  1055. err = snd_create_std_mono_ctl(mixer, id, control,
  1056. cmask, val_type, name,
  1057. snd_usb_mixer_vol_tlv);
  1058. if (err < 0)
  1059. return err;
  1060. }
  1061. return 0;
  1062. }
  1063. static int snd_ftu_create_effect_send_ctls(struct usb_mixer_interface *mixer)
  1064. {
  1065. unsigned int cmask;
  1066. int err, ch;
  1067. char name[48];
  1068. const unsigned int id = 5;
  1069. const int val_type = USB_MIXER_S16;
  1070. const unsigned int control = 9;
  1071. for (ch = 0; ch < 8; ++ch) {
  1072. cmask = 1 << ch;
  1073. snprintf(name, sizeof(name),
  1074. "Effect Send AIn%d Volume", ch + 1);
  1075. err = snd_create_std_mono_ctl(mixer, id, control, cmask,
  1076. val_type, name,
  1077. snd_usb_mixer_vol_tlv);
  1078. if (err < 0)
  1079. return err;
  1080. }
  1081. for (ch = 8; ch < 16; ++ch) {
  1082. cmask = 1 << ch;
  1083. snprintf(name, sizeof(name),
  1084. "Effect Send DIn%d Volume", ch - 7);
  1085. err = snd_create_std_mono_ctl(mixer, id, control, cmask,
  1086. val_type, name,
  1087. snd_usb_mixer_vol_tlv);
  1088. if (err < 0)
  1089. return err;
  1090. }
  1091. return 0;
  1092. }
  1093. static int snd_ftu_create_mixer(struct usb_mixer_interface *mixer)
  1094. {
  1095. int err;
  1096. err = snd_ftu_create_volume_ctls(mixer);
  1097. if (err < 0)
  1098. return err;
  1099. err = snd_ftu_create_effect_switch(mixer, 1, 6);
  1100. if (err < 0)
  1101. return err;
  1102. err = snd_ftu_create_effect_volume_ctl(mixer);
  1103. if (err < 0)
  1104. return err;
  1105. err = snd_ftu_create_effect_duration_ctl(mixer);
  1106. if (err < 0)
  1107. return err;
  1108. err = snd_ftu_create_effect_feedback_ctl(mixer);
  1109. if (err < 0)
  1110. return err;
  1111. err = snd_ftu_create_effect_return_ctls(mixer);
  1112. if (err < 0)
  1113. return err;
  1114. err = snd_ftu_create_effect_send_ctls(mixer);
  1115. if (err < 0)
  1116. return err;
  1117. return 0;
  1118. }
  1119. void snd_emuusb_set_samplerate(struct snd_usb_audio *chip,
  1120. unsigned char samplerate_id)
  1121. {
  1122. struct usb_mixer_interface *mixer;
  1123. struct usb_mixer_elem_info *cval;
  1124. int unitid = 12; /* SampleRate ExtensionUnit ID */
  1125. list_for_each_entry(mixer, &chip->mixer_list, list) {
  1126. if (mixer->id_elems[unitid]) {
  1127. cval = mixer_elem_list_to_info(mixer->id_elems[unitid]);
  1128. snd_usb_mixer_set_ctl_value(cval, UAC_SET_CUR,
  1129. cval->control << 8,
  1130. samplerate_id);
  1131. snd_usb_mixer_notify_id(mixer, unitid);
  1132. break;
  1133. }
  1134. }
  1135. }
  1136. /* M-Audio Fast Track C400/C600 */
  1137. /* C400/C600 volume controls, this control needs a volume quirk, see mixer.c */
  1138. static int snd_c400_create_vol_ctls(struct usb_mixer_interface *mixer)
  1139. {
  1140. char name[64];
  1141. unsigned int cmask, offset;
  1142. int out, chan, err;
  1143. int num_outs = 0;
  1144. int num_ins = 0;
  1145. const unsigned int id = 0x40;
  1146. const int val_type = USB_MIXER_S16;
  1147. const int control = 1;
  1148. switch (mixer->chip->usb_id) {
  1149. case USB_ID(0x0763, 0x2030):
  1150. num_outs = 6;
  1151. num_ins = 4;
  1152. break;
  1153. case USB_ID(0x0763, 0x2031):
  1154. num_outs = 8;
  1155. num_ins = 6;
  1156. break;
  1157. }
  1158. for (chan = 0; chan < num_outs + num_ins; chan++) {
  1159. for (out = 0; out < num_outs; out++) {
  1160. if (chan < num_outs) {
  1161. snprintf(name, sizeof(name),
  1162. "PCM%d-Out%d Playback Volume",
  1163. chan + 1, out + 1);
  1164. } else {
  1165. snprintf(name, sizeof(name),
  1166. "In%d-Out%d Playback Volume",
  1167. chan - num_outs + 1, out + 1);
  1168. }
  1169. cmask = (out == 0) ? 0 : 1 << (out - 1);
  1170. offset = chan * num_outs;
  1171. err = snd_create_std_mono_ctl_offset(mixer, id, control,
  1172. cmask, val_type, offset, name,
  1173. &snd_usb_mixer_vol_tlv);
  1174. if (err < 0)
  1175. return err;
  1176. }
  1177. }
  1178. return 0;
  1179. }
  1180. /* This control needs a volume quirk, see mixer.c */
  1181. static int snd_c400_create_effect_volume_ctl(struct usb_mixer_interface *mixer)
  1182. {
  1183. static const char name[] = "Effect Volume";
  1184. const unsigned int id = 0x43;
  1185. const int val_type = USB_MIXER_U8;
  1186. const unsigned int control = 3;
  1187. const unsigned int cmask = 0;
  1188. return snd_create_std_mono_ctl(mixer, id, control, cmask, val_type,
  1189. name, snd_usb_mixer_vol_tlv);
  1190. }
  1191. /* This control needs a volume quirk, see mixer.c */
  1192. static int snd_c400_create_effect_duration_ctl(struct usb_mixer_interface *mixer)
  1193. {
  1194. static const char name[] = "Effect Duration";
  1195. const unsigned int id = 0x43;
  1196. const int val_type = USB_MIXER_S16;
  1197. const unsigned int control = 4;
  1198. const unsigned int cmask = 0;
  1199. return snd_create_std_mono_ctl(mixer, id, control, cmask, val_type,
  1200. name, snd_usb_mixer_vol_tlv);
  1201. }
  1202. /* This control needs a volume quirk, see mixer.c */
  1203. static int snd_c400_create_effect_feedback_ctl(struct usb_mixer_interface *mixer)
  1204. {
  1205. static const char name[] = "Effect Feedback Volume";
  1206. const unsigned int id = 0x43;
  1207. const int val_type = USB_MIXER_U8;
  1208. const unsigned int control = 5;
  1209. const unsigned int cmask = 0;
  1210. return snd_create_std_mono_ctl(mixer, id, control, cmask, val_type,
  1211. name, NULL);
  1212. }
  1213. static int snd_c400_create_effect_vol_ctls(struct usb_mixer_interface *mixer)
  1214. {
  1215. char name[64];
  1216. unsigned int cmask;
  1217. int chan, err;
  1218. int num_outs = 0;
  1219. int num_ins = 0;
  1220. const unsigned int id = 0x42;
  1221. const int val_type = USB_MIXER_S16;
  1222. const int control = 1;
  1223. switch (mixer->chip->usb_id) {
  1224. case USB_ID(0x0763, 0x2030):
  1225. num_outs = 6;
  1226. num_ins = 4;
  1227. break;
  1228. case USB_ID(0x0763, 0x2031):
  1229. num_outs = 8;
  1230. num_ins = 6;
  1231. break;
  1232. }
  1233. for (chan = 0; chan < num_outs + num_ins; chan++) {
  1234. if (chan < num_outs) {
  1235. snprintf(name, sizeof(name),
  1236. "Effect Send DOut%d",
  1237. chan + 1);
  1238. } else {
  1239. snprintf(name, sizeof(name),
  1240. "Effect Send AIn%d",
  1241. chan - num_outs + 1);
  1242. }
  1243. cmask = (chan == 0) ? 0 : 1 << (chan - 1);
  1244. err = snd_create_std_mono_ctl(mixer, id, control,
  1245. cmask, val_type, name,
  1246. &snd_usb_mixer_vol_tlv);
  1247. if (err < 0)
  1248. return err;
  1249. }
  1250. return 0;
  1251. }
  1252. static int snd_c400_create_effect_ret_vol_ctls(struct usb_mixer_interface *mixer)
  1253. {
  1254. char name[64];
  1255. unsigned int cmask;
  1256. int chan, err;
  1257. int num_outs = 0;
  1258. int offset = 0;
  1259. const unsigned int id = 0x40;
  1260. const int val_type = USB_MIXER_S16;
  1261. const int control = 1;
  1262. switch (mixer->chip->usb_id) {
  1263. case USB_ID(0x0763, 0x2030):
  1264. num_outs = 6;
  1265. offset = 0x3c;
  1266. /* { 0x3c, 0x43, 0x3e, 0x45, 0x40, 0x47 } */
  1267. break;
  1268. case USB_ID(0x0763, 0x2031):
  1269. num_outs = 8;
  1270. offset = 0x70;
  1271. /* { 0x70, 0x79, 0x72, 0x7b, 0x74, 0x7d, 0x76, 0x7f } */
  1272. break;
  1273. }
  1274. for (chan = 0; chan < num_outs; chan++) {
  1275. snprintf(name, sizeof(name),
  1276. "Effect Return %d",
  1277. chan + 1);
  1278. cmask = (chan == 0) ? 0 :
  1279. 1 << (chan + (chan % 2) * num_outs - 1);
  1280. err = snd_create_std_mono_ctl_offset(mixer, id, control,
  1281. cmask, val_type, offset, name,
  1282. &snd_usb_mixer_vol_tlv);
  1283. if (err < 0)
  1284. return err;
  1285. }
  1286. return 0;
  1287. }
  1288. static int snd_c400_create_mixer(struct usb_mixer_interface *mixer)
  1289. {
  1290. int err;
  1291. err = snd_c400_create_vol_ctls(mixer);
  1292. if (err < 0)
  1293. return err;
  1294. err = snd_c400_create_effect_vol_ctls(mixer);
  1295. if (err < 0)
  1296. return err;
  1297. err = snd_c400_create_effect_ret_vol_ctls(mixer);
  1298. if (err < 0)
  1299. return err;
  1300. err = snd_ftu_create_effect_switch(mixer, 2, 0x43);
  1301. if (err < 0)
  1302. return err;
  1303. err = snd_c400_create_effect_volume_ctl(mixer);
  1304. if (err < 0)
  1305. return err;
  1306. err = snd_c400_create_effect_duration_ctl(mixer);
  1307. if (err < 0)
  1308. return err;
  1309. err = snd_c400_create_effect_feedback_ctl(mixer);
  1310. if (err < 0)
  1311. return err;
  1312. return 0;
  1313. }
  1314. /*
  1315. * The mixer units for Ebox-44 are corrupt, and even where they
  1316. * are valid they presents mono controls as L and R channels of
  1317. * stereo. So we provide a good mixer here.
  1318. */
  1319. static const struct std_mono_table ebox44_table[] = {
  1320. {
  1321. .unitid = 4,
  1322. .control = 1,
  1323. .cmask = 0x0,
  1324. .val_type = USB_MIXER_INV_BOOLEAN,
  1325. .name = "Headphone Playback Switch"
  1326. },
  1327. {
  1328. .unitid = 4,
  1329. .control = 2,
  1330. .cmask = 0x1,
  1331. .val_type = USB_MIXER_S16,
  1332. .name = "Headphone A Mix Playback Volume"
  1333. },
  1334. {
  1335. .unitid = 4,
  1336. .control = 2,
  1337. .cmask = 0x2,
  1338. .val_type = USB_MIXER_S16,
  1339. .name = "Headphone B Mix Playback Volume"
  1340. },
  1341. {
  1342. .unitid = 7,
  1343. .control = 1,
  1344. .cmask = 0x0,
  1345. .val_type = USB_MIXER_INV_BOOLEAN,
  1346. .name = "Output Playback Switch"
  1347. },
  1348. {
  1349. .unitid = 7,
  1350. .control = 2,
  1351. .cmask = 0x1,
  1352. .val_type = USB_MIXER_S16,
  1353. .name = "Output A Playback Volume"
  1354. },
  1355. {
  1356. .unitid = 7,
  1357. .control = 2,
  1358. .cmask = 0x2,
  1359. .val_type = USB_MIXER_S16,
  1360. .name = "Output B Playback Volume"
  1361. },
  1362. {
  1363. .unitid = 10,
  1364. .control = 1,
  1365. .cmask = 0x0,
  1366. .val_type = USB_MIXER_INV_BOOLEAN,
  1367. .name = "Input Capture Switch"
  1368. },
  1369. {
  1370. .unitid = 10,
  1371. .control = 2,
  1372. .cmask = 0x1,
  1373. .val_type = USB_MIXER_S16,
  1374. .name = "Input A Capture Volume"
  1375. },
  1376. {
  1377. .unitid = 10,
  1378. .control = 2,
  1379. .cmask = 0x2,
  1380. .val_type = USB_MIXER_S16,
  1381. .name = "Input B Capture Volume"
  1382. },
  1383. {}
  1384. };
  1385. /* Audio Advantage Micro II findings:
  1386. *
  1387. * Mapping spdif AES bits to vendor register.bit:
  1388. * AES0: [0 0 0 0 2.3 2.2 2.1 2.0] - default 0x00
  1389. * AES1: [3.3 3.2.3.1.3.0 2.7 2.6 2.5 2.4] - default: 0x01
  1390. * AES2: [0 0 0 0 0 0 0 0]
  1391. * AES3: [0 0 0 0 0 0 x 0] - 'x' bit is set basing on standard usb request
  1392. * (UAC_EP_CS_ATTR_SAMPLE_RATE) for Audio Devices
  1393. *
  1394. * power on values:
  1395. * r2: 0x10
  1396. * r3: 0x20 (b7 is zeroed just before playback (except IEC61937) and set
  1397. * just after it to 0xa0, presumably it disables/mutes some analog
  1398. * parts when there is no audio.)
