tscs42xx.c 40 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514
  1. // SPDX-License-Identifier: GPL-2.0
  2. // tscs42xx.c -- TSCS42xx ALSA SoC Audio driver
  3. // Copyright 2017 Tempo Semiconductor, Inc.
  4. // Author: Steven Eckhoff <[email protected]>
  5. #include <linux/kernel.h>
  6. #include <linux/device.h>
  7. #include <linux/regmap.h>
  8. #include <linux/i2c.h>
  9. #include <linux/err.h>
  10. #include <linux/string.h>
  11. #include <linux/module.h>
  12. #include <linux/delay.h>
  13. #include <linux/mutex.h>
  14. #include <linux/clk.h>
  15. #include <sound/tlv.h>
  16. #include <sound/pcm_params.h>
  17. #include <sound/soc.h>
  18. #include <sound/soc-dapm.h>
  19. #include "tscs42xx.h"
  20. #define COEFF_SIZE 3
  21. #define BIQUAD_COEFF_COUNT 5
  22. #define BIQUAD_SIZE (COEFF_SIZE * BIQUAD_COEFF_COUNT)
  23. #define COEFF_RAM_MAX_ADDR 0xcd
  24. #define COEFF_RAM_COEFF_COUNT (COEFF_RAM_MAX_ADDR + 1)
  25. #define COEFF_RAM_SIZE (COEFF_SIZE * COEFF_RAM_COEFF_COUNT)
  26. struct tscs42xx {
  27. int bclk_ratio;
  28. int samplerate;
  29. struct mutex audio_params_lock;
  30. u8 coeff_ram[COEFF_RAM_SIZE];
  31. bool coeff_ram_synced;
  32. struct mutex coeff_ram_lock;
  33. struct mutex pll_lock;
  34. struct regmap *regmap;
  35. struct clk *sysclk;
  36. int sysclk_src_id;
  37. };
  38. struct coeff_ram_ctl {
  39. unsigned int addr;
  40. struct soc_bytes_ext bytes_ext;
  41. };
  42. static bool tscs42xx_volatile(struct device *dev, unsigned int reg)
  43. {
  44. switch (reg) {
  45. case R_DACCRWRL:
  46. case R_DACCRWRM:
  47. case R_DACCRWRH:
  48. case R_DACCRRDL:
  49. case R_DACCRRDM:
  50. case R_DACCRRDH:
  51. case R_DACCRSTAT:
  52. case R_DACCRADDR:
  53. case R_PLLCTL0:
  54. return true;
  55. default:
  56. return false;
  57. }
  58. }
  59. static bool tscs42xx_precious(struct device *dev, unsigned int reg)
  60. {
  61. switch (reg) {
  62. case R_DACCRWRL:
  63. case R_DACCRWRM:
  64. case R_DACCRWRH:
  65. case R_DACCRRDL:
  66. case R_DACCRRDM:
  67. case R_DACCRRDH:
  68. return true;
  69. default:
  70. return false;
  71. }
  72. }
  73. static const struct regmap_config tscs42xx_regmap = {
  74. .reg_bits = 8,
  75. .val_bits = 8,
  76. .volatile_reg = tscs42xx_volatile,
  77. .precious_reg = tscs42xx_precious,
  78. .max_register = R_DACMBCREL3H,
  79. .cache_type = REGCACHE_RBTREE,
  80. .can_multi_write = true,
  81. };
  82. #define MAX_PLL_LOCK_20MS_WAITS 1
  83. static bool plls_locked(struct snd_soc_component *component)
  84. {
  85. int ret;
  86. int count = MAX_PLL_LOCK_20MS_WAITS;
  87. do {
  88. ret = snd_soc_component_read(component, R_PLLCTL0);
  89. if (ret < 0) {
  90. dev_err(component->dev,
  91. "Failed to read PLL lock status (%d)\n", ret);
  92. return false;
  93. } else if (ret > 0) {
  94. return true;
  95. }
  96. msleep(20);
  97. } while (count--);
  98. return false;
  99. }
  100. static int sample_rate_to_pll_freq_out(int sample_rate)
  101. {
  102. switch (sample_rate) {
  103. case 11025:
  104. case 22050:
  105. case 44100:
  106. case 88200:
  107. return 112896000;
  108. case 8000:
  109. case 16000:
  110. case 32000:
  111. case 48000:
  112. case 96000:
  113. return 122880000;
  114. default:
  115. return -EINVAL;
  116. }
  117. }
  118. #define DACCRSTAT_MAX_TRYS 10
  119. static int write_coeff_ram(struct snd_soc_component *component, u8 *coeff_ram,
  120. unsigned int addr, unsigned int coeff_cnt)
  121. {
  122. struct tscs42xx *tscs42xx = snd_soc_component_get_drvdata(component);
  123. int cnt;
  124. int trys;
  125. int ret;
  126. for (cnt = 0; cnt < coeff_cnt; cnt++, addr++) {
  127. for (trys = 0; trys < DACCRSTAT_MAX_TRYS; trys++) {
  128. ret = snd_soc_component_read(component, R_DACCRSTAT);
  129. if (ret < 0) {
  130. dev_err(component->dev,
  131. "Failed to read stat (%d)\n", ret);
  132. return ret;
  133. }
  134. if (!ret)
  135. break;
  136. }
  137. if (trys == DACCRSTAT_MAX_TRYS) {
  138. ret = -EIO;
  139. dev_err(component->dev,
  140. "dac coefficient write error (%d)\n", ret);
  141. return ret;
  142. }
  143. ret = regmap_write(tscs42xx->regmap, R_DACCRADDR, addr);
  144. if (ret < 0) {
  145. dev_err(component->dev,
  146. "Failed to write dac ram address (%d)\n", ret);
  147. return ret;
  148. }
  149. ret = regmap_bulk_write(tscs42xx->regmap, R_DACCRWRL,
  150. &coeff_ram[addr * COEFF_SIZE],
  151. COEFF_SIZE);
  152. if (ret < 0) {
  153. dev_err(component->dev,
  154. "Failed to write dac ram (%d)\n", ret);
  155. return ret;
  156. }
  157. }
  158. return 0;
  159. }
  160. static int power_up_audio_plls(struct snd_soc_component *component)
  161. {
  162. struct tscs42xx *tscs42xx = snd_soc_component_get_drvdata(component);
  163. int freq_out;
  164. int ret;
  165. unsigned int mask;
  166. unsigned int val;
  167. freq_out = sample_rate_to_pll_freq_out(tscs42xx->samplerate);
  168. switch (freq_out) {
  169. case 122880000: /* 48k */
  170. mask = RM_PLLCTL1C_PDB_PLL1;
  171. val = RV_PLLCTL1C_PDB_PLL1_ENABLE;
  172. break;
  173. case 112896000: /* 44.1k */
  174. mask = RM_PLLCTL1C_PDB_PLL2;
  175. val = RV_PLLCTL1C_PDB_PLL2_ENABLE;
  176. break;
  177. default:
  178. ret = -EINVAL;
  179. dev_err(component->dev,
  180. "Unrecognized PLL output freq (%d)\n", ret);
  181. return ret;
  182. }
  183. mutex_lock(&tscs42xx->pll_lock);
  184. ret = snd_soc_component_update_bits(component, R_PLLCTL1C, mask, val);
  185. if (ret < 0) {
  186. dev_err(component->dev, "Failed to turn PLL on (%d)\n", ret);
  187. goto exit;
  188. }
  189. if (!plls_locked(component)) {
  190. dev_err(component->dev, "Failed to lock plls\n");
  191. ret = -ENOMSG;
  192. goto exit;
  193. }
  194. ret = 0;
  195. exit:
  196. mutex_unlock(&tscs42xx->pll_lock);
  197. return ret;
  198. }
  199. static int power_down_audio_plls(struct snd_soc_component *component)
  200. {
  201. struct tscs42xx *tscs42xx = snd_soc_component_get_drvdata(component);
  202. int ret;
  203. mutex_lock(&tscs42xx->pll_lock);
  204. ret = snd_soc_component_update_bits(component, R_PLLCTL1C,
  205. RM_PLLCTL1C_PDB_PLL1,
  206. RV_PLLCTL1C_PDB_PLL1_DISABLE);
  207. if (ret < 0) {
  208. dev_err(component->dev, "Failed to turn PLL off (%d)\n", ret);
  209. goto exit;
  210. }
  211. ret = snd_soc_component_update_bits(component, R_PLLCTL1C,
  212. RM_PLLCTL1C_PDB_PLL2,
  213. RV_PLLCTL1C_PDB_PLL2_DISABLE);
  214. if (ret < 0) {
  215. dev_err(component->dev, "Failed to turn PLL off (%d)\n", ret);
  216. goto exit;
  217. }
  218. ret = 0;
  219. exit:
  220. mutex_unlock(&tscs42xx->pll_lock);
  221. return ret;
  222. }
  223. static int coeff_ram_get(struct snd_kcontrol *kcontrol,
  224. struct snd_ctl_elem_value *ucontrol)
  225. {
  226. struct snd_soc_component *component =
  227. snd_soc_kcontrol_component(kcontrol);
  228. struct tscs42xx *tscs42xx = snd_soc_component_get_drvdata(component);
  229. struct coeff_ram_ctl *ctl =
  230. (struct coeff_ram_ctl *)kcontrol->private_value;
  231. struct soc_bytes_ext *params = &ctl->bytes_ext;
  232. mutex_lock(&tscs42xx->coeff_ram_lock);
  233. memcpy(ucontrol->value.bytes.data,
  234. &tscs42xx->coeff_ram[ctl->addr * COEFF_SIZE], params->max);
  235. mutex_unlock(&tscs42xx->coeff_ram_lock);
  236. return 0;
  237. }
  238. static int coeff_ram_put(struct snd_kcontrol *kcontrol,
  239. struct snd_ctl_elem_value *ucontrol)
  240. {
  241. struct snd_soc_component *component =
  242. snd_soc_kcontrol_component(kcontrol);
  243. struct tscs42xx *tscs42xx = snd_soc_component_get_drvdata(component);
  244. struct coeff_ram_ctl *ctl =
  245. (struct coeff_ram_ctl *)kcontrol->private_value;
  246. struct soc_bytes_ext *params = &ctl->bytes_ext;
  247. unsigned int coeff_cnt = params->max / COEFF_SIZE;
  248. int ret;
  249. mutex_lock(&tscs42xx->coeff_ram_lock);
  250. tscs42xx->coeff_ram_synced = false;
  251. memcpy(&tscs42xx->coeff_ram[ctl->addr * COEFF_SIZE],
  252. ucontrol->value.bytes.data, params->max);
  253. mutex_lock(&tscs42xx->pll_lock);
  254. if (plls_locked(component)) {
  255. ret = write_coeff_ram(component, tscs42xx->coeff_ram,
  256. ctl->addr, coeff_cnt);
  257. if (ret < 0) {
  258. dev_err(component->dev,
  259. "Failed to flush coeff ram cache (%d)\n", ret);
  260. goto exit;
  261. }
  262. tscs42xx->coeff_ram_synced = true;
  263. }
  264. ret = 0;
  265. exit:
  266. mutex_unlock(&tscs42xx->pll_lock);
  267. mutex_unlock(&tscs42xx->coeff_ram_lock);
  268. return ret;
  269. }
  270. /* Input L Capture Route */
  271. static char const * const input_select_text[] = {
  272. "Line 1", "Line 2", "Line 3", "D2S"
  273. };
  274. static const struct soc_enum left_input_select_enum =
  275. SOC_ENUM_SINGLE(R_INSELL, FB_INSELL, ARRAY_SIZE(input_select_text),
  276. input_select_text);
  277. static const struct snd_kcontrol_new left_input_select =
  278. SOC_DAPM_ENUM("LEFT_INPUT_SELECT_ENUM", left_input_select_enum);
  279. /* Input R Capture Route */
  280. static const struct soc_enum right_input_select_enum =
  281. SOC_ENUM_SINGLE(R_INSELR, FB_INSELR, ARRAY_SIZE(input_select_text),
  282. input_select_text);
  283. static const struct snd_kcontrol_new right_input_select =
  284. SOC_DAPM_ENUM("RIGHT_INPUT_SELECT_ENUM", right_input_select_enum);
  285. /* Input Channel Mapping */
  286. static char const * const ch_map_select_text[] = {
  287. "Normal", "Left to Right", "Right to Left", "Swap"
  288. };
  289. static const struct soc_enum ch_map_select_enum =
  290. SOC_ENUM_SINGLE(R_AIC2, FB_AIC2_ADCDSEL, ARRAY_SIZE(ch_map_select_text),
  291. ch_map_select_text);
  292. static int dapm_vref_event(struct snd_soc_dapm_widget *w,
  293. struct snd_kcontrol *kcontrol, int event)
  294. {
  295. msleep(20);
  296. return 0;
  297. }
  298. static int dapm_micb_event(struct snd_soc_dapm_widget *w,
  299. struct snd_kcontrol *kcontrol, int event)
  300. {
  301. msleep(20);
  302. return 0;
  303. }
  304. static int pll_event(struct snd_soc_dapm_widget *w,
  305. struct snd_kcontrol *kcontrol, int event)
  306. {
  307. struct snd_soc_component *component =
  308. snd_soc_dapm_to_component(w->dapm);
  309. int ret;
  310. if (SND_SOC_DAPM_EVENT_ON(event))
  311. ret = power_up_audio_plls(component);
  312. else
  313. ret = power_down_audio_plls(component);
  314. return ret;
  315. }
  316. static int dac_event(struct snd_soc_dapm_widget *w,
  317. struct snd_kcontrol *kcontrol, int event)
  318. {
  319. struct snd_soc_component *component =
  320. snd_soc_dapm_to_component(w->dapm);
  321. struct tscs42xx *tscs42xx = snd_soc_component_get_drvdata(component);
  322. int ret;
  323. mutex_lock(&tscs42xx->coeff_ram_lock);
  324. if (!tscs42xx->coeff_ram_synced) {
  325. ret = write_coeff_ram(component, tscs42xx->coeff_ram, 0x00,
  326. COEFF_RAM_COEFF_COUNT);
  327. if (ret < 0)
  328. goto exit;
  329. tscs42xx->coeff_ram_synced = true;
  330. }
  331. ret = 0;
  332. exit:
  333. mutex_unlock(&tscs42xx->coeff_ram_lock);
  334. return ret;
  335. }
  336. static const struct snd_soc_dapm_widget tscs42xx_dapm_widgets[] = {
  337. /* Vref */
  338. SND_SOC_DAPM_SUPPLY_S("Vref", 1, R_PWRM2, FB_PWRM2_VREF, 0,
  339. dapm_vref_event, SND_SOC_DAPM_POST_PMU|SND_SOC_DAPM_PRE_PMD),
  340. /* PLL */
  341. SND_SOC_DAPM_SUPPLY("PLL", SND_SOC_NOPM, 0, 0, pll_event,
  342. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  343. /* Headphone */
  344. SND_SOC_DAPM_DAC_E("DAC L", "HiFi Playback", R_PWRM2, FB_PWRM2_HPL, 0,
  345. dac_event, SND_SOC_DAPM_POST_PMU),