  1399. * r9: 0x28
  1400. *
  1401. * Optical transmitter on/off:
  1402. * vendor register.bit: 9.1
  1403. * 0 - on (0x28 register value)
  1404. * 1 - off (0x2a register value)
  1405. *
  1406. */
  1407. static int snd_microii_spdif_info(struct snd_kcontrol *kcontrol,
  1408. struct snd_ctl_elem_info *uinfo)
  1409. {
  1410. uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
  1411. uinfo->count = 1;
  1412. return 0;
  1413. }
  1414. static int snd_microii_spdif_default_get(struct snd_kcontrol *kcontrol,
  1415. struct snd_ctl_elem_value *ucontrol)
  1416. {
  1417. struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol);
  1418. struct snd_usb_audio *chip = list->mixer->chip;
  1419. int err;
  1420. struct usb_interface *iface;
  1421. struct usb_host_interface *alts;
  1422. unsigned int ep;
  1423. unsigned char data[3];
  1424. int rate;
  1425. err = snd_usb_lock_shutdown(chip);
  1426. if (err < 0)
  1427. return err;
  1428. ucontrol->value.iec958.status[0] = kcontrol->private_value & 0xff;
  1429. ucontrol->value.iec958.status[1] = (kcontrol->private_value >> 8) & 0xff;
  1430. ucontrol->value.iec958.status[2] = 0x00;
  1431. /* use known values for that card: interface#1 altsetting#1 */
  1432. iface = usb_ifnum_to_if(chip->dev, 1);
  1433. if (!iface || iface->num_altsetting < 2) {
  1434. err = -EINVAL;
  1435. goto end;
  1436. }
  1437. alts = &iface->altsetting[1];
  1438. if (get_iface_desc(alts)->bNumEndpoints < 1) {
  1439. err = -EINVAL;
  1440. goto end;
  1441. }
  1442. ep = get_endpoint(alts, 0)->bEndpointAddress;
  1443. err = snd_usb_ctl_msg(chip->dev,
  1444. usb_rcvctrlpipe(chip->dev, 0),
  1445. UAC_GET_CUR,
  1446. USB_TYPE_CLASS | USB_RECIP_ENDPOINT | USB_DIR_IN,
  1447. UAC_EP_CS_ATTR_SAMPLE_RATE << 8,
  1448. ep,
  1449. data,
  1450. sizeof(data));
  1451. if (err < 0)
  1452. goto end;
  1453. rate = data[0] | (data[1] << 8) | (data[2] << 16);
  1454. ucontrol->value.iec958.status[3] = (rate == 48000) ?
  1455. IEC958_AES3_CON_FS_48000 : IEC958_AES3_CON_FS_44100;
  1456. err = 0;
  1457. end:
  1458. snd_usb_unlock_shutdown(chip);
  1459. return err;
  1460. }
  1461. static int snd_microii_spdif_default_update(struct usb_mixer_elem_list *list)
  1462. {
  1463. struct snd_usb_audio *chip = list->mixer->chip;
  1464. unsigned int pval = list->kctl->private_value;
  1465. u8 reg;
  1466. int err;
  1467. err = snd_usb_lock_shutdown(chip);
  1468. if (err < 0)
  1469. return err;
  1470. reg = ((pval >> 4) & 0xf0) | (pval & 0x0f);
  1471. err = snd_usb_ctl_msg(chip->dev,
  1472. usb_sndctrlpipe(chip->dev, 0),
  1473. UAC_SET_CUR,
  1474. USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_OTHER,
  1475. reg,
  1476. 2,
  1477. NULL,
  1478. 0);
  1479. if (err < 0)
  1480. goto end;
  1481. reg = (pval & IEC958_AES0_NONAUDIO) ? 0xa0 : 0x20;
  1482. reg |= (pval >> 12) & 0x0f;
  1483. err = snd_usb_ctl_msg(chip->dev,
  1484. usb_sndctrlpipe(chip->dev, 0),
  1485. UAC_SET_CUR,
  1486. USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_OTHER,
  1487. reg,
  1488. 3,
  1489. NULL,
  1490. 0);
  1491. if (err < 0)
  1492. goto end;
  1493. end:
  1494. snd_usb_unlock_shutdown(chip);
  1495. return err;
  1496. }
  1497. static int snd_microii_spdif_default_put(struct snd_kcontrol *kcontrol,
  1498. struct snd_ctl_elem_value *ucontrol)
  1499. {
  1500. struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol);
  1501. unsigned int pval, pval_old;
  1502. int err;
  1503. pval = pval_old = kcontrol->private_value;
  1504. pval &= 0xfffff0f0;
  1505. pval |= (ucontrol->value.iec958.status[1] & 0x0f) << 8;
  1506. pval |= (ucontrol->value.iec958.status[0] & 0x0f);
  1507. pval &= 0xffff0fff;
  1508. pval |= (ucontrol->value.iec958.status[1] & 0xf0) << 8;
  1509. /* The frequency bits in AES3 cannot be set via register access. */
  1510. /* Silently ignore any bits from the request that cannot be set. */
  1511. if (pval == pval_old)
  1512. return 0;
  1513. kcontrol->private_value = pval;
  1514. err = snd_microii_spdif_default_update(list);
  1515. return err < 0 ? err : 1;
  1516. }
  1517. static int snd_microii_spdif_mask_get(struct snd_kcontrol *kcontrol,
  1518. struct snd_ctl_elem_value *ucontrol)
  1519. {
  1520. ucontrol->value.iec958.status[0] = 0x0f;
  1521. ucontrol->value.iec958.status[1] = 0xff;
  1522. ucontrol->value.iec958.status[2] = 0x00;
  1523. ucontrol->value.iec958.status[3] = 0x00;
  1524. return 0;
  1525. }
  1526. static int snd_microii_spdif_switch_get(struct snd_kcontrol *kcontrol,
  1527. struct snd_ctl_elem_value *ucontrol)
  1528. {
  1529. ucontrol->value.integer.value[0] = !(kcontrol->private_value & 0x02);
  1530. return 0;
  1531. }
  1532. static int snd_microii_spdif_switch_update(struct usb_mixer_elem_list *list)
  1533. {
  1534. struct snd_usb_audio *chip = list->mixer->chip;
  1535. u8 reg = list->kctl->private_value;
  1536. int err;
  1537. err = snd_usb_lock_shutdown(chip);
  1538. if (err < 0)
  1539. return err;
  1540. err = snd_usb_ctl_msg(chip->dev,
  1541. usb_sndctrlpipe(chip->dev, 0),
  1542. UAC_SET_CUR,
  1543. USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_OTHER,
  1544. reg,
  1545. 9,
  1546. NULL,
  1547. 0);
  1548. snd_usb_unlock_shutdown(chip);
  1549. return err;
  1550. }
  1551. static int snd_microii_spdif_switch_put(struct snd_kcontrol *kcontrol,
  1552. struct snd_ctl_elem_value *ucontrol)
  1553. {
  1554. struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol);
  1555. u8 reg;
  1556. int err;
  1557. reg = ucontrol->value.integer.value[0] ? 0x28 : 0x2a;
  1558. if (reg != list->kctl->private_value)
  1559. return 0;
  1560. kcontrol->private_value = reg;
  1561. err = snd_microii_spdif_switch_update(list);
  1562. return err < 0 ? err : 1;
  1563. }
  1564. static const struct snd_kcontrol_new snd_microii_mixer_spdif[] = {
  1565. {
  1566. .iface = SNDRV_CTL_ELEM_IFACE_PCM,
  1567. .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT),
  1568. .info = snd_microii_spdif_info,
  1569. .get = snd_microii_spdif_default_get,
  1570. .put = snd_microii_spdif_default_put,
  1571. .private_value = 0x00000100UL,/* reset value */
  1572. },
  1573. {
  1574. .access = SNDRV_CTL_ELEM_ACCESS_READ,
  1575. .iface = SNDRV_CTL_ELEM_IFACE_PCM,
  1576. .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, MASK),
  1577. .info = snd_microii_spdif_info,
  1578. .get = snd_microii_spdif_mask_get,
  1579. },
  1580. {
  1581. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  1582. .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, SWITCH),
  1583. .info = snd_ctl_boolean_mono_info,
  1584. .get = snd_microii_spdif_switch_get,
  1585. .put = snd_microii_spdif_switch_put,
  1586. .private_value = 0x00000028UL,/* reset value */
  1587. }
  1588. };
  1589. static int snd_microii_controls_create(struct usb_mixer_interface *mixer)
  1590. {
  1591. int err, i;
  1592. static const usb_mixer_elem_resume_func_t resume_funcs[] = {
  1593. snd_microii_spdif_default_update,
  1594. NULL,
  1595. snd_microii_spdif_switch_update
  1596. };
  1597. for (i = 0; i < ARRAY_SIZE(snd_microii_mixer_spdif); ++i) {
  1598. err = add_single_ctl_with_resume(mixer, 0,
  1599. resume_funcs[i],
  1600. &snd_microii_mixer_spdif[i],
  1601. NULL);
  1602. if (err < 0)
  1603. return err;
  1604. }
  1605. return 0;
  1606. }
  1607. /* Creative Sound Blaster E1 */
  1608. static int snd_soundblaster_e1_switch_get(struct snd_kcontrol *kcontrol,
  1609. struct snd_ctl_elem_value *ucontrol)
  1610. {
  1611. ucontrol->value.integer.value[0] = kcontrol->private_value;
  1612. return 0;
  1613. }
  1614. static int snd_soundblaster_e1_switch_update(struct usb_mixer_interface *mixer,
  1615. unsigned char state)
  1616. {
  1617. struct snd_usb_audio *chip = mixer->chip;
  1618. int err;
  1619. unsigned char buff[2];
  1620. buff[0] = 0x02;
  1621. buff[1] = state ? 0x02 : 0x00;
  1622. err = snd_usb_lock_shutdown(chip);
  1623. if (err < 0)
  1624. return err;
  1625. err = snd_usb_ctl_msg(chip->dev,
  1626. usb_sndctrlpipe(chip->dev, 0), HID_REQ_SET_REPORT,
  1627. USB_TYPE_CLASS | USB_RECIP_INTERFACE | USB_DIR_OUT,
  1628. 0x0202, 3, buff, 2);
  1629. snd_usb_unlock_shutdown(chip);
  1630. return err;
  1631. }
  1632. static int snd_soundblaster_e1_switch_put(struct snd_kcontrol *kcontrol,
  1633. struct snd_ctl_elem_value *ucontrol)
  1634. {
  1635. struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol);
  1636. unsigned char value = !!ucontrol->value.integer.value[0];
  1637. int err;
  1638. if (kcontrol->private_value == value)
  1639. return 0;
  1640. kcontrol->private_value = value;
  1641. err = snd_soundblaster_e1_switch_update(list->mixer, value);
  1642. return err < 0 ? err : 1;
  1643. }
  1644. static int snd_soundblaster_e1_switch_resume(struct usb_mixer_elem_list *list)
  1645. {
  1646. return snd_soundblaster_e1_switch_update(list->mixer,
  1647. list->kctl->private_value);
  1648. }
  1649. static int snd_soundblaster_e1_switch_info(struct snd_kcontrol *kcontrol,
  1650. struct snd_ctl_elem_info *uinfo)
  1651. {
  1652. static const char *const texts[2] = {
  1653. "Mic", "Aux"
  1654. };
  1655. return snd_ctl_enum_info(uinfo, 1, ARRAY_SIZE(texts), texts);
  1656. }
  1657. static const struct snd_kcontrol_new snd_soundblaster_e1_input_switch = {
  1658. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  1659. .name = "Input Source",
  1660. .info = snd_soundblaster_e1_switch_info,
  1661. .get = snd_soundblaster_e1_switch_get,
  1662. .put = snd_soundblaster_e1_switch_put,
  1663. .private_value = 0,
  1664. };
  1665. static int snd_soundblaster_e1_switch_create(struct usb_mixer_interface *mixer)
  1666. {
  1667. return add_single_ctl_with_resume(mixer, 0,
  1668. snd_soundblaster_e1_switch_resume,
  1669. &snd_soundblaster_e1_input_switch,
  1670. NULL);
  1671. }
  1672. /*
  1673. * Dell WD15 dock jack detection
  1674. *
  1675. * The WD15 contains an ALC4020 USB audio controller and ALC3263 audio codec
  1676. * from Realtek. It is a UAC 1 device, and UAC 1 does not support jack
  1677. * detection. Instead, jack detection works by sending HD Audio commands over
  1678. * vendor-type USB messages.
  1679. */
  1680. #define HDA_VERB_CMD(V, N, D) (((N) << 20) | ((V) << 8) | (D))
  1681. #define REALTEK_HDA_VALUE 0x0038
  1682. #define REALTEK_HDA_SET 62
  1683. #define REALTEK_MANUAL_MODE 72
  1684. #define REALTEK_HDA_GET_OUT 88
  1685. #define REALTEK_HDA_GET_IN 89
  1686. #define REALTEK_AUDIO_FUNCTION_GROUP 0x01
  1687. #define REALTEK_LINE1 0x1a
  1688. #define REALTEK_VENDOR_REGISTERS 0x20
  1689. #define REALTEK_HP_OUT 0x21
  1690. #define REALTEK_CBJ_CTRL2 0x50
  1691. #define REALTEK_JACK_INTERRUPT_NODE 5
  1692. #define REALTEK_MIC_FLAG 0x100
  1693. static int realtek_hda_set(struct snd_usb_audio *chip, u32 cmd)
  1694. {
  1695. struct usb_device *dev = chip->dev;
  1696. __be32 buf = cpu_to_be32(cmd);
  1697. return snd_usb_ctl_msg(dev, usb_sndctrlpipe(dev, 0), REALTEK_HDA_SET,
  1698. USB_RECIP_DEVICE | USB_TYPE_VENDOR | USB_DIR_OUT,
  1699. REALTEK_HDA_VALUE, 0, &buf, sizeof(buf));
  1700. }
  1701. static int realtek_hda_get(struct snd_usb_audio *chip, u32 cmd, u32 *value)
  1702. {
  1703. struct usb_device *dev = chip->dev;
  1704. int err;
  1705. __be32 buf = cpu_to_be32(cmd);
  1706. err = snd_usb_ctl_msg(dev, usb_sndctrlpipe(dev, 0), REALTEK_HDA_GET_OUT,
  1707. USB_RECIP_DEVICE | USB_TYPE_VENDOR | USB_DIR_OUT,
  1708. REALTEK_HDA_VALUE, 0, &buf, sizeof(buf));
  1709. if (err < 0)
  1710. return err;
  1711. err = snd_usb_ctl_msg(dev, usb_rcvctrlpipe(dev, 0), REALTEK_HDA_GET_IN,
  1712. USB_RECIP_DEVICE | USB_TYPE_VENDOR | USB_DIR_IN,
  1713. REALTEK_HDA_VALUE, 0, &buf, sizeof(buf));
  1714. if (err < 0)
  1715. return err;
  1716. *value = be32_to_cpu(buf);
  1717. return 0;
  1718. }
  1719. static int realtek_ctl_connector_get(struct snd_kcontrol *kcontrol,
  1720. struct snd_ctl_elem_value *ucontrol)
  1721. {
  1722. struct usb_mixer_elem_info *cval = kcontrol->private_data;
  1723. struct snd_usb_audio *chip = cval->head.mixer->chip;
  1724. u32 pv = kcontrol->private_value;
  1725. u32 node_id = pv & 0xff;
  1726. u32 sense;
  1727. u32 cbj_ctrl2;
  1728. bool presence;
  1729. int err;
  1730. err = snd_usb_lock_shutdown(chip);
  1731. if (err < 0)
  1732. return err;
  1733. err = realtek_hda_get(chip,
  1734. HDA_VERB_CMD(AC_VERB_GET_PIN_SENSE, node_id, 0),
  1735. &sense);
  1736. if (err < 0)
  1737. goto err;
  1738. if (pv & REALTEK_MIC_FLAG) {
  1739. err = realtek_hda_set(chip,
  1740. HDA_VERB_CMD(AC_VERB_SET_COEF_INDEX,
  1741. REALTEK_VENDOR_REGISTERS,
  1742. REALTEK_CBJ_CTRL2));
  1743. if (err < 0)
  1744. goto err;
  1745. err = realtek_hda_get(chip,
  1746. HDA_VERB_CMD(AC_VERB_GET_PROC_COEF,
  1747. REALTEK_VENDOR_REGISTERS, 0),
  1748. &cbj_ctrl2);
  1749. if (err < 0)
  1750. goto err;
  1751. }
  1752. err:
  1753. snd_usb_unlock_shutdown(chip);
  1754. if (err < 0)
  1755. return err;
  1756. presence = sense & AC_PINSENSE_PRESENCE;
  1757. if (pv & REALTEK_MIC_FLAG)
  1758. presence = presence && (cbj_ctrl2 & 0x0070) == 0x0070;
  1759. ucontrol->value.integer.value[0] = presence;
  1760. return 0;
  1761. }
  1762. static const struct snd_kcontrol_new realtek_connector_ctl_ro = {
  1763. .iface = SNDRV_CTL_ELEM_IFACE_CARD,
  1764. .name = "", /* will be filled later manually */
  1765. .access = SNDRV_CTL_ELEM_ACCESS_READ,
  1766. .info = snd_ctl_boolean_mono_info,
  1767. .get = realtek_ctl_connector_get,
  1768. };
  1769. static int realtek_resume_jack(struct usb_mixer_elem_list *list)
  1770. {
  1771. snd_ctl_notify(list->mixer->chip->card, SNDRV_CTL_EVENT_MASK_VALUE,
  1772. &list->kctl->id);
  1773. return 0;
  1774. }
  1775. static int realtek_add_jack(struct usb_mixer_interface *mixer,
  1776. char *name, u32 val)
  1777. {
  1778. struct usb_mixer_elem_info *cval;
  1779. struct snd_kcontrol *kctl;
  1780. cval = kzalloc(sizeof(*cval), GFP_KERNEL);
  1781. if (!cval)
  1782. return -ENOMEM;
  1783. snd_usb_mixer_elem_init_std(&cval->head, mixer,
  1784. REALTEK_JACK_INTERRUPT_NODE);
  1785. cval->head.resume = realtek_resume_jack;
  1786. cval->val_type = USB_MIXER_BOOLEAN;
  1787. cval->channels = 1;
  1788. cval->min = 0;
  1789. cval->max = 1;
  1790. kctl = snd_ctl_new1(&realtek_connector_ctl_ro, cval);
  1791. if (!kctl) {
  1792. kfree(cval);
  1793. return -ENOMEM;
  1794. }
  1795. kctl->private_value = val;
  1796. strscpy(kctl->id.name, name, sizeof(kctl->id.name));
  1797. kctl->private_free = snd_usb_mixer_elem_free;
  1798. return snd_usb_mixer_add_control(&cval->head, kctl);
  1799. }
  1800. static int dell_dock_mixer_create(struct usb_mixer_interface *mixer)
  1801. {
  1802. int err;
  1803. struct usb_device *dev = mixer->chip->dev;
  1804. /* Power down the audio codec to avoid loud pops in the next step. */
  1805. realtek_hda_set(mixer->chip,
  1806. HDA_VERB_CMD(AC_VERB_SET_POWER_STATE,
  1807. REALTEK_AUDIO_FUNCTION_GROUP,
  1808. AC_PWRST_D3));
  1809. /*
  1810. * Turn off 'manual mode' in case it was enabled. This removes the need
  1811. * to power cycle the dock after it was attached to a Windows machine.
  1812. */
  1813. snd_usb_ctl_msg(dev, usb_sndctrlpipe(dev, 0), REALTEK_MANUAL_MODE,
  1814. USB_RECIP_DEVICE | USB_TYPE_VENDOR | USB_DIR_OUT,
  1815. 0, 0, NULL, 0);
  1816. err = realtek_add_jack(mixer, "Line Out Jack", REALTEK_LINE1);
  1817. if (err < 0)
  1818. return err;
  1819. err = realtek_add_jack(mixer, "Headphone Jack", REALTEK_HP_OUT);
  1820. if (err < 0)
  1821. return err;
  1822. err = realtek_add_jack(mixer, "Headset Mic Jack",
  1823. REALTEK_HP_OUT | REALTEK_MIC_FLAG);
  1824. if (err < 0)
  1825. return err;
  1826. return 0;
  1827. }
  1828. static void dell_dock_init_vol(struct snd_usb_audio *chip, int ch, int id)
  1829. {
  1830. u16 buf = 0;
  1831. snd_usb_ctl_msg(chip->dev, usb_sndctrlpipe(chip->dev, 0), UAC_SET_CUR,
  1832. USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_OUT,
  1833. (UAC_FU_VOLUME << 8) | ch,
  1834. snd_usb_ctrl_intf(chip) | (id << 8),
  1835. &buf, 2);
  1836. }
  1837. static int dell_dock_mixer_init(struct usb_mixer_interface *mixer)
  1838. {
  1839. /* fix to 0dB playback volumes */
  1840. dell_dock_init_vol(mixer->chip, 1, 16);
  1841. dell_dock_init_vol(mixer->chip, 2, 16);
  1842. dell_dock_init_vol(mixer->chip, 1, 19);
  1843. dell_dock_init_vol(mixer->chip, 2, 19);
  1844. return 0;
  1845. }
  1846. /* RME Class Compliant device quirks */
  1847. #define SND_RME_GET_STATUS1 23
  1848. #define SND_RME_GET_CURRENT_FREQ 17
  1849. #define SND_RME_CLK_SYSTEM_SHIFT 16
  1850. #define SND_RME_CLK_SYSTEM_MASK 0x1f
  1851. #define SND_RME_CLK_AES_SHIFT 8
  1852. #define SND_RME_CLK_SPDIF_SHIFT 12
  1853. #define SND_RME_CLK_AES_SPDIF_MASK 0xf
  1854. #define SND_RME_CLK_SYNC_SHIFT 6
  1855. #define SND_RME_CLK_SYNC_MASK 0x3
  1856. #define SND_RME_CLK_FREQMUL_SHIFT 18
  1857. #define SND_RME_CLK_FREQMUL_MASK 0x7
  1858. #define SND_RME_CLK_SYSTEM(x) \
  1859. ((x >> SND_RME_CLK_SYSTEM_SHIFT) & SND_RME_CLK_SYSTEM_MASK)
  1860. #define SND_RME_CLK_AES(x) \
  1861. ((x >> SND_RME_CLK_AES_SHIFT) & SND_RME_CLK_AES_SPDIF_MASK)
  1862. #define SND_RME_CLK_SPDIF(x) \
  1863. ((x >> SND_RME_CLK_SPDIF_SHIFT) & SND_RME_CLK_AES_SPDIF_MASK)
  1864. #define SND_RME_CLK_SYNC(x) \
  1865. ((x >> SND_RME_CLK_SYNC_SHIFT) & SND_RME_CLK_SYNC_MASK)
  1866. #define SND_RME_CLK_FREQMUL(x) \
  1867. ((x >> SND_RME_CLK_FREQMUL_SHIFT) & SND_RME_CLK_FREQMUL_MASK)
  1868. #define SND_RME_CLK_AES_LOCK 0x1
  1869. #define SND_RME_CLK_AES_SYNC 0x4
  1870. #define SND_RME_CLK_SPDIF_LOCK 0x2
  1871. #define SND_RME_CLK_SPDIF_SYNC 0x8
  1872. #define SND_RME_SPDIF_IF_SHIFT 4
  1873. #define SND_RME_SPDIF_FORMAT_SHIFT 5
  1874. #define SND_RME_BINARY_MASK 0x1
  1875. #define SND_RME_SPDIF_IF(x) \
  1876. ((x >> SND_RME_SPDIF_IF_SHIFT) & SND_RME_BINARY_MASK)
  1877. #define SND_RME_SPDIF_FORMAT(x) \
  1878. ((x >> SND_RME_SPDIF_FORMAT_SHIFT) & SND_RME_BINARY_MASK)
  1879. static const u32 snd_rme_rate_table[] = {
  1880. 32000, 44100, 48000, 50000,
  1881. 64000, 88200, 96000, 100000,
  1882. 128000, 176400, 192000, 200000,
  1883. 256000, 352800, 384000, 400000,
  1884. 512000, 705600, 768000, 800000
  1885. };
  1886. /* maximum number of items for AES and S/PDIF rates for above table */
  1887. #define SND_RME_RATE_IDX_AES_SPDIF_NUM 12
  1888. enum snd_rme_domain {
  1889. SND_RME_DOMAIN_SYSTEM,
  1890. SND_RME_DOMAIN_AES,
  1891. SND_RME_DOMAIN_SPDIF
  1892. };
  1893. enum snd_rme_clock_status {
  1894. SND_RME_CLOCK_NOLOCK,
  1895. SND_RME_CLOCK_LOCK,
  1896. SND_RME_CLOCK_SYNC
  1897. };
  1898. static int snd_rme_read_value(struct snd_usb_audio *chip,
  1899. unsigned int item,
  1900. u32 *value)
  1901. {
  1902. struct usb_device *dev = chip->dev;
  1903. int err;
  1904. err = snd_usb_ctl_msg(dev, usb_rcvctrlpipe(dev, 0),
  1905. item,
  1906. USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
  1907. 0, 0,
  1908. value, sizeof(*value));
  1909. if (err < 0)
  1910. dev_err(&dev->dev,
  1911. "unable to issue vendor read request %d (ret = %d)",
  1912. item, err);
  1913. return err;
  1914. }
  1915. static int snd_rme_get_status1(struct snd_kcontrol *kcontrol,
  1916. u32 *status1)
  1917. {
  1918. struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol);
  1919. struct snd_usb_audio *chip = list->mixer->chip;
  1920. int err;
  1921. err = snd_usb_lock_shutdown(chip);
  1922. if (err < 0)
  1923. return err;