  346. SND_SOC_DAPM_DAC_E("DAC R", "HiFi Playback", R_PWRM2, FB_PWRM2_HPR, 0,
  347. dac_event, SND_SOC_DAPM_POST_PMU),
  348. SND_SOC_DAPM_OUTPUT("Headphone L"),
  349. SND_SOC_DAPM_OUTPUT("Headphone R"),
  350. /* Speaker */
  351. SND_SOC_DAPM_DAC_E("ClassD L", "HiFi Playback",
  352. R_PWRM2, FB_PWRM2_SPKL, 0,
  353. dac_event, SND_SOC_DAPM_POST_PMU),
  354. SND_SOC_DAPM_DAC_E("ClassD R", "HiFi Playback",
  355. R_PWRM2, FB_PWRM2_SPKR, 0,
  356. dac_event, SND_SOC_DAPM_POST_PMU),
  357. SND_SOC_DAPM_OUTPUT("Speaker L"),
  358. SND_SOC_DAPM_OUTPUT("Speaker R"),
  359. /* Capture */
  360. SND_SOC_DAPM_PGA("Analog In PGA L", R_PWRM1, FB_PWRM1_PGAL, 0, NULL, 0),
  361. SND_SOC_DAPM_PGA("Analog In PGA R", R_PWRM1, FB_PWRM1_PGAR, 0, NULL, 0),
  362. SND_SOC_DAPM_PGA("Analog Boost L", R_PWRM1, FB_PWRM1_BSTL, 0, NULL, 0),
  363. SND_SOC_DAPM_PGA("Analog Boost R", R_PWRM1, FB_PWRM1_BSTR, 0, NULL, 0),
  364. SND_SOC_DAPM_PGA("ADC Mute", R_CNVRTR0, FB_CNVRTR0_HPOR, true, NULL, 0),
  365. SND_SOC_DAPM_ADC("ADC L", "HiFi Capture", R_PWRM1, FB_PWRM1_ADCL, 0),
  366. SND_SOC_DAPM_ADC("ADC R", "HiFi Capture", R_PWRM1, FB_PWRM1_ADCR, 0),
  367. /* Capture Input */
  368. SND_SOC_DAPM_MUX("Input L Capture Route", R_PWRM2,
  369. FB_PWRM2_INSELL, 0, &left_input_select),
  370. SND_SOC_DAPM_MUX("Input R Capture Route", R_PWRM2,
  371. FB_PWRM2_INSELR, 0, &right_input_select),
  372. /* Digital Mic */
  373. SND_SOC_DAPM_SUPPLY_S("Digital Mic Enable", 2, R_DMICCTL,
  374. FB_DMICCTL_DMICEN, 0, NULL,
  375. SND_SOC_DAPM_POST_PMU|SND_SOC_DAPM_PRE_PMD),
  376. /* Analog Mic */
  377. SND_SOC_DAPM_SUPPLY_S("Mic Bias", 2, R_PWRM1, FB_PWRM1_MICB,
  378. 0, dapm_micb_event, SND_SOC_DAPM_POST_PMU|SND_SOC_DAPM_PRE_PMD),
  379. /* Line In */
  380. SND_SOC_DAPM_INPUT("Line In 1 L"),
  381. SND_SOC_DAPM_INPUT("Line In 1 R"),
  382. SND_SOC_DAPM_INPUT("Line In 2 L"),
  383. SND_SOC_DAPM_INPUT("Line In 2 R"),
  384. SND_SOC_DAPM_INPUT("Line In 3 L"),
  385. SND_SOC_DAPM_INPUT("Line In 3 R"),
  386. };
  387. static const struct snd_soc_dapm_route tscs42xx_intercon[] = {
  388. {"DAC L", NULL, "PLL"},
  389. {"DAC R", NULL, "PLL"},
  390. {"DAC L", NULL, "Vref"},
  391. {"DAC R", NULL, "Vref"},
  392. {"Headphone L", NULL, "DAC L"},
  393. {"Headphone R", NULL, "DAC R"},
  394. {"ClassD L", NULL, "PLL"},
  395. {"ClassD R", NULL, "PLL"},
  396. {"ClassD L", NULL, "Vref"},
  397. {"ClassD R", NULL, "Vref"},
  398. {"Speaker L", NULL, "ClassD L"},
  399. {"Speaker R", NULL, "ClassD R"},
  400. {"Input L Capture Route", NULL, "Vref"},
  401. {"Input R Capture Route", NULL, "Vref"},
  402. {"Mic Bias", NULL, "Vref"},
  403. {"Input L Capture Route", "Line 1", "Line In 1 L"},
  404. {"Input R Capture Route", "Line 1", "Line In 1 R"},
  405. {"Input L Capture Route", "Line 2", "Line In 2 L"},
  406. {"Input R Capture Route", "Line 2", "Line In 2 R"},
  407. {"Input L Capture Route", "Line 3", "Line In 3 L"},
  408. {"Input R Capture Route", "Line 3", "Line In 3 R"},
  409. {"Analog In PGA L", NULL, "Input L Capture Route"},
  410. {"Analog In PGA R", NULL, "Input R Capture Route"},
  411. {"Analog Boost L", NULL, "Analog In PGA L"},
  412. {"Analog Boost R", NULL, "Analog In PGA R"},
  413. {"ADC Mute", NULL, "Analog Boost L"},
  414. {"ADC Mute", NULL, "Analog Boost R"},
  415. {"ADC L", NULL, "PLL"},
  416. {"ADC R", NULL, "PLL"},
  417. {"ADC L", NULL, "ADC Mute"},
  418. {"ADC R", NULL, "ADC Mute"},
  419. };
  420. /************
  421. * CONTROLS *
  422. ************/
  423. static char const * const eq_band_enable_text[] = {
  424. "Prescale only",
  425. "Band1",
  426. "Band1:2",
  427. "Band1:3",
  428. "Band1:4",
  429. "Band1:5",
  430. "Band1:6",
  431. };
  432. static char const * const level_detection_text[] = {
  433. "Average",
  434. "Peak",
  435. };
  436. static char const * const level_detection_window_text[] = {
  437. "512 Samples",
  438. "64 Samples",
  439. };
  440. static char const * const compressor_ratio_text[] = {
  441. "Reserved", "1.5:1", "2:1", "3:1", "4:1", "5:1", "6:1",
  442. "7:1", "8:1", "9:1", "10:1", "11:1", "12:1", "13:1", "14:1",
  443. "15:1", "16:1", "17:1", "18:1", "19:1", "20:1",
  444. };
  445. static DECLARE_TLV_DB_SCALE(hpvol_scale, -8850, 75, 0);
  446. static DECLARE_TLV_DB_SCALE(spkvol_scale, -7725, 75, 0);
  447. static DECLARE_TLV_DB_SCALE(dacvol_scale, -9563, 38, 0);
  448. static DECLARE_TLV_DB_SCALE(adcvol_scale, -7125, 38, 0);
  449. static DECLARE_TLV_DB_SCALE(invol_scale, -1725, 75, 0);
  450. static DECLARE_TLV_DB_SCALE(mic_boost_scale, 0, 1000, 0);
  451. static DECLARE_TLV_DB_MINMAX(mugain_scale, 0, 4650);
  452. static DECLARE_TLV_DB_MINMAX(compth_scale, -9562, 0);
  453. static const struct soc_enum eq1_band_enable_enum =
  454. SOC_ENUM_SINGLE(R_CONFIG1, FB_CONFIG1_EQ1_BE,
  455. ARRAY_SIZE(eq_band_enable_text), eq_band_enable_text);
  456. static const struct soc_enum eq2_band_enable_enum =
  457. SOC_ENUM_SINGLE(R_CONFIG1, FB_CONFIG1_EQ2_BE,
  458. ARRAY_SIZE(eq_band_enable_text), eq_band_enable_text);
  459. static const struct soc_enum cle_level_detection_enum =
  460. SOC_ENUM_SINGLE(R_CLECTL, FB_CLECTL_LVL_MODE,
  461. ARRAY_SIZE(level_detection_text),
  462. level_detection_text);
  463. static const struct soc_enum cle_level_detection_window_enum =
  464. SOC_ENUM_SINGLE(R_CLECTL, FB_CLECTL_WINDOWSEL,
  465. ARRAY_SIZE(level_detection_window_text),
  466. level_detection_window_text);
  467. static const struct soc_enum mbc_level_detection_enums[] = {
  468. SOC_ENUM_SINGLE(R_DACMBCCTL, FB_DACMBCCTL_LVLMODE1,
  469. ARRAY_SIZE(level_detection_text),
  470. level_detection_text),
  471. SOC_ENUM_SINGLE(R_DACMBCCTL, FB_DACMBCCTL_LVLMODE2,
  472. ARRAY_SIZE(level_detection_text),
  473. level_detection_text),