  1924. err = snd_rme_read_value(chip, SND_RME_GET_STATUS1, status1);
  1925. snd_usb_unlock_shutdown(chip);
  1926. return err;
  1927. }
  1928. static int snd_rme_rate_get(struct snd_kcontrol *kcontrol,
  1929. struct snd_ctl_elem_value *ucontrol)
  1930. {
  1931. u32 status1;
  1932. u32 rate = 0;
  1933. int idx;
  1934. int err;
  1935. err = snd_rme_get_status1(kcontrol, &status1);
  1936. if (err < 0)
  1937. return err;
  1938. switch (kcontrol->private_value) {
  1939. case SND_RME_DOMAIN_SYSTEM:
  1940. idx = SND_RME_CLK_SYSTEM(status1);
  1941. if (idx < ARRAY_SIZE(snd_rme_rate_table))
  1942. rate = snd_rme_rate_table[idx];
  1943. break;
  1944. case SND_RME_DOMAIN_AES:
  1945. idx = SND_RME_CLK_AES(status1);
  1946. if (idx < SND_RME_RATE_IDX_AES_SPDIF_NUM)
  1947. rate = snd_rme_rate_table[idx];
  1948. break;
  1949. case SND_RME_DOMAIN_SPDIF:
  1950. idx = SND_RME_CLK_SPDIF(status1);
  1951. if (idx < SND_RME_RATE_IDX_AES_SPDIF_NUM)
  1952. rate = snd_rme_rate_table[idx];
  1953. break;
  1954. default:
  1955. return -EINVAL;
  1956. }
  1957. ucontrol->value.integer.value[0] = rate;
  1958. return 0;
  1959. }
  1960. static int snd_rme_sync_state_get(struct snd_kcontrol *kcontrol,
  1961. struct snd_ctl_elem_value *ucontrol)
  1962. {
  1963. u32 status1;
  1964. int idx = SND_RME_CLOCK_NOLOCK;
  1965. int err;
  1966. err = snd_rme_get_status1(kcontrol, &status1);
  1967. if (err < 0)
  1968. return err;
  1969. switch (kcontrol->private_value) {
  1970. case SND_RME_DOMAIN_AES: /* AES */
  1971. if (status1 & SND_RME_CLK_AES_SYNC)
  1972. idx = SND_RME_CLOCK_SYNC;
  1973. else if (status1 & SND_RME_CLK_AES_LOCK)
  1974. idx = SND_RME_CLOCK_LOCK;
  1975. break;
  1976. case SND_RME_DOMAIN_SPDIF: /* SPDIF */
  1977. if (status1 & SND_RME_CLK_SPDIF_SYNC)
  1978. idx = SND_RME_CLOCK_SYNC;
  1979. else if (status1 & SND_RME_CLK_SPDIF_LOCK)
  1980. idx = SND_RME_CLOCK_LOCK;
  1981. break;
  1982. default:
  1983. return -EINVAL;
  1984. }
  1985. ucontrol->value.enumerated.item[0] = idx;
  1986. return 0;
  1987. }
  1988. static int snd_rme_spdif_if_get(struct snd_kcontrol *kcontrol,
  1989. struct snd_ctl_elem_value *ucontrol)
  1990. {
  1991. u32 status1;
  1992. int err;
  1993. err = snd_rme_get_status1(kcontrol, &status1);
  1994. if (err < 0)
  1995. return err;
  1996. ucontrol->value.enumerated.item[0] = SND_RME_SPDIF_IF(status1);
  1997. return 0;
  1998. }
  1999. static int snd_rme_spdif_format_get(struct snd_kcontrol *kcontrol,
  2000. struct snd_ctl_elem_value *ucontrol)
  2001. {
  2002. u32 status1;
  2003. int err;
  2004. err = snd_rme_get_status1(kcontrol, &status1);
  2005. if (err < 0)
  2006. return err;
  2007. ucontrol->value.enumerated.item[0] = SND_RME_SPDIF_FORMAT(status1);
  2008. return 0;
  2009. }
  2010. static int snd_rme_sync_source_get(struct snd_kcontrol *kcontrol,
  2011. struct snd_ctl_elem_value *ucontrol)
  2012. {
  2013. u32 status1;
  2014. int err;
  2015. err = snd_rme_get_status1(kcontrol, &status1);
  2016. if (err < 0)
  2017. return err;
  2018. ucontrol->value.enumerated.item[0] = SND_RME_CLK_SYNC(status1);
  2019. return 0;
  2020. }
  2021. static int snd_rme_current_freq_get(struct snd_kcontrol *kcontrol,
  2022. struct snd_ctl_elem_value *ucontrol)
  2023. {
  2024. struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol);
  2025. struct snd_usb_audio *chip = list->mixer->chip;
  2026. u32 status1;
  2027. const u64 num = 104857600000000ULL;
  2028. u32 den;
  2029. unsigned int freq;
  2030. int err;
  2031. err = snd_usb_lock_shutdown(chip);
  2032. if (err < 0)
  2033. return err;
  2034. err = snd_rme_read_value(chip, SND_RME_GET_STATUS1, &status1);
  2035. if (err < 0)
  2036. goto end;
  2037. err = snd_rme_read_value(chip, SND_RME_GET_CURRENT_FREQ, &den);
  2038. if (err < 0)
  2039. goto end;
  2040. freq = (den == 0) ? 0 : div64_u64(num, den);
  2041. freq <<= SND_RME_CLK_FREQMUL(status1);
  2042. ucontrol->value.integer.value[0] = freq;
  2043. end:
  2044. snd_usb_unlock_shutdown(chip);
  2045. return err;
  2046. }
  2047. static int snd_rme_rate_info(struct snd_kcontrol *kcontrol,
  2048. struct snd_ctl_elem_info *uinfo)
  2049. {
  2050. uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
  2051. uinfo->count = 1;
  2052. switch (kcontrol->private_value) {
  2053. case SND_RME_DOMAIN_SYSTEM:
  2054. uinfo->value.integer.min = 32000;
  2055. uinfo->value.integer.max = 800000;
  2056. break;
  2057. case SND_RME_DOMAIN_AES:
  2058. case SND_RME_DOMAIN_SPDIF:
  2059. default:
  2060. uinfo->value.integer.min = 0;
  2061. uinfo->value.integer.max = 200000;
  2062. }
  2063. uinfo->value.integer.step = 0;
  2064. return 0;
  2065. }
  2066. static int snd_rme_sync_state_info(struct snd_kcontrol *kcontrol,
  2067. struct snd_ctl_elem_info *uinfo)
  2068. {
  2069. static const char *const sync_states[] = {
  2070. "No Lock", "Lock", "Sync"
  2071. };
  2072. return snd_ctl_enum_info(uinfo, 1,
  2073. ARRAY_SIZE(sync_states), sync_states);
  2074. }
  2075. static int snd_rme_spdif_if_info(struct snd_kcontrol *kcontrol,
  2076. struct snd_ctl_elem_info *uinfo)
  2077. {
  2078. static const char *const spdif_if[] = {
  2079. "Coaxial", "Optical"
  2080. };
  2081. return snd_ctl_enum_info(uinfo, 1,
  2082. ARRAY_SIZE(spdif_if), spdif_if);
  2083. }
  2084. static int snd_rme_spdif_format_info(struct snd_kcontrol *kcontrol,
  2085. struct snd_ctl_elem_info *uinfo)
  2086. {
  2087. static const char *const optical_type[] = {
  2088. "Consumer", "Professional"
  2089. };
  2090. return snd_ctl_enum_info(uinfo, 1,
  2091. ARRAY_SIZE(optical_type), optical_type);
  2092. }
  2093. static int snd_rme_sync_source_info(struct snd_kcontrol *kcontrol,
  2094. struct snd_ctl_elem_info *uinfo)
  2095. {
  2096. static const char *const sync_sources[] = {
  2097. "Internal", "AES", "SPDIF", "Internal"
  2098. };
  2099. return snd_ctl_enum_info(uinfo, 1,
  2100. ARRAY_SIZE(sync_sources), sync_sources);
  2101. }
  2102. static const struct snd_kcontrol_new snd_rme_controls[] = {
  2103. {
  2104. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  2105. .name = "AES Rate",
  2106. .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
  2107. .info = snd_rme_rate_info,
  2108. .get = snd_rme_rate_get,
  2109. .private_value = SND_RME_DOMAIN_AES
  2110. },
  2111. {
  2112. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  2113. .name = "AES Sync",
  2114. .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
  2115. .info = snd_rme_sync_state_info,
  2116. .get = snd_rme_sync_state_get,
  2117. .private_value = SND_RME_DOMAIN_AES
  2118. },
  2119. {
  2120. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  2121. .name = "SPDIF Rate",
  2122. .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
  2123. .info = snd_rme_rate_info,
  2124. .get = snd_rme_rate_get,
  2125. .private_value = SND_RME_DOMAIN_SPDIF
  2126. },
  2127. {
  2128. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  2129. .name = "SPDIF Sync",
  2130. .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
  2131. .info = snd_rme_sync_state_info,
  2132. .get = snd_rme_sync_state_get,
  2133. .private_value = SND_RME_DOMAIN_SPDIF
  2134. },
  2135. {
  2136. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  2137. .name = "SPDIF Interface",
  2138. .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
  2139. .info = snd_rme_spdif_if_info,
  2140. .get = snd_rme_spdif_if_get,
  2141. },
  2142. {
  2143. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  2144. .name = "SPDIF Format",
  2145. .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
  2146. .info = snd_rme_spdif_format_info,
  2147. .get = snd_rme_spdif_format_get,
  2148. },
  2149. {
  2150. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  2151. .name = "Sync Source",
  2152. .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
  2153. .info = snd_rme_sync_source_info,
  2154. .get = snd_rme_sync_source_get
  2155. },
  2156. {
  2157. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  2158. .name = "System Rate",
  2159. .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
  2160. .info = snd_rme_rate_info,
  2161. .get = snd_rme_rate_get,
  2162. .private_value = SND_RME_DOMAIN_SYSTEM
  2163. },
  2164. {
  2165. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  2166. .name = "Current Frequency",
  2167. .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
  2168. .info = snd_rme_rate_info,
  2169. .get = snd_rme_current_freq_get
  2170. }
  2171. };
  2172. static int snd_rme_controls_create(struct usb_mixer_interface *mixer)
  2173. {
  2174. int err, i;
  2175. for (i = 0; i < ARRAY_SIZE(snd_rme_controls); ++i) {
  2176. err = add_single_ctl_with_resume(mixer, 0,
  2177. NULL,
  2178. &snd_rme_controls[i],
  2179. NULL);
  2180. if (err < 0)
  2181. return err;
  2182. }
  2183. return 0;
  2184. }
  2185. /*
  2186. * RME Babyface Pro (FS)
  2187. *
  2188. * These devices exposes a couple of DSP functions via request to EP0.
  2189. * Switches are available via control registers, while routing is controlled
  2190. * by controlling the volume on each possible crossing point.
  2191. * Volume control is linear, from -inf (dec. 0) to +6dB (dec. 65536) with
  2192. * 0dB being at dec. 32768.
  2193. */
  2194. enum {
  2195. SND_BBFPRO_CTL_REG1 = 0,
  2196. SND_BBFPRO_CTL_REG2
  2197. };
  2198. #define SND_BBFPRO_CTL_REG_MASK 1
  2199. #define SND_BBFPRO_CTL_IDX_MASK 0xff
  2200. #define SND_BBFPRO_CTL_IDX_SHIFT 1
  2201. #define SND_BBFPRO_CTL_VAL_MASK 1
  2202. #define SND_BBFPRO_CTL_VAL_SHIFT 9
  2203. #define SND_BBFPRO_CTL_REG1_CLK_MASTER 0
  2204. #define SND_BBFPRO_CTL_REG1_CLK_OPTICAL 1
  2205. #define SND_BBFPRO_CTL_REG1_SPDIF_PRO 7
  2206. #define SND_BBFPRO_CTL_REG1_SPDIF_EMPH 8
  2207. #define SND_BBFPRO_CTL_REG1_SPDIF_OPTICAL 10
  2208. #define SND_BBFPRO_CTL_REG2_48V_AN1 0
  2209. #define SND_BBFPRO_CTL_REG2_48V_AN2 1
  2210. #define SND_BBFPRO_CTL_REG2_SENS_IN3 2
  2211. #define SND_BBFPRO_CTL_REG2_SENS_IN4 3
  2212. #define SND_BBFPRO_CTL_REG2_PAD_AN1 4
  2213. #define SND_BBFPRO_CTL_REG2_PAD_AN2 5
  2214. #define SND_BBFPRO_MIXER_IDX_MASK 0x1ff
  2215. #define SND_BBFPRO_MIXER_VAL_MASK 0x3ffff
  2216. #define SND_BBFPRO_MIXER_VAL_SHIFT 9
  2217. #define SND_BBFPRO_MIXER_VAL_MIN 0 // -inf
  2218. #define SND_BBFPRO_MIXER_VAL_MAX 65536 // +6dB
  2219. #define SND_BBFPRO_USBREQ_CTL_REG1 0x10
  2220. #define SND_BBFPRO_USBREQ_CTL_REG2 0x17
  2221. #define SND_BBFPRO_USBREQ_MIXER 0x12
  2222. static int snd_bbfpro_ctl_update(struct usb_mixer_interface *mixer, u8 reg,
  2223. u8 index, u8 value)
  2224. {
  2225. int err;
  2226. u16 usb_req, usb_idx, usb_val;
  2227. struct snd_usb_audio *chip = mixer->chip;
  2228. err = snd_usb_lock_shutdown(chip);
  2229. if (err < 0)
  2230. return err;
  2231. if (reg == SND_BBFPRO_CTL_REG1) {
  2232. usb_req = SND_BBFPRO_USBREQ_CTL_REG1;
  2233. if (index == SND_BBFPRO_CTL_REG1_CLK_OPTICAL) {
  2234. usb_idx = 3;
  2235. usb_val = value ? 3 : 0;
  2236. } else {
  2237. usb_idx = 1 << index;
  2238. usb_val = value ? usb_idx : 0;
  2239. }
  2240. } else {
  2241. usb_req = SND_BBFPRO_USBREQ_CTL_REG2;
  2242. usb_idx = 1 << index;
  2243. usb_val = value ? usb_idx : 0;
  2244. }
  2245. err = snd_usb_ctl_msg(chip->dev,
  2246. usb_sndctrlpipe(chip->dev, 0), usb_req,
  2247. USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
  2248. usb_val, usb_idx, NULL, 0);
  2249. snd_usb_unlock_shutdown(chip);
  2250. return err;
  2251. }
  2252. static int snd_bbfpro_ctl_get(struct snd_kcontrol *kcontrol,
  2253. struct snd_ctl_elem_value *ucontrol)
  2254. {
  2255. u8 reg, idx, val;
  2256. int pv;
  2257. pv = kcontrol->private_value;
  2258. reg = pv & SND_BBFPRO_CTL_REG_MASK;
  2259. idx = (pv >> SND_BBFPRO_CTL_IDX_SHIFT) & SND_BBFPRO_CTL_IDX_MASK;
  2260. val = kcontrol->private_value >> SND_BBFPRO_CTL_VAL_SHIFT;
  2261. if ((reg == SND_BBFPRO_CTL_REG1 &&
  2262. idx == SND_BBFPRO_CTL_REG1_CLK_OPTICAL) ||
  2263. (reg == SND_BBFPRO_CTL_REG2 &&
  2264. (idx == SND_BBFPRO_CTL_REG2_SENS_IN3 ||
  2265. idx == SND_BBFPRO_CTL_REG2_SENS_IN4))) {
  2266. ucontrol->value.enumerated.item[0] = val;
  2267. } else {
  2268. ucontrol->value.integer.value[0] = val;
  2269. }
  2270. return 0;
  2271. }
  2272. static int snd_bbfpro_ctl_info(struct snd_kcontrol *kcontrol,
  2273. struct snd_ctl_elem_info *uinfo)
  2274. {
  2275. u8 reg, idx;
  2276. int pv;
  2277. pv = kcontrol->private_value;
  2278. reg = pv & SND_BBFPRO_CTL_REG_MASK;
  2279. idx = (pv >> SND_BBFPRO_CTL_IDX_SHIFT) & SND_BBFPRO_CTL_IDX_MASK;
  2280. if (reg == SND_BBFPRO_CTL_REG1 &&
  2281. idx == SND_BBFPRO_CTL_REG1_CLK_OPTICAL) {
  2282. static const char * const texts[2] = {
  2283. "AutoSync",
  2284. "Internal"
  2285. };
  2286. return snd_ctl_enum_info(uinfo, 1, 2, texts);
  2287. } else if (reg == SND_BBFPRO_CTL_REG2 &&
  2288. (idx == SND_BBFPRO_CTL_REG2_SENS_IN3 ||
  2289. idx == SND_BBFPRO_CTL_REG2_SENS_IN4)) {
  2290. static const char * const texts[2] = {
  2291. "-10dBV",
  2292. "+4dBu"
  2293. };
  2294. return snd_ctl_enum_info(uinfo, 1, 2, texts);
  2295. }
  2296. uinfo->count = 1;
  2297. uinfo->value.integer.min = 0;
  2298. uinfo->value.integer.max = 1;
  2299. uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
  2300. return 0;
  2301. }
  2302. static int snd_bbfpro_ctl_put(struct snd_kcontrol *kcontrol,
  2303. struct snd_ctl_elem_value *ucontrol)
  2304. {
  2305. int err;
  2306. u8 reg, idx;
  2307. int old_value, pv, val;
  2308. struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol);
  2309. struct usb_mixer_interface *mixer = list->mixer;
  2310. pv = kcontrol->private_value;
  2311. reg = pv & SND_BBFPRO_CTL_REG_MASK;
  2312. idx = (pv >> SND_BBFPRO_CTL_IDX_SHIFT) & SND_BBFPRO_CTL_IDX_MASK;
  2313. old_value = (pv >> SND_BBFPRO_CTL_VAL_SHIFT) & SND_BBFPRO_CTL_VAL_MASK;
  2314. if ((reg == SND_BBFPRO_CTL_REG1 &&
  2315. idx == SND_BBFPRO_CTL_REG1_CLK_OPTICAL) ||
  2316. (reg == SND_BBFPRO_CTL_REG2 &&
  2317. (idx == SND_BBFPRO_CTL_REG2_SENS_IN3 ||
  2318. idx == SND_BBFPRO_CTL_REG2_SENS_IN4))) {
  2319. val = ucontrol->value.enumerated.item[0];
  2320. } else {
  2321. val = ucontrol->value.integer.value[0];
  2322. }
  2323. if (val > 1)
  2324. return -EINVAL;
  2325. if (val == old_value)
  2326. return 0;
  2327. kcontrol->private_value = reg
  2328. | ((idx & SND_BBFPRO_CTL_IDX_MASK) << SND_BBFPRO_CTL_IDX_SHIFT)
  2329. | ((val & SND_BBFPRO_CTL_VAL_MASK) << SND_BBFPRO_CTL_VAL_SHIFT);
  2330. err = snd_bbfpro_ctl_update(mixer, reg, idx, val);
  2331. return err < 0 ? err : 1;
  2332. }
  2333. static int snd_bbfpro_ctl_resume(struct usb_mixer_elem_list *list)
  2334. {
  2335. u8 reg, idx;
  2336. int value, pv;
  2337. pv = list->kctl->private_value;
  2338. reg = pv & SND_BBFPRO_CTL_REG_MASK;
  2339. idx = (pv >> SND_BBFPRO_CTL_IDX_SHIFT) & SND_BBFPRO_CTL_IDX_MASK;
  2340. value = (pv >> SND_BBFPRO_CTL_VAL_SHIFT) & SND_BBFPRO_CTL_VAL_MASK;
  2341. return snd_bbfpro_ctl_update(list->mixer, reg, idx, value);
  2342. }
  2343. static int snd_bbfpro_vol_update(struct usb_mixer_interface *mixer, u16 index,
  2344. u32 value)
  2345. {
  2346. struct snd_usb_audio *chip = mixer->chip;
  2347. int err;
  2348. u16 idx;
  2349. u16 usb_idx, usb_val;
  2350. u32 v;
  2351. err = snd_usb_lock_shutdown(chip);
  2352. if (err < 0)
  2353. return err;
  2354. idx = index & SND_BBFPRO_MIXER_IDX_MASK;
  2355. // 18 bit linear volume, split so 2 bits end up in index.
  2356. v = value & SND_BBFPRO_MIXER_VAL_MASK;
  2357. usb_idx = idx | (v & 0x3) << 14;
  2358. usb_val = (v >> 2) & 0xffff;
  2359. err = snd_usb_ctl_msg(chip->dev,
  2360. usb_sndctrlpipe(chip->dev, 0),
  2361. SND_BBFPRO_USBREQ_MIXER,
  2362. USB_DIR_OUT | USB_TYPE_VENDOR |
  2363. USB_RECIP_DEVICE,
  2364. usb_val, usb_idx, NULL, 0);
  2365. snd_usb_unlock_shutdown(chip);
  2366. return err;
  2367. }
  2368. static int snd_bbfpro_vol_get(struct snd_kcontrol *kcontrol,
  2369. struct snd_ctl_elem_value *ucontrol)
  2370. {
  2371. ucontrol->value.integer.value[0] =
  2372. kcontrol->private_value >> SND_BBFPRO_MIXER_VAL_SHIFT;
  2373. return 0;
  2374. }
  2375. static int snd_bbfpro_vol_info(struct snd_kcontrol *kcontrol,
  2376. struct snd_ctl_elem_info *uinfo)
  2377. {
  2378. uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
  2379. uinfo->count = 1;
  2380. uinfo->value.integer.min = SND_BBFPRO_MIXER_VAL_MIN;
  2381. uinfo->value.integer.max = SND_BBFPRO_MIXER_VAL_MAX;
  2382. return 0;
  2383. }
  2384. static int snd_bbfpro_vol_put(struct snd_kcontrol *kcontrol,
  2385. struct snd_ctl_elem_value *ucontrol)
  2386. {
  2387. int err;
  2388. u16 idx;
  2389. u32 new_val, old_value, uvalue;
  2390. struct usb_mixer_elem_list *list = snd_kcontrol_chip(kcontrol);
  2391. struct usb_mixer_interface *mixer = list->mixer;
  2392. uvalue = ucontrol->value.integer.value[0];
  2393. idx = kcontrol->private_value & SND_BBFPRO_MIXER_IDX_MASK;
  2394. old_value = kcontrol->private_value >> SND_BBFPRO_MIXER_VAL_SHIFT;
  2395. if (uvalue > SND_BBFPRO_MIXER_VAL_MAX)
  2396. return -EINVAL;
  2397. if (uvalue == old_value)
  2398. return 0;
  2399. new_val = uvalue & SND_BBFPRO_MIXER_VAL_MASK;
  2400. kcontrol->private_value = idx
  2401. | (new_val << SND_BBFPRO_MIXER_VAL_SHIFT);
  2402. err = snd_bbfpro_vol_update(mixer, idx, new_val);
  2403. return err < 0 ? err : 1;
  2404. }
  2405. static int snd_bbfpro_vol_resume(struct usb_mixer_elem_list *list)
  2406. {
  2407. int pv = list->kctl->private_value;
  2408. u16 idx = pv & SND_BBFPRO_MIXER_IDX_MASK;
  2409. u32 val = (pv >> SND_BBFPRO_MIXER_VAL_SHIFT)
  2410. & SND_BBFPRO_MIXER_VAL_MASK;
  2411. return snd_bbfpro_vol_update(list->mixer, idx, val);
  2412. }
  2413. // Predfine elements
  2414. static const struct snd_kcontrol_new snd_bbfpro_ctl_control = {
  2415. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  2416. .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
  2417. .index = 0,
  2418. .info = snd_bbfpro_ctl_info,
  2419. .get = snd_bbfpro_ctl_get,
  2420. .put = snd_bbfpro_ctl_put
  2421. };
  2422. static const struct snd_kcontrol_new snd_bbfpro_vol_control = {
  2423. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  2424. .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
  2425. .index = 0,
  2426. .info = snd_bbfpro_vol_info,
  2427. .get = snd_bbfpro_vol_get,
  2428. .put = snd_bbfpro_vol_put
  2429. };
  2430. static int snd_bbfpro_ctl_add(struct usb_mixer_interface *mixer, u8 reg,
  2431. u8 index, char *name)
  2432. {
  2433. struct snd_kcontrol_new knew = snd_bbfpro_ctl_control;
  2434. knew.name = name;
  2435. knew.private_value = (reg & SND_BBFPRO_CTL_REG_MASK)
  2436. | ((index & SND_BBFPRO_CTL_IDX_MASK)
  2437. << SND_BBFPRO_CTL_IDX_SHIFT);
  2438. return add_single_ctl_with_resume(mixer, 0, snd_bbfpro_ctl_resume,
  2439. &knew, NULL);
  2440. }
  2441. static int snd_bbfpro_vol_add(struct usb_mixer_interface *mixer, u16 index,
  2442. char *name)
  2443. {
  2444. struct snd_kcontrol_new knew = snd_bbfpro_vol_control;
  2445. knew.name = name;
  2446. knew.private_value = index & SND_BBFPRO_MIXER_IDX_MASK;
  2447. return add_single_ctl_with_resume(mixer, 0, snd_bbfpro_vol_resume,
  2448. &knew, NULL);
  2449. }
  2450. static int snd_bbfpro_controls_create(struct usb_mixer_interface *mixer)
  2451. {
  2452. int err, i, o;
  2453. char name[48];
  2454. static const char * const input[] = {
  2455. "AN1", "AN2", "IN3", "IN4", "AS1", "AS2", "ADAT3",
  2456. "ADAT4", "ADAT5", "ADAT6", "ADAT7", "ADAT8"};
  2457. static const char * const output[] = {
  2458. "AN1", "AN2", "PH3", "PH4", "AS1", "AS2", "ADAT3", "ADAT4",
  2459. "ADAT5", "ADAT6", "ADAT7", "ADAT8"};
  2460. for (o = 0 ; o < 12 ; ++o) {
  2461. for (i = 0 ; i < 12 ; ++i) {
  2462. // Line routing
  2463. snprintf(name, sizeof(name),
  2464. "%s-%s-%s Playback Volume",
  2465. (i < 2 ? "Mic" : "Line"),
  2466. input[i], output[o]);
  2467. err = snd_bbfpro_vol_add(mixer, (26 * o + i), name);
  2468. if (err < 0)
  2469. return err;
  2470. // PCM routing... yes, it is output remapping
  2471. snprintf(name, sizeof(name),
  2472. "PCM-%s-%s Playback Volume",
  2473. output[i], output[o]);
  2474. err = snd_bbfpro_vol_add(mixer, (26 * o + 12 + i),
  2475. name);
  2476. if (err < 0)
  2477. return err;
  2478. }
  2479. }
  2480. // Control Reg 1
  2481. err = snd_bbfpro_ctl_add(mixer, SND_BBFPRO_CTL_REG1,
  2482. SND_BBFPRO_CTL_REG1_CLK_OPTICAL,
  2483. "Sample Clock Source");
  2484. if (err < 0)
  2485. return err;
  2486. err = snd_bbfpro_ctl_add(mixer, SND_BBFPRO_CTL_REG1,
  2487. SND_BBFPRO_CTL_REG1_SPDIF_PRO,
  2488. "IEC958 Pro Mask");
  2489. if (err < 0)
  2490. return err;
  2491. err = snd_bbfpro_ctl_add(mixer, SND_BBFPRO_CTL_REG1,
  2492. SND_BBFPRO_CTL_REG1_SPDIF_EMPH,
  2493. "IEC958 Emphasis");
  2494. if (err < 0)
  2495. return err;
  2496. err = snd_bbfpro_ctl_add(mixer, SND_BBFPRO_CTL_REG1,
  2497. SND_BBFPRO_CTL_REG1_SPDIF_OPTICAL,
  2498. "IEC958 Switch");
  2499. if (err < 0)
  2500. return err;
  2501. // Control Reg 2
  2502. err = snd_bbfpro_ctl_add(mixer, SND_BBFPRO_CTL_REG2,
  2503. SND_BBFPRO_CTL_REG2_48V_AN1,
  2504. "Mic-AN1 48V");
  2505. if (err < 0)
  2506. return err;
  2507. err = snd_bbfpro_ctl_add(mixer, SND_BBFPRO_CTL_REG2,
  2508. SND_BBFPRO_CTL_REG2_48V_AN2,
  2509. "Mic-AN2 48V");
  2510. if (err < 0)
  2511. return err;
  2512. err = snd_bbfpro_ctl_add(mixer, SND_BBFPRO_CTL_REG2,
  2513. SND_BBFPRO_CTL_REG2_SENS_IN3,
  2514. "Line-IN3 Sens.");
  2515. if (err < 0)
  2516. return err;
  2517. err = snd_bbfpro_ctl_add(mixer, SND_BBFPRO_CTL_REG2,
  2518. SND_BBFPRO_CTL_REG2_SENS_IN4,
  2519. "Line-IN4 Sens.");
  2520. if (err < 0)
  2521. return err;
  2522. err = snd_bbfpro_ctl_add(mixer, SND_BBFPRO_CTL_REG2,
  2523. SND_BBFPRO_CTL_REG2_PAD_AN1,
  2524. "Mic-AN1 PAD");
  2525. if (err < 0)
  2526. return err;
  2527. err = snd_bbfpro_ctl_add(mixer, SND_BBFPRO_CTL_REG2,
  2528. SND_BBFPRO_CTL_REG2_PAD_AN2,
  2529. "Mic-AN2 PAD");
  2530. if (err < 0)
  2531. return err;
  2532. return 0;
  2533. }
  2534. /*
  2535. * Pioneer DJ DJM Mixers
  2536. *
  2537. * These devices generally have options for soft-switching the playback and
  2538. * capture sources in addition to the recording level. Although different
  2539. * devices have different configurations, there seems to be canonical values
  2540. * for specific capture/playback types: See the definitions of these below.