  474. SOC_ENUM_SINGLE(R_DACMBCCTL, FB_DACMBCCTL_LVLMODE3,
  475. ARRAY_SIZE(level_detection_text),
  476. level_detection_text),
  477. };
  478. static const struct soc_enum mbc_level_detection_window_enums[] = {
  479. SOC_ENUM_SINGLE(R_DACMBCCTL, FB_DACMBCCTL_WINSEL1,
  480. ARRAY_SIZE(level_detection_window_text),
  481. level_detection_window_text),
  482. SOC_ENUM_SINGLE(R_DACMBCCTL, FB_DACMBCCTL_WINSEL2,
  483. ARRAY_SIZE(level_detection_window_text),
  484. level_detection_window_text),
  485. SOC_ENUM_SINGLE(R_DACMBCCTL, FB_DACMBCCTL_WINSEL3,
  486. ARRAY_SIZE(level_detection_window_text),
  487. level_detection_window_text),
  488. };
  489. static const struct soc_enum compressor_ratio_enum =
  490. SOC_ENUM_SINGLE(R_CMPRAT, FB_CMPRAT,
  491. ARRAY_SIZE(compressor_ratio_text), compressor_ratio_text);
  492. static const struct soc_enum dac_mbc1_compressor_ratio_enum =
  493. SOC_ENUM_SINGLE(R_DACMBCRAT1, FB_DACMBCRAT1_RATIO,
  494. ARRAY_SIZE(compressor_ratio_text), compressor_ratio_text);
  495. static const struct soc_enum dac_mbc2_compressor_ratio_enum =
  496. SOC_ENUM_SINGLE(R_DACMBCRAT2, FB_DACMBCRAT2_RATIO,
  497. ARRAY_SIZE(compressor_ratio_text), compressor_ratio_text);
  498. static const struct soc_enum dac_mbc3_compressor_ratio_enum =
  499. SOC_ENUM_SINGLE(R_DACMBCRAT3, FB_DACMBCRAT3_RATIO,
  500. ARRAY_SIZE(compressor_ratio_text), compressor_ratio_text);
  501. static int bytes_info_ext(struct snd_kcontrol *kcontrol,
  502. struct snd_ctl_elem_info *ucontrol)
  503. {
  504. struct coeff_ram_ctl *ctl =
  505. (struct coeff_ram_ctl *)kcontrol->private_value;
  506. struct soc_bytes_ext *params = &ctl->bytes_ext;
  507. ucontrol->type = SNDRV_CTL_ELEM_TYPE_BYTES;
  508. ucontrol->count = params->max;
  509. return 0;
  510. }
  511. #define COEFF_RAM_CTL(xname, xcount, xaddr) \
  512. { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
  513. .info = bytes_info_ext, \
  514. .get = coeff_ram_get, .put = coeff_ram_put, \
  515. .private_value = (unsigned long)&(struct coeff_ram_ctl) { \
  516. .addr = xaddr, \
  517. .bytes_ext = {.max = xcount, }, \
  518. } \
  519. }
  520. static const struct snd_kcontrol_new tscs42xx_snd_controls[] = {
  521. /* Volumes */
  522. SOC_DOUBLE_R_TLV("Headphone Volume", R_HPVOLL, R_HPVOLR,
  523. FB_HPVOLL, 0x7F, 0, hpvol_scale),
  524. SOC_DOUBLE_R_TLV("Speaker Volume", R_SPKVOLL, R_SPKVOLR,
  525. FB_SPKVOLL, 0x7F, 0, spkvol_scale),
  526. SOC_DOUBLE_R_TLV("Master Volume", R_DACVOLL, R_DACVOLR,
  527. FB_DACVOLL, 0xFF, 0, dacvol_scale),
  528. SOC_DOUBLE_R_TLV("PCM Volume", R_ADCVOLL, R_ADCVOLR,
  529. FB_ADCVOLL, 0xFF, 0, adcvol_scale),
  530. SOC_DOUBLE_R_TLV("Input Volume", R_INVOLL, R_INVOLR,
  531. FB_INVOLL, 0x3F, 0, invol_scale),
  532. /* INSEL */
  533. SOC_DOUBLE_R_TLV("Mic Boost Volume", R_INSELL, R_INSELR,
  534. FB_INSELL_MICBSTL, FV_INSELL_MICBSTL_30DB,
  535. 0, mic_boost_scale),
  536. /* Input Channel Map */
  537. SOC_ENUM("Input Channel Map", ch_map_select_enum),
  538. /* Mic Bias */
  539. SOC_SINGLE("Mic Bias Boost Switch", 0x71, 0x07, 1, 0),
  540. /* Headphone Auto Switching */
  541. SOC_SINGLE("Headphone Auto Switching Switch",
  542. R_CTL, FB_CTL_HPSWEN, 1, 0),
  543. SOC_SINGLE("Headphone Detect Polarity Toggle Switch",
  544. R_CTL, FB_CTL_HPSWPOL, 1, 0),
  545. /* Coefficient Ram */
  546. COEFF_RAM_CTL("Cascade1L BiQuad1", BIQUAD_SIZE, 0x00),
  547. COEFF_RAM_CTL("Cascade1L BiQuad2", BIQUAD_SIZE, 0x05),
  548. COEFF_RAM_CTL("Cascade1L BiQuad3", BIQUAD_SIZE, 0x0a),
  549. COEFF_RAM_CTL("Cascade1L BiQuad4", BIQUAD_SIZE, 0x0f),
  550. COEFF_RAM_CTL("Cascade1L BiQuad5", BIQUAD_SIZE, 0x14),
  551. COEFF_RAM_CTL("Cascade1L BiQuad6", BIQUAD_SIZE, 0x19),
  552. COEFF_RAM_CTL("Cascade1R BiQuad1", BIQUAD_SIZE, 0x20),
  553. COEFF_RAM_CTL("Cascade1R BiQuad2", BIQUAD_SIZE, 0x25),
  554. COEFF_RAM_CTL("Cascade1R BiQuad3", BIQUAD_SIZE, 0x2a),
  555. COEFF_RAM_CTL("Cascade1R BiQuad4", BIQUAD_SIZE, 0x2f),
  556. COEFF_RAM_CTL("Cascade1R BiQuad5", BIQUAD_SIZE, 0x34),
  557. COEFF_RAM_CTL("Cascade1R BiQuad6", BIQUAD_SIZE, 0x39),
  558. COEFF_RAM_CTL("Cascade1L Prescale", COEFF_SIZE, 0x1f),
  559. COEFF_RAM_CTL("Cascade1R Prescale", COEFF_SIZE, 0x3f),
  560. COEFF_RAM_CTL("Cascade2L BiQuad1", BIQUAD_SIZE, 0x40),
  561. COEFF_RAM_CTL("Cascade2L BiQuad2", BIQUAD_SIZE, 0x45),
  562. COEFF_RAM_CTL("Cascade2L BiQuad3", BIQUAD_SIZE, 0x4a),
  563. COEFF_RAM_CTL("Cascade2L BiQuad4", BIQUAD_SIZE, 0x4f),
  564. COEFF_RAM_CTL("Cascade2L BiQuad5", BIQUAD_SIZE, 0x54),
  565. COEFF_RAM_CTL("Cascade2L BiQuad6", BIQUAD_SIZE, 0x59),
  566. COEFF_RAM_CTL("Cascade2R BiQuad1", BIQUAD_SIZE, 0x60),
  567. COEFF_RAM_CTL("Cascade2R BiQuad2", BIQUAD_SIZE, 0x65),
  568. COEFF_RAM_CTL("Cascade2R BiQuad3", BIQUAD_SIZE, 0x6a),
  569. COEFF_RAM_CTL("Cascade2R BiQuad4", BIQUAD_SIZE, 0x6f),
  570. COEFF_RAM_CTL("Cascade2R BiQuad5", BIQUAD_SIZE, 0x74),
  571. COEFF_RAM_CTL("Cascade2R BiQuad6", BIQUAD_SIZE, 0x79),
  572. COEFF_RAM_CTL("Cascade2L Prescale", COEFF_SIZE, 0x5f),
  573. COEFF_RAM_CTL("Cascade2R Prescale", COEFF_SIZE, 0x7f),
  574. COEFF_RAM_CTL("Bass Extraction BiQuad1", BIQUAD_SIZE, 0x80),
  575. COEFF_RAM_CTL("Bass Extraction BiQuad2", BIQUAD_SIZE, 0x85),
  576. COEFF_RAM_CTL("Bass Non Linear Function 1", COEFF_SIZE, 0x8a),
  577. COEFF_RAM_CTL("Bass Non Linear Function 2", COEFF_SIZE, 0x8b),
  578. COEFF_RAM_CTL("Bass Limiter BiQuad", BIQUAD_SIZE, 0x8c),
  579. COEFF_RAM_CTL("Bass Cut Off BiQuad", BIQUAD_SIZE, 0x91),
  580. COEFF_RAM_CTL("Bass Mix", COEFF_SIZE, 0x96),
  581. COEFF_RAM_CTL("Treb Extraction BiQuad1", BIQUAD_SIZE, 0x97),
  582. COEFF_RAM_CTL("Treb Extraction BiQuad2", BIQUAD_SIZE, 0x9c),
  583. COEFF_RAM_CTL("Treb Non Linear Function 1", COEFF_SIZE, 0xa1),
  584. COEFF_RAM_CTL("Treb Non Linear Function 2", COEFF_SIZE, 0xa2),
  585. COEFF_RAM_CTL("Treb Limiter BiQuad", BIQUAD_SIZE, 0xa3),
  586. COEFF_RAM_CTL("Treb Cut Off BiQuad", BIQUAD_SIZE, 0xa8),
  587. COEFF_RAM_CTL("Treb Mix", COEFF_SIZE, 0xad),
  588. COEFF_RAM_CTL("3D", COEFF_SIZE, 0xae),
  589. COEFF_RAM_CTL("3D Mix", COEFF_SIZE, 0xaf),
  590. COEFF_RAM_CTL("MBC1 BiQuad1", BIQUAD_SIZE, 0xb0),
  591. COEFF_RAM_CTL("MBC1 BiQuad2", BIQUAD_SIZE, 0xb5),
  592. COEFF_RAM_CTL("MBC2 BiQuad1", BIQUAD_SIZE, 0xba),
  593. COEFF_RAM_CTL("MBC2 BiQuad2", BIQUAD_SIZE, 0xbf),
  594. COEFF_RAM_CTL("MBC3 BiQuad1", BIQUAD_SIZE, 0xc4),
  595. COEFF_RAM_CTL("MBC3 BiQuad2", BIQUAD_SIZE, 0xc9),
  596. /* EQ */
  597. SOC_SINGLE("EQ1 Switch", R_CONFIG1, FB_CONFIG1_EQ1_EN, 1, 0),
  598. SOC_SINGLE("EQ2 Switch", R_CONFIG1, FB_CONFIG1_EQ2_EN, 1, 0),
  599. SOC_ENUM("EQ1 Band Enable", eq1_band_enable_enum),
  600. SOC_ENUM("EQ2 Band Enable", eq2_band_enable_enum),
  601. /* CLE */
  602. SOC_ENUM("CLE Level Detect",
  603. cle_level_detection_enum),
  604. SOC_ENUM("CLE Level Detect Win",
  605. cle_level_detection_window_enum),
  606. SOC_SINGLE("Expander Switch",
  607. R_CLECTL, FB_CLECTL_EXP_EN, 1, 0),
  608. SOC_SINGLE("Limiter Switch",
  609. R_CLECTL, FB_CLECTL_LIMIT_EN, 1, 0),
  610. SOC_SINGLE("Comp Switch",
  611. R_CLECTL, FB_CLECTL_COMP_EN, 1, 0),
  612. SOC_SINGLE_TLV("CLE Make-Up Gain Volume",
  613. R_MUGAIN, FB_MUGAIN_CLEMUG, 0x1f, 0, mugain_scale),
  614. SOC_SINGLE_TLV("Comp Thresh Volume",
  615. R_COMPTH, FB_COMPTH, 0xff, 0, compth_scale),
  616. SOC_ENUM("Comp Ratio", compressor_ratio_enum),
  617. SND_SOC_BYTES("Comp Atk Time", R_CATKTCL, 2),
  618. /* Effects */
  619. SOC_SINGLE("3D Switch", R_FXCTL, FB_FXCTL_3DEN, 1, 0),
  620. SOC_SINGLE("Treble Switch", R_FXCTL, FB_FXCTL_TEEN, 1, 0),
  621. SOC_SINGLE("Treble Bypass Switch", R_FXCTL, FB_FXCTL_TNLFBYPASS, 1, 0),
  622. SOC_SINGLE("Bass Switch", R_FXCTL, FB_FXCTL_BEEN, 1, 0),
  623. SOC_SINGLE("Bass Bypass Switch", R_FXCTL, FB_FXCTL_BNLFBYPASS, 1, 0),
  624. /* MBC */
  625. SOC_SINGLE("MBC Band1 Switch", R_DACMBCEN, FB_DACMBCEN_MBCEN1, 1, 0),
  626. SOC_SINGLE("MBC Band2 Switch", R_DACMBCEN, FB_DACMBCEN_MBCEN2, 1, 0),
  627. SOC_SINGLE("MBC Band3 Switch", R_DACMBCEN, FB_DACMBCEN_MBCEN3, 1, 0),
  628. SOC_ENUM("MBC Band1 Level Detect",
  629. mbc_level_detection_enums[0]),
  630. SOC_ENUM("MBC Band2 Level Detect",
  631. mbc_level_detection_enums[1]),
  632. SOC_ENUM("MBC Band3 Level Detect",
  633. mbc_level_detection_enums[2]),
  634. SOC_ENUM("MBC Band1 Level Detect Win",
  635. mbc_level_detection_window_enums[0]),
  636. SOC_ENUM("MBC Band2 Level Detect Win",
  637. mbc_level_detection_window_enums[1]),
  638. SOC_ENUM("MBC Band3 Level Detect Win",
  639. mbc_level_detection_window_enums[2]),
  640. SOC_SINGLE("MBC1 Phase Invert Switch",
  641. R_DACMBCMUG1, FB_DACMBCMUG1_PHASE, 1, 0),
  642. SOC_SINGLE_TLV("DAC MBC1 Make-Up Gain Volume",
  643. R_DACMBCMUG1, FB_DACMBCMUG1_MUGAIN, 0x1f, 0, mugain_scale),
  644. SOC_SINGLE_TLV("DAC MBC1 Comp Thresh Volume",
  645. R_DACMBCTHR1, FB_DACMBCTHR1_THRESH, 0xff, 0, compth_scale),
  646. SOC_ENUM("DAC MBC1 Comp Ratio",
  647. dac_mbc1_compressor_ratio_enum),
  648. SND_SOC_BYTES("DAC MBC1 Comp Atk Time", R_DACMBCATK1L, 2),
  649. SND_SOC_BYTES("DAC MBC1 Comp Rel Time Const",
  650. R_DACMBCREL1L, 2),
  651. SOC_SINGLE("MBC2 Phase Invert Switch",
  652. R_DACMBCMUG2, FB_DACMBCMUG2_PHASE, 1, 0),
  653. SOC_SINGLE_TLV("DAC MBC2 Make-Up Gain Volume",
  654. R_DACMBCMUG2, FB_DACMBCMUG2_MUGAIN, 0x1f, 0, mugain_scale),
  655. SOC_SINGLE_TLV("DAC MBC2 Comp Thresh Volume",
  656. R_DACMBCTHR2, FB_DACMBCTHR2_THRESH, 0xff, 0, compth_scale),
  657. SOC_ENUM("DAC MBC2 Comp Ratio",
  658. dac_mbc2_compressor_ratio_enum),
  659. SND_SOC_BYTES("DAC MBC2 Comp Atk Time", R_DACMBCATK2L, 2),
  660. SND_SOC_BYTES("DAC MBC2 Comp Rel Time Const",
  661. R_DACMBCREL2L, 2),
  662. SOC_SINGLE("MBC3 Phase Invert Switch",
  663. R_DACMBCMUG3, FB_DACMBCMUG3_PHASE, 1, 0),
  664. SOC_SINGLE_TLV("DAC MBC3 Make-Up Gain Volume",
  665. R_DACMBCMUG3, FB_DACMBCMUG3_MUGAIN, 0x1f, 0, mugain_scale),
  666. SOC_SINGLE_TLV("DAC MBC3 Comp Thresh Volume",
  667. R_DACMBCTHR3, FB_DACMBCTHR3_THRESH, 0xff, 0, compth_scale),
  668. SOC_ENUM("DAC MBC3 Comp Ratio",
  669. dac_mbc3_compressor_ratio_enum),
  670. SND_SOC_BYTES("DAC MBC3 Comp Atk Time", R_DACMBCATK3L, 2),
  671. SND_SOC_BYTES("DAC MBC3 Comp Rel Time Const",
  672. R_DACMBCREL3L, 2),
  673. };
  674. static int setup_sample_format(struct snd_soc_component *component,
  675. snd_pcm_format_t format)
  676. {
  677. unsigned int width;
  678. int ret;
  679. switch (format) {
  680. case SNDRV_PCM_FORMAT_S16_LE:
  681. width = RV_AIC1_WL_16;
  682. break;
  683. case SNDRV_PCM_FORMAT_S20_3LE:
  684. width = RV_AIC1_WL_20;
  685. break;
  686. case SNDRV_PCM_FORMAT_S24_LE:
  687. width = RV_AIC1_WL_24;
  688. break;
  689. case SNDRV_PCM_FORMAT_S32_LE:
  690. width = RV_AIC1_WL_32;
  691. break;
  692. default:
  693. ret = -EINVAL;
  694. dev_err(component->dev, "Unsupported format width (%d)\n", ret);
  695. return ret;
  696. }
  697. ret = snd_soc_component_update_bits(component,
  698. R_AIC1, RM_AIC1_WL, width);
  699. if (ret < 0) {
  700. dev_err(component->dev,
  701. "Failed to set sample width (%d)\n", ret);
  702. return ret;
  703. }
  704. return 0;
  705. }
  706. static int setup_sample_rate(struct snd_soc_component *component,
  707. unsigned int rate)
  708. {
  709. struct tscs42xx *tscs42xx = snd_soc_component_get_drvdata(component);
  710. unsigned int br, bm;
  711. int ret;
  712. switch (rate) {
  713. case 8000:
  714. br = RV_DACSR_DBR_32;
  715. bm = RV_DACSR_DBM_PT25;
  716. break;
  717. case 16000:
  718. br = RV_DACSR_DBR_32;