  2541. *
  2542. * The wValue is masked with the stereo channel number. e.g. Setting Ch2 to
  2543. * capture phono would be 0x0203. Capture, playback and capture level have
  2544. * different wIndexes.
  2545. */
  2546. // Capture types
  2547. #define SND_DJM_CAP_LINE 0x00
  2548. #define SND_DJM_CAP_CDLINE 0x01
  2549. #define SND_DJM_CAP_DIGITAL 0x02
  2550. #define SND_DJM_CAP_PHONO 0x03
  2551. #define SND_DJM_CAP_PFADER 0x06
  2552. #define SND_DJM_CAP_XFADERA 0x07
  2553. #define SND_DJM_CAP_XFADERB 0x08
  2554. #define SND_DJM_CAP_MIC 0x09
  2555. #define SND_DJM_CAP_AUX 0x0d
  2556. #define SND_DJM_CAP_RECOUT 0x0a
  2557. #define SND_DJM_CAP_NONE 0x0f
  2558. #define SND_DJM_CAP_CH1PFADER 0x11
  2559. #define SND_DJM_CAP_CH2PFADER 0x12
  2560. #define SND_DJM_CAP_CH3PFADER 0x13
  2561. #define SND_DJM_CAP_CH4PFADER 0x14
  2562. // Playback types
  2563. #define SND_DJM_PB_CH1 0x00
  2564. #define SND_DJM_PB_CH2 0x01
  2565. #define SND_DJM_PB_AUX 0x04
  2566. #define SND_DJM_WINDEX_CAP 0x8002
  2567. #define SND_DJM_WINDEX_CAPLVL 0x8003
  2568. #define SND_DJM_WINDEX_PB 0x8016
  2569. // kcontrol->private_value layout
  2570. #define SND_DJM_VALUE_MASK 0x0000ffff
  2571. #define SND_DJM_GROUP_MASK 0x00ff0000
  2572. #define SND_DJM_DEVICE_MASK 0xff000000
  2573. #define SND_DJM_GROUP_SHIFT 16
  2574. #define SND_DJM_DEVICE_SHIFT 24
  2575. // device table index
  2576. // used for the snd_djm_devices table, so please update accordingly
  2577. #define SND_DJM_250MK2_IDX 0x0
  2578. #define SND_DJM_750_IDX 0x1
  2579. #define SND_DJM_850_IDX 0x2
  2580. #define SND_DJM_900NXS2_IDX 0x3
  2581. #define SND_DJM_750MK2_IDX 0x4
  2582. #define SND_DJM_450_IDX 0x5
  2583. #define SND_DJM_CTL(_name, suffix, _default_value, _windex) { \
  2584. .name = _name, \
  2585. .options = snd_djm_opts_##suffix, \
  2586. .noptions = ARRAY_SIZE(snd_djm_opts_##suffix), \
  2587. .default_value = _default_value, \
  2588. .wIndex = _windex }
  2589. #define SND_DJM_DEVICE(suffix) { \
  2590. .controls = snd_djm_ctls_##suffix, \
  2591. .ncontrols = ARRAY_SIZE(snd_djm_ctls_##suffix) }
  2592. struct snd_djm_device {
  2593. const char *name;
  2594. const struct snd_djm_ctl *controls;
  2595. size_t ncontrols;
  2596. };
  2597. struct snd_djm_ctl {
  2598. const char *name;
  2599. const u16 *options;
  2600. size_t noptions;
  2601. u16 default_value;
  2602. u16 wIndex;
  2603. };
  2604. static const char *snd_djm_get_label_caplevel(u16 wvalue)
  2605. {
  2606. switch (wvalue) {
  2607. case 0x0000: return "-19dB";
  2608. case 0x0100: return "-15dB";
  2609. case 0x0200: return "-10dB";
  2610. case 0x0300: return "-5dB";
  2611. default: return NULL;
  2612. }
  2613. };
  2614. static const char *snd_djm_get_label_cap_common(u16 wvalue)
  2615. {
  2616. switch (wvalue & 0x00ff) {
  2617. case SND_DJM_CAP_LINE: return "Control Tone LINE";
  2618. case SND_DJM_CAP_CDLINE: return "Control Tone CD/LINE";
  2619. case SND_DJM_CAP_DIGITAL: return "Control Tone DIGITAL";
  2620. case SND_DJM_CAP_PHONO: return "Control Tone PHONO";
  2621. case SND_DJM_CAP_PFADER: return "Post Fader";
  2622. case SND_DJM_CAP_XFADERA: return "Cross Fader A";
  2623. case SND_DJM_CAP_XFADERB: return "Cross Fader B";
  2624. case SND_DJM_CAP_MIC: return "Mic";
  2625. case SND_DJM_CAP_RECOUT: return "Rec Out";
  2626. case SND_DJM_CAP_AUX: return "Aux";
  2627. case SND_DJM_CAP_NONE: return "None";
  2628. case SND_DJM_CAP_CH1PFADER: return "Post Fader Ch1";
  2629. case SND_DJM_CAP_CH2PFADER: return "Post Fader Ch2";
  2630. case SND_DJM_CAP_CH3PFADER: return "Post Fader Ch3";
  2631. case SND_DJM_CAP_CH4PFADER: return "Post Fader Ch4";
  2632. default: return NULL;
  2633. }
  2634. };
  2635. // The DJM-850 has different values for CD/LINE and LINE capture
  2636. // control options than the other DJM declared in this file.
  2637. static const char *snd_djm_get_label_cap_850(u16 wvalue)
  2638. {
  2639. switch (wvalue & 0x00ff) {
  2640. case 0x00: return "Control Tone CD/LINE";
  2641. case 0x01: return "Control Tone LINE";
  2642. default: return snd_djm_get_label_cap_common(wvalue);
  2643. }
  2644. };
  2645. static const char *snd_djm_get_label_cap(u8 device_idx, u16 wvalue)
  2646. {
  2647. switch (device_idx) {
  2648. case SND_DJM_850_IDX: return snd_djm_get_label_cap_850(wvalue);
  2649. default: return snd_djm_get_label_cap_common(wvalue);
  2650. }
  2651. };
  2652. static const char *snd_djm_get_label_pb(u16 wvalue)
  2653. {
  2654. switch (wvalue & 0x00ff) {
  2655. case SND_DJM_PB_CH1: return "Ch1";
  2656. case SND_DJM_PB_CH2: return "Ch2";
  2657. case SND_DJM_PB_AUX: return "Aux";
  2658. default: return NULL;
  2659. }
  2660. };
  2661. static const char *snd_djm_get_label(u8 device_idx, u16 wvalue, u16 windex)
  2662. {
  2663. switch (windex) {
  2664. case SND_DJM_WINDEX_CAPLVL: return snd_djm_get_label_caplevel(wvalue);
  2665. case SND_DJM_WINDEX_CAP: return snd_djm_get_label_cap(device_idx, wvalue);
  2666. case SND_DJM_WINDEX_PB: return snd_djm_get_label_pb(wvalue);
  2667. default: return NULL;
  2668. }
  2669. };
  2670. // common DJM capture level option values
  2671. static const u16 snd_djm_opts_cap_level[] = {
  2672. 0x0000, 0x0100, 0x0200, 0x0300 };
  2673. // DJM-250MK2
  2674. static const u16 snd_djm_opts_250mk2_cap1[] = {
  2675. 0x0103, 0x0100, 0x0106, 0x0107, 0x0108, 0x0109, 0x010d, 0x010a };
  2676. static const u16 snd_djm_opts_250mk2_cap2[] = {
  2677. 0x0203, 0x0200, 0x0206, 0x0207, 0x0208, 0x0209, 0x020d, 0x020a };
  2678. static const u16 snd_djm_opts_250mk2_cap3[] = {
  2679. 0x030a, 0x0311, 0x0312, 0x0307, 0x0308, 0x0309, 0x030d };
  2680. static const u16 snd_djm_opts_250mk2_pb1[] = { 0x0100, 0x0101, 0x0104 };
  2681. static const u16 snd_djm_opts_250mk2_pb2[] = { 0x0200, 0x0201, 0x0204 };
  2682. static const u16 snd_djm_opts_250mk2_pb3[] = { 0x0300, 0x0301, 0x0304 };
  2683. static const struct snd_djm_ctl snd_djm_ctls_250mk2[] = {
  2684. SND_DJM_CTL("Capture Level", cap_level, 0, SND_DJM_WINDEX_CAPLVL),
  2685. SND_DJM_CTL("Ch1 Input", 250mk2_cap1, 2, SND_DJM_WINDEX_CAP),
  2686. SND_DJM_CTL("Ch2 Input", 250mk2_cap2, 2, SND_DJM_WINDEX_CAP),
  2687. SND_DJM_CTL("Ch3 Input", 250mk2_cap3, 0, SND_DJM_WINDEX_CAP),
  2688. SND_DJM_CTL("Ch1 Output", 250mk2_pb1, 0, SND_DJM_WINDEX_PB),
  2689. SND_DJM_CTL("Ch2 Output", 250mk2_pb2, 1, SND_DJM_WINDEX_PB),
  2690. SND_DJM_CTL("Ch3 Output", 250mk2_pb3, 2, SND_DJM_WINDEX_PB)
  2691. };
  2692. // DJM-450
  2693. static const u16 snd_djm_opts_450_cap1[] = {
  2694. 0x0103, 0x0100, 0x0106, 0x0107, 0x0108, 0x0109, 0x010d, 0x010a };
  2695. static const u16 snd_djm_opts_450_cap2[] = {
  2696. 0x0203, 0x0200, 0x0206, 0x0207, 0x0208, 0x0209, 0x020d, 0x020a };
  2697. static const u16 snd_djm_opts_450_cap3[] = {
  2698. 0x030a, 0x0311, 0x0312, 0x0307, 0x0308, 0x0309, 0x030d };
  2699. static const u16 snd_djm_opts_450_pb1[] = { 0x0100, 0x0101, 0x0104 };
  2700. static const u16 snd_djm_opts_450_pb2[] = { 0x0200, 0x0201, 0x0204 };
  2701. static const u16 snd_djm_opts_450_pb3[] = { 0x0300, 0x0301, 0x0304 };
  2702. static const struct snd_djm_ctl snd_djm_ctls_450[] = {
  2703. SND_DJM_CTL("Capture Level", cap_level, 0, SND_DJM_WINDEX_CAPLVL),
  2704. SND_DJM_CTL("Ch1 Input", 450_cap1, 2, SND_DJM_WINDEX_CAP),
  2705. SND_DJM_CTL("Ch2 Input", 450_cap2, 2, SND_DJM_WINDEX_CAP),
  2706. SND_DJM_CTL("Ch3 Input", 450_cap3, 0, SND_DJM_WINDEX_CAP),
  2707. SND_DJM_CTL("Ch1 Output", 450_pb1, 0, SND_DJM_WINDEX_PB),
  2708. SND_DJM_CTL("Ch2 Output", 450_pb2, 1, SND_DJM_WINDEX_PB),
  2709. SND_DJM_CTL("Ch3 Output", 450_pb3, 2, SND_DJM_WINDEX_PB)
  2710. };
  2711. // DJM-750
  2712. static const u16 snd_djm_opts_750_cap1[] = {
  2713. 0x0101, 0x0103, 0x0106, 0x0107, 0x0108, 0x0109, 0x010a, 0x010f };
  2714. static const u16 snd_djm_opts_750_cap2[] = {
  2715. 0x0200, 0x0201, 0x0206, 0x0207, 0x0208, 0x0209, 0x020a, 0x020f };
  2716. static const u16 snd_djm_opts_750_cap3[] = {
  2717. 0x0300, 0x0301, 0x0306, 0x0307, 0x0308, 0x0309, 0x030a, 0x030f };
  2718. static const u16 snd_djm_opts_750_cap4[] = {
  2719. 0x0401, 0x0403, 0x0406, 0x0407, 0x0408, 0x0409, 0x040a, 0x040f };
  2720. static const struct snd_djm_ctl snd_djm_ctls_750[] = {
  2721. SND_DJM_CTL("Capture Level", cap_level, 0, SND_DJM_WINDEX_CAPLVL),
  2722. SND_DJM_CTL("Ch1 Input", 750_cap1, 2, SND_DJM_WINDEX_CAP),
  2723. SND_DJM_CTL("Ch2 Input", 750_cap2, 2, SND_DJM_WINDEX_CAP),
  2724. SND_DJM_CTL("Ch3 Input", 750_cap3, 0, SND_DJM_WINDEX_CAP),
  2725. SND_DJM_CTL("Ch4 Input", 750_cap4, 0, SND_DJM_WINDEX_CAP)
  2726. };
  2727. // DJM-850
  2728. static const u16 snd_djm_opts_850_cap1[] = {