  719. bm = RV_DACSR_DBM_PT5;
  720. break;
  721. case 24000:
  722. br = RV_DACSR_DBR_48;
  723. bm = RV_DACSR_DBM_PT5;
  724. break;
  725. case 32000:
  726. br = RV_DACSR_DBR_32;
  727. bm = RV_DACSR_DBM_1;
  728. break;
  729. case 48000:
  730. br = RV_DACSR_DBR_48;
  731. bm = RV_DACSR_DBM_1;
  732. break;
  733. case 96000:
  734. br = RV_DACSR_DBR_48;
  735. bm = RV_DACSR_DBM_2;
  736. break;
  737. case 11025:
  738. br = RV_DACSR_DBR_44_1;
  739. bm = RV_DACSR_DBM_PT25;
  740. break;
  741. case 22050:
  742. br = RV_DACSR_DBR_44_1;
  743. bm = RV_DACSR_DBM_PT5;
  744. break;
  745. case 44100:
  746. br = RV_DACSR_DBR_44_1;
  747. bm = RV_DACSR_DBM_1;
  748. break;
  749. case 88200:
  750. br = RV_DACSR_DBR_44_1;
  751. bm = RV_DACSR_DBM_2;
  752. break;
  753. default:
  754. dev_err(component->dev, "Unsupported sample rate %d\n", rate);
  755. return -EINVAL;
  756. }
  757. /* DAC and ADC share bit and frame clock */
  758. ret = snd_soc_component_update_bits(component,
  759. R_DACSR, RM_DACSR_DBR, br);
  760. if (ret < 0) {
  761. dev_err(component->dev,
  762. "Failed to update register (%d)\n", ret);
  763. return ret;
  764. }
  765. ret = snd_soc_component_update_bits(component,
  766. R_DACSR, RM_DACSR_DBM, bm);
  767. if (ret < 0) {
  768. dev_err(component->dev,
  769. "Failed to update register (%d)\n", ret);
  770. return ret;
  771. }
  772. ret = snd_soc_component_update_bits(component,
  773. R_ADCSR, RM_DACSR_DBR, br);
  774. if (ret < 0) {
  775. dev_err(component->dev,
  776. "Failed to update register (%d)\n", ret);
  777. return ret;
  778. }
  779. ret = snd_soc_component_update_bits(component,
  780. R_ADCSR, RM_DACSR_DBM, bm);
  781. if (ret < 0) {
  782. dev_err(component->dev,
  783. "Failed to update register (%d)\n", ret);
  784. return ret;
  785. }
  786. mutex_lock(&tscs42xx->audio_params_lock);
  787. tscs42xx->samplerate = rate;
  788. mutex_unlock(&tscs42xx->audio_params_lock);
  789. return 0;
  790. }
  791. struct reg_setting {
  792. unsigned int addr;
  793. unsigned int val;
  794. unsigned int mask;
  795. };
  796. #define PLL_REG_SETTINGS_COUNT 13
  797. struct pll_ctl {
  798. int input_freq;
  799. struct reg_setting settings[PLL_REG_SETTINGS_COUNT];
  800. };
  801. #define PLL_CTL(f, rt, rd, r1b_l, r9, ra, rb, \
  802. rc, r12, r1b_h, re, rf, r10, r11) \
  803. { \
  804. .input_freq = f, \
  805. .settings = { \
  806. {R_TIMEBASE, rt, 0xFF}, \
  807. {R_PLLCTLD, rd, 0xFF}, \
  808. {R_PLLCTL1B, r1b_l, 0x0F}, \
  809. {R_PLLCTL9, r9, 0xFF}, \
  810. {R_PLLCTLA, ra, 0xFF}, \
  811. {R_PLLCTLB, rb, 0xFF}, \
  812. {R_PLLCTLC, rc, 0xFF}, \
  813. {R_PLLCTL12, r12, 0xFF}, \
  814. {R_PLLCTL1B, r1b_h, 0xF0}, \
  815. {R_PLLCTLE, re, 0xFF}, \
  816. {R_PLLCTLF, rf, 0xFF}, \
  817. {R_PLLCTL10, r10, 0xFF}, \
  818. {R_PLLCTL11, r11, 0xFF}, \
  819. }, \
  820. }
  821. static const struct pll_ctl pll_ctls[] = {
  822. PLL_CTL(1411200, 0x05,
  823. 0x39, 0x04, 0x07, 0x02, 0xC3, 0x04,
  824. 0x1B, 0x10, 0x03, 0x03, 0xD0, 0x02),
  825. PLL_CTL(1536000, 0x05,
  826. 0x1A, 0x04, 0x02, 0x03, 0xE0, 0x01,
  827. 0x1A, 0x10, 0x02, 0x03, 0xB9, 0x01),
  828. PLL_CTL(2822400, 0x0A,
  829. 0x23, 0x04, 0x07, 0x04, 0xC3, 0x04,
  830. 0x22, 0x10, 0x05, 0x03, 0x58, 0x02),
  831. PLL_CTL(3072000, 0x0B,
  832. 0x22, 0x04, 0x07, 0x03, 0x48, 0x03,
  833. 0x1A, 0x10, 0x04, 0x03, 0xB9, 0x01),
  834. PLL_CTL(5644800, 0x15,
  835. 0x23, 0x04, 0x0E, 0x04, 0xC3, 0x04,
  836. 0x1A, 0x10, 0x08, 0x03, 0xE0, 0x01),
  837. PLL_CTL(6144000, 0x17,
  838. 0x1A, 0x04, 0x08, 0x03, 0xE0, 0x01,
  839. 0x1A, 0x10, 0x08, 0x03, 0xB9, 0x01),
  840. PLL_CTL(12000000, 0x2E,
  841. 0x1B, 0x04, 0x19, 0x03, 0x00, 0x03,
  842. 0x2A, 0x10, 0x19, 0x05, 0x98, 0x04),
  843. PLL_CTL(19200000, 0x4A,
  844. 0x13, 0x04, 0x14, 0x03, 0x80, 0x01,
  845. 0x1A, 0x10, 0x19, 0x03, 0xB9, 0x01),
  846. PLL_CTL(22000000, 0x55,
  847. 0x2A, 0x04, 0x37, 0x05, 0x00, 0x06,
  848. 0x22, 0x10, 0x26, 0x03, 0x49, 0x02),
  849. PLL_CTL(22579200, 0x57,
  850. 0x22, 0x04, 0x31, 0x03, 0x20, 0x03,
  851. 0x1A, 0x10, 0x1D, 0x03, 0xB3, 0x01),
  852. PLL_CTL(24000000, 0x5D,
  853. 0x13, 0x04, 0x19, 0x03, 0x80, 0x01,
  854. 0x1B, 0x10, 0x19, 0x05, 0x4C, 0x02),
  855. PLL_CTL(24576000, 0x5F,
  856. 0x13, 0x04, 0x1D, 0x03, 0xB3, 0x01,
  857. 0x22, 0x10, 0x40, 0x03, 0x72, 0x03),
  858. PLL_CTL(27000000, 0x68,
  859. 0x22, 0x04, 0x4B, 0x03, 0x00, 0x04,
  860. 0x2A, 0x10, 0x7D, 0x03, 0x20, 0x06),
  861. PLL_CTL(36000000, 0x8C,
  862. 0x1B, 0x04, 0x4B, 0x03, 0x00, 0x03,
  863. 0x2A, 0x10, 0x7D, 0x03, 0x98, 0x04),
  864. PLL_CTL(25000000, 0x61,
  865. 0x1B, 0x04, 0x37, 0x03, 0x2B, 0x03,
  866. 0x1A, 0x10, 0x2A, 0x03, 0x39, 0x02),
  867. PLL_CTL(26000000, 0x65,
  868. 0x23, 0x04, 0x41, 0x05, 0x00, 0x06,
  869. 0x1A, 0x10, 0x26, 0x03, 0xEF, 0x01),
  870. PLL_CTL(12288000, 0x2F,
  871. 0x1A, 0x04, 0x12, 0x03, 0x1C, 0x02,
  872. 0x22, 0x10, 0x20, 0x03, 0x72, 0x03),
  873. PLL_CTL(40000000, 0x9B,
  874. 0x22, 0x08, 0x7D, 0x03, 0x80, 0x04,
  875. 0x23, 0x10, 0x7D, 0x05, 0xE4, 0x06),
  876. PLL_CTL(512000, 0x01,
  877. 0x22, 0x04, 0x01, 0x03, 0xD0, 0x02,
  878. 0x1B, 0x10, 0x01, 0x04, 0x72, 0x03),
  879. PLL_CTL(705600, 0x02,
  880. 0x22, 0x04, 0x02, 0x03, 0x15, 0x04,
  881. 0x22, 0x10, 0x01, 0x04, 0x80, 0x02),
  882. PLL_CTL(1024000, 0x03,
  883. 0x22, 0x04, 0x02, 0x03, 0xD0, 0x02,
  884. 0x1B, 0x10, 0x02, 0x04, 0x72, 0x03),
  885. PLL_CTL(2048000, 0x07,
  886. 0x22, 0x04, 0x04, 0x03, 0xD0, 0x02,
  887. 0x1B, 0x10, 0x04, 0x04, 0x72, 0x03),
  888. PLL_CTL(2400000, 0x08,
  889. 0x22, 0x04, 0x05, 0x03, 0x00, 0x03,
  890. 0x23, 0x10, 0x05, 0x05, 0x98, 0x04),
  891. };
  892. static const struct pll_ctl *get_pll_ctl(int input_freq)
  893. {
  894. int i;
  895. const struct pll_ctl *pll_ctl = NULL;
  896. for (i = 0; i < ARRAY_SIZE(pll_ctls); ++i)
  897. if (input_freq == pll_ctls[i].input_freq) {
  898. pll_ctl = &pll_ctls[i];
  899. break;
  900. }
  901. return pll_ctl;
  902. }
  903. static int set_pll_ctl_from_input_freq(struct snd_soc_component *component,
  904. const int input_freq)
  905. {
  906. int ret;
  907. int i;
  908. const struct pll_ctl *pll_ctl;
  909. pll_ctl = get_pll_ctl(input_freq);
  910. if (!pll_ctl) {
  911. ret = -EINVAL;
  912. dev_err(component->dev, "No PLL input entry for %d (%d)\n",
  913. input_freq, ret);
  914. return ret;
  915. }
  916. for (i = 0; i < PLL_REG_SETTINGS_COUNT; ++i) {
  917. ret = snd_soc_component_update_bits(component,
  918. pll_ctl->settings[i].addr,
  919. pll_ctl->settings[i].mask,
  920. pll_ctl->settings[i].val);
  921. if (ret < 0) {
  922. dev_err(component->dev, "Failed to set pll ctl (%d)\n",
  923. ret);
  924. return ret;
  925. }
  926. }
  927. return 0;
  928. }
  929. static int tscs42xx_hw_params(struct snd_pcm_substream *substream,
  930. struct snd_pcm_hw_params *params,
  931. struct snd_soc_dai *codec_dai)
  932. {
  933. struct snd_soc_component *component = codec_dai->component;
  934. int ret;
  935. ret = setup_sample_format(component, params_format(params));
  936. if (ret < 0) {
  937. dev_err(component->dev, "Failed to setup sample format (%d)\n",
  938. ret);
  939. return ret;
  940. }
  941. ret = setup_sample_rate(component, params_rate(params));
  942. if (ret < 0) {
  943. dev_err(component->dev,
  944. "Failed to setup sample rate (%d)\n", ret);
  945. return ret;
  946. }
  947. return 0;
  948. }
  949. static inline int dac_mute(struct snd_soc_component *component)
  950. {
  951. int ret;
  952. ret = snd_soc_component_update_bits(component,
  953. R_CNVRTR1, RM_CNVRTR1_DACMU,
  954. RV_CNVRTR1_DACMU_ENABLE);
  955. if (ret < 0) {
  956. dev_err(component->dev, "Failed to mute DAC (%d)\n",
  957. ret);
  958. return ret;
  959. }
  960. return 0;
  961. }
  962. static inline int dac_unmute(struct snd_soc_component *component)
  963. {
  964. int ret;
  965. ret = snd_soc_component_update_bits(component,
  966. R_CNVRTR1, RM_CNVRTR1_DACMU,
  967. RV_CNVRTR1_DACMU_DISABLE);
  968. if (ret < 0) {
  969. dev_err(component->dev, "Failed to unmute DAC (%d)\n",
  970. ret);
  971. return ret;
  972. }
  973. return 0;
  974. }
  975. static inline int adc_mute(struct snd_soc_component *component)
  976. {
  977. int ret;
  978. ret = snd_soc_component_update_bits(component,
  979. R_CNVRTR0, RM_CNVRTR0_ADCMU, RV_CNVRTR0_ADCMU_ENABLE);
  980. if (ret < 0) {
  981. dev_err(component->dev, "Failed to mute ADC (%d)\n",
  982. ret);
  983. return ret;
  984. }
  985. return 0;
  986. }
  987. static inline int adc_unmute(struct snd_soc_component *component)
  988. {
  989. int ret;
  990. ret = snd_soc_component_update_bits(component,
  991. R_CNVRTR0, RM_CNVRTR0_ADCMU, RV_CNVRTR0_ADCMU_DISABLE);
  992. if (ret < 0) {
  993. dev_err(component->dev, "Failed to unmute ADC (%d)\n",
  994. ret);
  995. return ret;
  996. }
  997. return 0;
  998. }
  999. static int tscs42xx_mute_stream(struct snd_soc_dai *dai, int mute, int stream)
  1000. {
  1001. struct snd_soc_component *component = dai->component;
  1002. int ret;
  1003. if (mute)
  1004. if (stream == SNDRV_PCM_STREAM_PLAYBACK)
  1005. ret = dac_mute(component);
  1006. else
  1007. ret = adc_mute(component);
  1008. else
  1009. if (stream == SNDRV_PCM_STREAM_PLAYBACK)
  1010. ret = dac_unmute(component);
  1011. else
  1012. ret = adc_unmute(component);
  1013. return ret;
  1014. }
  1015. static int tscs42xx_set_dai_fmt(struct snd_soc_dai *codec_dai,
  1016. unsigned int fmt)
  1017. {
  1018. struct snd_soc_component *component = codec_dai->component;
  1019. int ret;
  1020. /* Consumer mode not supported since it needs always-on frame clock */
  1021. switch (fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) {
  1022. case SND_SOC_DAIFMT_CBP_CFP:
  1023. ret = snd_soc_component_update_bits(component,
  1024. R_AIC1, RM_AIC1_MS, RV_AIC1_MS_MASTER);
  1025. if (ret < 0) {
  1026. dev_err(component->dev,
  1027. "Failed to set codec DAI master (%d)\n", ret);
  1028. return ret;
  1029. }
  1030. break;
  1031. default:
  1032. ret = -EINVAL;
  1033. dev_err(component->dev, "Unsupported format (%d)\n", ret);
  1034. return ret;
  1035. }
  1036. return 0;
  1037. }
  1038. static int tscs42xx_set_dai_bclk_ratio(struct snd_soc_dai *codec_dai,
  1039. unsigned int ratio)
  1040. {
  1041. struct snd_soc_component *component = codec_dai->component;
  1042. struct tscs42xx *tscs42xx = snd_soc_component_get_drvdata(component);
  1043. unsigned int value;
  1044. int ret = 0;
  1045. switch (ratio) {
  1046. case 32:
  1047. value = RV_DACSR_DBCM_32;
  1048. break;
  1049. case 40:
  1050. value = RV_DACSR_DBCM_40;
  1051. break;
  1052. case 64:
  1053. value = RV_DACSR_DBCM_64;
  1054. break;
  1055. default:
  1056. dev_err(component->dev, "Unsupported bclk ratio (%d)\n", ret);
  1057. return -EINVAL;
  1058. }
  1059. ret = snd_soc_component_update_bits(component,
  1060. R_DACSR, RM_DACSR_DBCM, value);
  1061. if (ret < 0) {
  1062. dev_err(component->dev,
  1063. "Failed to set DAC BCLK ratio (%d)\n", ret);
  1064. return ret;
  1065. }
  1066. ret = snd_soc_component_update_bits(component,
  1067. R_ADCSR, RM_ADCSR_ABCM, value);
  1068. if (ret < 0) {
  1069. dev_err(component->dev,
  1070. "Failed to set ADC BCLK ratio (%d)\n", ret);
  1071. return ret;
  1072. }
  1073. mutex_lock(&tscs42xx->audio_params_lock);
  1074. tscs42xx->bclk_ratio = ratio;
  1075. mutex_unlock(&tscs42xx->audio_params_lock);
  1076. return 0;
  1077. }
  1078. static const struct snd_soc_dai_ops tscs42xx_dai_ops = {