  2729. 0x0100, 0x0103, 0x0106, 0x0107, 0x0108, 0x0109, 0x010a, 0x010f };
  2730. static const u16 snd_djm_opts_850_cap2[] = {
  2731. 0x0200, 0x0201, 0x0206, 0x0207, 0x0208, 0x0209, 0x020a, 0x020f };
  2732. static const u16 snd_djm_opts_850_cap3[] = {
  2733. 0x0300, 0x0301, 0x0306, 0x0307, 0x0308, 0x0309, 0x030a, 0x030f };
  2734. static const u16 snd_djm_opts_850_cap4[] = {
  2735. 0x0400, 0x0403, 0x0406, 0x0407, 0x0408, 0x0409, 0x040a, 0x040f };
  2736. static const struct snd_djm_ctl snd_djm_ctls_850[] = {
  2737. SND_DJM_CTL("Capture Level", cap_level, 0, SND_DJM_WINDEX_CAPLVL),
  2738. SND_DJM_CTL("Ch1 Input", 850_cap1, 1, SND_DJM_WINDEX_CAP),
  2739. SND_DJM_CTL("Ch2 Input", 850_cap2, 0, SND_DJM_WINDEX_CAP),
  2740. SND_DJM_CTL("Ch3 Input", 850_cap3, 0, SND_DJM_WINDEX_CAP),
  2741. SND_DJM_CTL("Ch4 Input", 850_cap4, 1, SND_DJM_WINDEX_CAP)
  2742. };
  2743. // DJM-900NXS2
  2744. static const u16 snd_djm_opts_900nxs2_cap1[] = {
  2745. 0x0100, 0x0102, 0x0103, 0x0106, 0x0107, 0x0108, 0x0109, 0x010a };
  2746. static const u16 snd_djm_opts_900nxs2_cap2[] = {
  2747. 0x0200, 0x0202, 0x0203, 0x0206, 0x0207, 0x0208, 0x0209, 0x020a };
  2748. static const u16 snd_djm_opts_900nxs2_cap3[] = {
  2749. 0x0300, 0x0302, 0x0303, 0x0306, 0x0307, 0x0308, 0x0309, 0x030a };
  2750. static const u16 snd_djm_opts_900nxs2_cap4[] = {
  2751. 0x0400, 0x0402, 0x0403, 0x0406, 0x0407, 0x0408, 0x0409, 0x040a };
  2752. static const u16 snd_djm_opts_900nxs2_cap5[] = {
  2753. 0x0507, 0x0508, 0x0509, 0x050a, 0x0511, 0x0512, 0x0513, 0x0514 };
  2754. static const struct snd_djm_ctl snd_djm_ctls_900nxs2[] = {
  2755. SND_DJM_CTL("Capture Level", cap_level, 0, SND_DJM_WINDEX_CAPLVL),
  2756. SND_DJM_CTL("Ch1 Input", 900nxs2_cap1, 2, SND_DJM_WINDEX_CAP),
  2757. SND_DJM_CTL("Ch2 Input", 900nxs2_cap2, 2, SND_DJM_WINDEX_CAP),
  2758. SND_DJM_CTL("Ch3 Input", 900nxs2_cap3, 2, SND_DJM_WINDEX_CAP),
  2759. SND_DJM_CTL("Ch4 Input", 900nxs2_cap4, 2, SND_DJM_WINDEX_CAP),
  2760. SND_DJM_CTL("Ch5 Input", 900nxs2_cap5, 3, SND_DJM_WINDEX_CAP)
  2761. };
  2762. // DJM-750MK2
  2763. static const u16 snd_djm_opts_750mk2_cap1[] = {
  2764. 0x0100, 0x0102, 0x0103, 0x0106, 0x0107, 0x0108, 0x0109, 0x010a };
  2765. static const u16 snd_djm_opts_750mk2_cap2[] = {
  2766. 0x0200, 0x0202, 0x0203, 0x0206, 0x0207, 0x0208, 0x0209, 0x020a };
  2767. static const u16 snd_djm_opts_750mk2_cap3[] = {
  2768. 0x0300, 0x0302, 0x0303, 0x0306, 0x0307, 0x0308, 0x0309, 0x030a };
  2769. static const u16 snd_djm_opts_750mk2_cap4[] = {
  2770. 0x0400, 0x0402, 0x0403, 0x0406, 0x0407, 0x0408, 0x0409, 0x040a };
  2771. static const u16 snd_djm_opts_750mk2_cap5[] = {
  2772. 0x0507, 0x0508, 0x0509, 0x050a, 0x0511, 0x0512, 0x0513, 0x0514 };
  2773. static const u16 snd_djm_opts_750mk2_pb1[] = { 0x0100, 0x0101, 0x0104 };
  2774. static const u16 snd_djm_opts_750mk2_pb2[] = { 0x0200, 0x0201, 0x0204 };
  2775. static const u16 snd_djm_opts_750mk2_pb3[] = { 0x0300, 0x0301, 0x0304 };
  2776. static const struct snd_djm_ctl snd_djm_ctls_750mk2[] = {
  2777. SND_DJM_CTL("Capture Level", cap_level, 0, SND_DJM_WINDEX_CAPLVL),
  2778. SND_DJM_CTL("Ch1 Input", 750mk2_cap1, 2, SND_DJM_WINDEX_CAP),
  2779. SND_DJM_CTL("Ch2 Input", 750mk2_cap2, 2, SND_DJM_WINDEX_CAP),
  2780. SND_DJM_CTL("Ch3 Input", 750mk2_cap3, 2, SND_DJM_WINDEX_CAP),
  2781. SND_DJM_CTL("Ch4 Input", 750mk2_cap4, 2, SND_DJM_WINDEX_CAP),
  2782. SND_DJM_CTL("Ch5 Input", 750mk2_cap5, 3, SND_DJM_WINDEX_CAP),
  2783. SND_DJM_CTL("Ch1 Output", 750mk2_pb1, 0, SND_DJM_WINDEX_PB),
  2784. SND_DJM_CTL("Ch2 Output", 750mk2_pb2, 1, SND_DJM_WINDEX_PB),
  2785. SND_DJM_CTL("Ch3 Output", 750mk2_pb3, 2, SND_DJM_WINDEX_PB)
  2786. };
  2787. static const struct snd_djm_device snd_djm_devices[] = {
  2788. [SND_DJM_250MK2_IDX] = SND_DJM_DEVICE(250mk2),
  2789. [SND_DJM_750_IDX] = SND_DJM_DEVICE(750),
  2790. [SND_DJM_850_IDX] = SND_DJM_DEVICE(850),
  2791. [SND_DJM_900NXS2_IDX] = SND_DJM_DEVICE(900nxs2),
  2792. [SND_DJM_750MK2_IDX] = SND_DJM_DEVICE(750mk2),
  2793. [SND_DJM_450_IDX] = SND_DJM_DEVICE(450),
  2794. };
  2795. static int snd_djm_controls_info(struct snd_kcontrol *kctl,
  2796. struct snd_ctl_elem_info *info)
  2797. {
  2798. unsigned long private_value = kctl->private_value;
  2799. u8 device_idx = (private_value & SND_DJM_DEVICE_MASK) >> SND_DJM_DEVICE_SHIFT;
  2800. u8 ctl_idx = (private_value & SND_DJM_GROUP_MASK) >> SND_DJM_GROUP_SHIFT;
  2801. const struct snd_djm_device *device = &snd_djm_devices[device_idx];
  2802. const char *name;
  2803. const struct snd_djm_ctl *ctl;
  2804. size_t noptions;
  2805. if (ctl_idx >= device->ncontrols)
  2806. return -EINVAL;
  2807. ctl = &device->controls[ctl_idx];
  2808. noptions = ctl->noptions;
  2809. if (info->value.enumerated.item >= noptions)
  2810. info->value.enumerated.item = noptions - 1;
  2811. name = snd_djm_get_label(device_idx,
  2812. ctl->options[info->value.enumerated.item],
  2813. ctl->wIndex);
  2814. if (!name)
  2815. return -EINVAL;
  2816. strscpy(info->value.enumerated.name, name, sizeof(info->value.enumerated.name));
  2817. info->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
  2818. info->count = 1;
  2819. info->value.enumerated.items = noptions;
  2820. return 0;
  2821. }
  2822. static int snd_djm_controls_update(struct usb_mixer_interface *mixer,
  2823. u8 device_idx, u8 group, u16 value)
  2824. {
  2825. int err;
  2826. const struct snd_djm_device *device = &snd_djm_devices[device_idx];
  2827. if ((group >= device->ncontrols) || value >= device->controls[group].noptions)
  2828. return -EINVAL;
  2829. err = snd_usb_lock_shutdown(mixer->chip);
  2830. if (err)
  2831. return err;
  2832. err = snd_usb_ctl_msg(
  2833. mixer->chip->dev, usb_sndctrlpipe(mixer->chip->dev, 0),
  2834. USB_REQ_SET_FEATURE,
  2835. USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
  2836. device->controls[group].options[value],
  2837. device->controls[group].wIndex,
  2838. NULL, 0);
  2839. snd_usb_unlock_shutdown(mixer->chip);
  2840. return err;
  2841. }
  2842. static int snd_djm_controls_get(struct snd_kcontrol *kctl,
  2843. struct snd_ctl_elem_value *elem)
  2844. {
  2845. elem->value.enumerated.item[0] = kctl->private_value & SND_DJM_VALUE_MASK;
  2846. return 0;
  2847. }
  2848. static int snd_djm_controls_put(struct snd_kcontrol *kctl, struct snd_ctl_elem_value *elem)
  2849. {
  2850. struct usb_mixer_elem_list *list = snd_kcontrol_chip(kctl);
  2851. struct usb_mixer_interface *mixer = list->mixer;
  2852. unsigned long private_value = kctl->private_value;
  2853. u8 device = (private_value & SND_DJM_DEVICE_MASK) >> SND_DJM_DEVICE_SHIFT;
  2854. u8 group = (private_value & SND_DJM_GROUP_MASK) >> SND_DJM_GROUP_SHIFT;
  2855. u16 value = elem->value.enumerated.item[0];
  2856. kctl->private_value = (((unsigned long)device << SND_DJM_DEVICE_SHIFT) |
  2857. (group << SND_DJM_GROUP_SHIFT) |
  2858. value);
  2859. return snd_djm_controls_update(mixer, device, group, value);
  2860. }
  2861. static int snd_djm_controls_resume(struct usb_mixer_elem_list *list)
  2862. {
  2863. unsigned long private_value = list->kctl->private_value;
  2864. u8 device = (private_value & SND_DJM_DEVICE_MASK) >> SND_DJM_DEVICE_SHIFT;
  2865. u8 group = (private_value & SND_DJM_GROUP_MASK) >> SND_DJM_GROUP_SHIFT;
  2866. u16 value = (private_value & SND_DJM_VALUE_MASK);
  2867. return snd_djm_controls_update(list->mixer, device, group, value);
  2868. }
  2869. static int snd_djm_controls_create(struct usb_mixer_interface *mixer,
  2870. const u8 device_idx)
  2871. {
  2872. int err, i;
  2873. u16 value;
  2874. const struct snd_djm_device *device = &snd_djm_devices[device_idx];
  2875. struct snd_kcontrol_new knew = {
  2876. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  2877. .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
  2878. .index = 0,
  2879. .info = snd_djm_controls_info,
  2880. .get = snd_djm_controls_get,
  2881. .put = snd_djm_controls_put
  2882. };
  2883. for (i = 0; i < device->ncontrols; i++) {
  2884. value = device->controls[i].default_value;
  2885. knew.name = device->controls[i].name;
  2886. knew.private_value = (
  2887. ((unsigned long)device_idx << SND_DJM_DEVICE_SHIFT) |
  2888. (i << SND_DJM_GROUP_SHIFT) |
  2889. value);
  2890. err = snd_djm_controls_update(mixer, device_idx, i, value);
  2891. if (err)
  2892. return err;
  2893. err = add_single_ctl_with_resume(mixer, 0, snd_djm_controls_resume,
  2894. &knew, NULL);
  2895. if (err)
  2896. return err;
  2897. }
  2898. return 0;
  2899. }
  2900. int snd_usb_mixer_apply_create_quirk(struct usb_mixer_interface *mixer)
  2901. {
  2902. int err = 0;
  2903. err = snd_usb_soundblaster_remote_init(mixer);
  2904. if (err < 0)
  2905. return err;
  2906. switch (mixer->chip->usb_id) {
  2907. /* Tascam US-16x08 */
  2908. case USB_ID(0x0644, 0x8047):
  2909. err = snd_us16x08_controls_create(mixer);
  2910. break;
  2911. case USB_ID(0x041e, 0x3020):
  2912. case USB_ID(0x041e, 0x3040):
  2913. case USB_ID(0x041e, 0x3042):
  2914. case USB_ID(0x041e, 0x30df):
  2915. case USB_ID(0x041e, 0x3048):
  2916. err = snd_audigy2nx_controls_create(mixer);
  2917. if (err < 0)
  2918. break;
  2919. snd_card_ro_proc_new(mixer->chip->card, "audigy2nx",
  2920. mixer, snd_audigy2nx_proc_read);
  2921. break;
  2922. /* EMU0204 */
  2923. case USB_ID(0x041e, 0x3f19):
  2924. err = snd_emu0204_controls_create(mixer);
  2925. break;
  2926. case USB_ID(0x0763, 0x2030): /* M-Audio Fast Track C400 */
  2927. case USB_ID(0x0763, 0x2031): /* M-Audio Fast Track C400 */
  2928. err = snd_c400_create_mixer(mixer);
  2929. break;
  2930. case USB_ID(0x0763, 0x2080): /* M-Audio Fast Track Ultra */
  2931. case USB_ID(0x0763, 0x2081): /* M-Audio Fast Track Ultra 8R */
  2932. err = snd_ftu_create_mixer(mixer);
  2933. break;
  2934. case USB_ID(0x0b05, 0x1739): /* ASUS Xonar U1 */
  2935. case USB_ID(0x0b05, 0x1743): /* ASUS Xonar U1 (2) */
  2936. case USB_ID(0x0b05, 0x17a0): /* ASUS Xonar U3 */
  2937. err = snd_xonar_u1_controls_create(mixer);
  2938. break;
  2939. case USB_ID(0x0d8c, 0x0103): /* Audio Advantage Micro II */
  2940. err = snd_microii_controls_create(mixer);
  2941. break;
  2942. case USB_ID(0x0dba, 0x1000): /* Digidesign Mbox 1 */
  2943. err = snd_mbox1_controls_create(mixer);
  2944. break;
  2945. case USB_ID(0x17cc, 0x1011): /* Traktor Audio 6 */
  2946. err = snd_nativeinstruments_create_mixer(mixer,
  2947. snd_nativeinstruments_ta6_mixers,
  2948. ARRAY_SIZE(snd_nativeinstruments_ta6_mixers));
  2949. break;
  2950. case USB_ID(0x17cc, 0x1021): /* Traktor Audio 10 */
  2951. err = snd_nativeinstruments_create_mixer(mixer,
  2952. snd_nativeinstruments_ta10_mixers,
  2953. ARRAY_SIZE(snd_nativeinstruments_ta10_mixers));
  2954. break;
  2955. case USB_ID(0x200c, 0x1018): /* Electrix Ebox-44 */
  2956. /* detection is disabled in mixer_maps.c */
  2957. err = snd_create_std_mono_table(mixer, ebox44_table);
  2958. break;
  2959. case USB_ID(0x1235, 0x8012): /* Focusrite Scarlett 6i6 */
  2960. case USB_ID(0x1235, 0x8002): /* Focusrite Scarlett 8i6 */
  2961. case USB_ID(0x1235, 0x8004): /* Focusrite Scarlett 18i6 */
  2962. case USB_ID(0x1235, 0x8014): /* Focusrite Scarlett 18i8 */
  2963. case USB_ID(0x1235, 0x800c): /* Focusrite Scarlett 18i20 */
  2964. err = snd_scarlett_controls_create(mixer);
  2965. break;
  2966. case USB_ID(0x1235, 0x8203): /* Focusrite Scarlett 6i6 2nd Gen */
  2967. case USB_ID(0x1235, 0x8204): /* Focusrite Scarlett 18i8 2nd Gen */
  2968. case USB_ID(0x1235, 0x8201): /* Focusrite Scarlett 18i20 2nd Gen */
  2969. case USB_ID(0x1235, 0x8211): /* Focusrite Scarlett Solo 3rd Gen */
  2970. case USB_ID(0x1235, 0x8210): /* Focusrite Scarlett 2i2 3rd Gen */
  2971. case USB_ID(0x1235, 0x8212): /* Focusrite Scarlett 4i4 3rd Gen */
  2972. case USB_ID(0x1235, 0x8213): /* Focusrite Scarlett 8i6 3rd Gen */
  2973. case USB_ID(0x1235, 0x8214): /* Focusrite Scarlett 18i8 3rd Gen */
  2974. case USB_ID(0x1235, 0x8215): /* Focusrite Scarlett 18i20 3rd Gen */
  2975. case USB_ID(0x1235, 0x820c): /* Focusrite Clarett+ 8Pre */
  2976. err = snd_scarlett_gen2_init(mixer);
  2977. break;
  2978. case USB_ID(0x041e, 0x323b): /* Creative Sound Blaster E1 */
  2979. err = snd_soundblaster_e1_switch_create(mixer);
  2980. break;
  2981. case USB_ID(0x0bda, 0x4014): /* Dell WD15 dock */
  2982. err = dell_dock_mixer_create(mixer);
  2983. if (err < 0)
  2984. break;
  2985. err = dell_dock_mixer_init(mixer);
  2986. break;
  2987. case USB_ID(0x2a39, 0x3fd2): /* RME ADI-2 Pro */
  2988. case USB_ID(0x2a39, 0x3fd3): /* RME ADI-2 DAC */
  2989. case USB_ID(0x2a39, 0x3fd4): /* RME */
  2990. err = snd_rme_controls_create(mixer);
  2991. break;
  2992. case USB_ID(0x194f, 0x010c): /* Presonus Studio 1810c */
  2993. err = snd_sc1810_init_mixer(mixer);
  2994. break;
  2995. case USB_ID(0x2a39, 0x3fb0): /* RME Babyface Pro FS */
  2996. err = snd_bbfpro_controls_create(mixer);
  2997. break;
  2998. case USB_ID(0x2b73, 0x0017): /* Pioneer DJ DJM-250MK2 */
  2999. err = snd_djm_controls_create(mixer, SND_DJM_250MK2_IDX);
  3000. break;
  3001. case USB_ID(0x2b73, 0x0013): /* Pioneer DJ DJM-450 */
  3002. err = snd_djm_controls_create(mixer, SND_DJM_450_IDX);
  3003. break;
  3004. case USB_ID(0x08e4, 0x017f): /* Pioneer DJ DJM-750 */
  3005. err = snd_djm_controls_create(mixer, SND_DJM_750_IDX);
  3006. break;
  3007. case USB_ID(0x2b73, 0x001b): /* Pioneer DJ DJM-750MK2 */
  3008. err = snd_djm_controls_create(mixer, SND_DJM_750MK2_IDX);
  3009. break;
  3010. case USB_ID(0x08e4, 0x0163): /* Pioneer DJ DJM-850 */
  3011. err = snd_djm_controls_create(mixer, SND_DJM_850_IDX);
  3012. break;
  3013. case USB_ID(0x2b73, 0x000a): /* Pioneer DJ DJM-900NXS2 */
  3014. err = snd_djm_controls_create(mixer, SND_DJM_900NXS2_IDX);
  3015. break;
  3016. }
  3017. return err;
  3018. }
  3019. void snd_usb_mixer_resume_quirk(struct usb_mixer_interface *mixer)
  3020. {
  3021. switch (mixer->chip->usb_id) {
  3022. case USB_ID(0x0bda, 0x4014): /* Dell WD15 dock */
  3023. dell_dock_mixer_init(mixer);
  3024. break;
  3025. }
  3026. }
  3027. void snd_usb_mixer_rc_memory_change(struct usb_mixer_interface *mixer,
  3028. int unitid)
  3029. {
  3030. if (!mixer->rc_cfg)
  3031. return;
  3032. /* unit ids specific to Extigy/Audigy 2 NX: */
  3033. switch (unitid) {
  3034. case 0: /* remote control */
  3035. mixer->rc_urb->dev = mixer->chip->dev;
  3036. usb_submit_urb(mixer->rc_urb, GFP_ATOMIC);
  3037. break;
  3038. case 4: /* digital in jack */
  3039. case 7: /* line in jacks */
  3040. case 19: /* speaker out jacks */
  3041. case 20: /* headphones out jack */
  3042. break;
  3043. /* live24ext: 4 = line-in jack */
  3044. case 3: /* hp-out jack (may actuate Mute) */
  3045. if (mixer->chip->usb_id == USB_ID(0x041e, 0x3040) ||
  3046. mixer->chip->usb_id == USB_ID(0x041e, 0x3048))
  3047. snd_usb_mixer_notify_id(mixer, mixer->rc_cfg->mute_mixer_id);
  3048. break;
  3049. default:
  3050. usb_audio_dbg(mixer->chip, "memory change in unknown unit %d\n", unitid);
  3051. break;
  3052. }
  3053. }
  3054. static void snd_dragonfly_quirk_db_scale(struct usb_mixer_interface *mixer,
  3055. struct usb_mixer_elem_info *cval,
  3056. struct snd_kcontrol *kctl)
  3057. {
  3058. /* Approximation using 10 ranges based on output measurement on hw v1.2.
  3059. * This seems close to the cubic mapping e.g. alsamixer uses. */
  3060. static const DECLARE_TLV_DB_RANGE(scale,
  3061. 0, 1, TLV_DB_MINMAX_ITEM(-5300, -4970),
  3062. 2, 5, TLV_DB_MINMAX_ITEM(-4710, -4160),
  3063. 6, 7, TLV_DB_MINMAX_ITEM(-3884, -3710),
  3064. 8, 14, TLV_DB_MINMAX_ITEM(-3443, -2560),
  3065. 15, 16, TLV_DB_MINMAX_ITEM(-2475, -2324),
  3066. 17, 19, TLV_DB_MINMAX_ITEM(-2228, -2031),
  3067. 20, 26, TLV_DB_MINMAX_ITEM(-1910, -1393),
  3068. 27, 31, TLV_DB_MINMAX_ITEM(-1322, -1032),
  3069. 32, 40, TLV_DB_MINMAX_ITEM(-968, -490),
  3070. 41, 50, TLV_DB_MINMAX_ITEM(-441, 0),
  3071. );
  3072. if (cval->min == 0 && cval->max == 50) {
  3073. usb_audio_info(mixer->chip, "applying DragonFly dB scale quirk (0-50 variant)\n");
  3074. kctl->tlv.p = scale;
  3075. kctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_TLV_READ;
  3076. kctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK;
  3077. } else if (cval->min == 0 && cval->max <= 1000) {
  3078. /* Some other clearly broken DragonFly variant.
  3079. * At least a 0..53 variant (hw v1.0) exists.
  3080. */
  3081. usb_audio_info(mixer->chip, "ignoring too narrow dB range on a DragonFly device");
  3082. kctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK;
  3083. }
  3084. }
  3085. void snd_usb_mixer_fu_apply_quirk(struct usb_mixer_interface *mixer,
  3086. struct usb_mixer_elem_info *cval, int unitid,
  3087. struct snd_kcontrol *kctl)
  3088. {
  3089. switch (mixer->chip->usb_id) {
  3090. case USB_ID(0x21b4, 0x0081): /* AudioQuest DragonFly */
  3091. if (unitid == 7 && cval->control == UAC_FU_VOLUME)
  3092. snd_dragonfly_quirk_db_scale(mixer, cval, kctl);
  3093. break;
  3094. /* lowest playback value is muted on some devices */
  3095. case USB_ID(0x0d8c, 0x000c): /* C-Media */
  3096. case USB_ID(0x0d8c, 0x0014): /* C-Media */
  3097. case USB_ID(0x19f7, 0x0003): /* RODE NT-USB */
  3098. if (strstr(kctl->id.name, "Playback"))
  3099. cval->min_mute = 1;
  3100. break;
  3101. }
  3102. }