  1079. .hw_params = tscs42xx_hw_params,
  1080. .mute_stream = tscs42xx_mute_stream,
  1081. .set_fmt = tscs42xx_set_dai_fmt,
  1082. .set_bclk_ratio = tscs42xx_set_dai_bclk_ratio,
  1083. };
  1084. static int part_is_valid(struct tscs42xx *tscs42xx)
  1085. {
  1086. int val;
  1087. int ret;
  1088. unsigned int reg;
  1089. ret = regmap_read(tscs42xx->regmap, R_DEVIDH, &reg);
  1090. if (ret < 0)
  1091. return ret;
  1092. val = reg << 8;
  1093. ret = regmap_read(tscs42xx->regmap, R_DEVIDL, &reg);
  1094. if (ret < 0)
  1095. return ret;
  1096. val |= reg;
  1097. switch (val) {
  1098. case 0x4A74:
  1099. case 0x4A73:
  1100. return true;
  1101. default:
  1102. return false;
  1103. }
  1104. }
  1105. static int set_sysclk(struct snd_soc_component *component)
  1106. {
  1107. struct tscs42xx *tscs42xx = snd_soc_component_get_drvdata(component);
  1108. unsigned long freq;
  1109. int ret;
  1110. switch (tscs42xx->sysclk_src_id) {
  1111. case TSCS42XX_PLL_SRC_XTAL:
  1112. case TSCS42XX_PLL_SRC_MCLK1:
  1113. ret = snd_soc_component_write(component, R_PLLREFSEL,
  1114. RV_PLLREFSEL_PLL1_REF_SEL_XTAL_MCLK1 |
  1115. RV_PLLREFSEL_PLL2_REF_SEL_XTAL_MCLK1);
  1116. if (ret < 0) {
  1117. dev_err(component->dev,
  1118. "Failed to set pll reference input (%d)\n",
  1119. ret);
  1120. return ret;
  1121. }
  1122. break;
  1123. case TSCS42XX_PLL_SRC_MCLK2:
  1124. ret = snd_soc_component_write(component, R_PLLREFSEL,
  1125. RV_PLLREFSEL_PLL1_REF_SEL_MCLK2 |
  1126. RV_PLLREFSEL_PLL2_REF_SEL_MCLK2);
  1127. if (ret < 0) {
  1128. dev_err(component->dev,
  1129. "Failed to set PLL reference (%d)\n", ret);
  1130. return ret;
  1131. }
  1132. break;
  1133. default:
  1134. dev_err(component->dev, "pll src is unsupported\n");
  1135. return -EINVAL;
  1136. }
  1137. freq = clk_get_rate(tscs42xx->sysclk);
  1138. ret = set_pll_ctl_from_input_freq(component, freq);
  1139. if (ret < 0) {
  1140. dev_err(component->dev,
  1141. "Failed to setup PLL input freq (%d)\n", ret);
  1142. return ret;
  1143. }
  1144. return 0;
  1145. }
  1146. static int tscs42xx_probe(struct snd_soc_component *component)
  1147. {
  1148. return set_sysclk(component);
  1149. }
  1150. static const struct snd_soc_component_driver soc_codec_dev_tscs42xx = {
  1151. .probe = tscs42xx_probe,
  1152. .dapm_widgets = tscs42xx_dapm_widgets,
  1153. .num_dapm_widgets = ARRAY_SIZE(tscs42xx_dapm_widgets),
  1154. .dapm_routes = tscs42xx_intercon,
  1155. .num_dapm_routes = ARRAY_SIZE(tscs42xx_intercon),
  1156. .controls = tscs42xx_snd_controls,
  1157. .num_controls = ARRAY_SIZE(tscs42xx_snd_controls),
  1158. .idle_bias_on = 1,
  1159. .use_pmdown_time = 1,
  1160. .endianness = 1,
  1161. };
  1162. static inline void init_coeff_ram_cache(struct tscs42xx *tscs42xx)
  1163. {
  1164. static const u8 norm_addrs[] = {
  1165. 0x00, 0x05, 0x0a, 0x0f, 0x14, 0x19, 0x1f, 0x20, 0x25, 0x2a,
  1166. 0x2f, 0x34, 0x39, 0x3f, 0x40, 0x45, 0x4a, 0x4f, 0x54, 0x59,
  1167. 0x5f, 0x60, 0x65, 0x6a, 0x6f, 0x74, 0x79, 0x7f, 0x80, 0x85,
  1168. 0x8c, 0x91, 0x96, 0x97, 0x9c, 0xa3, 0xa8, 0xad, 0xaf, 0xb0,
  1169. 0xb5, 0xba, 0xbf, 0xc4, 0xc9,
  1170. };
  1171. u8 *coeff_ram = tscs42xx->coeff_ram;
  1172. int i;
  1173. for (i = 0; i < ARRAY_SIZE(norm_addrs); i++)
  1174. coeff_ram[((norm_addrs[i] + 1) * COEFF_SIZE) - 1] = 0x40;
  1175. }
  1176. #define TSCS42XX_RATES SNDRV_PCM_RATE_8000_96000
  1177. #define TSCS42XX_FORMATS (SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S20_3LE \
  1178. | SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S32_LE)
  1179. static struct snd_soc_dai_driver tscs42xx_dai = {
  1180. .name = "tscs42xx-HiFi",
  1181. .playback = {
  1182. .stream_name = "HiFi Playback",
  1183. .channels_min = 2,
  1184. .channels_max = 2,
  1185. .rates = TSCS42XX_RATES,
  1186. .formats = TSCS42XX_FORMATS,},
  1187. .capture = {
  1188. .stream_name = "HiFi Capture",
  1189. .channels_min = 2,
  1190. .channels_max = 2,
  1191. .rates = TSCS42XX_RATES,
  1192. .formats = TSCS42XX_FORMATS,},
  1193. .ops = &tscs42xx_dai_ops,
  1194. .symmetric_rate = 1,
  1195. .symmetric_channels = 1,
  1196. .symmetric_sample_bits = 1,
  1197. };
  1198. static const struct reg_sequence tscs42xx_patch[] = {
  1199. { R_AIC2, RV_AIC2_BLRCM_DAC_BCLK_LRCLK_SHARED },
  1200. };
  1201. static char const * const src_names[TSCS42XX_PLL_SRC_CNT] = {
  1202. "xtal", "mclk1", "mclk2"};
  1203. static int tscs42xx_i2c_probe(struct i2c_client *i2c)
  1204. {
  1205. struct tscs42xx *tscs42xx;
  1206. int src;
  1207. int ret;
  1208. tscs42xx = devm_kzalloc(&i2c->dev, sizeof(*tscs42xx), GFP_KERNEL);
  1209. if (!tscs42xx) {
  1210. ret = -ENOMEM;
  1211. dev_err(&i2c->dev,
  1212. "Failed to allocate memory for data (%d)\n", ret);
  1213. return ret;
  1214. }
  1215. i2c_set_clientdata(i2c, tscs42xx);
  1216. for (src = TSCS42XX_PLL_SRC_XTAL; src < TSCS42XX_PLL_SRC_CNT; src++) {
  1217. tscs42xx->sysclk = devm_clk_get(&i2c->dev, src_names[src]);
  1218. if (!IS_ERR(tscs42xx->sysclk)) {
  1219. break;
  1220. } else if (PTR_ERR(tscs42xx->sysclk) != -ENOENT) {
  1221. ret = PTR_ERR(tscs42xx->sysclk);
  1222. dev_err(&i2c->dev, "Failed to get sysclk (%d)\n", ret);
  1223. return ret;
  1224. }
  1225. }
  1226. if (src == TSCS42XX_PLL_SRC_CNT) {
  1227. ret = -EINVAL;
  1228. dev_err(&i2c->dev, "Failed to get a valid clock name (%d)\n",
  1229. ret);
  1230. return ret;
  1231. }
  1232. tscs42xx->sysclk_src_id = src;
  1233. tscs42xx->regmap = devm_regmap_init_i2c(i2c, &tscs42xx_regmap);
  1234. if (IS_ERR(tscs42xx->regmap)) {
  1235. ret = PTR_ERR(tscs42xx->regmap);
  1236. dev_err(&i2c->dev, "Failed to allocate regmap (%d)\n", ret);
  1237. return ret;
  1238. }
  1239. init_coeff_ram_cache(tscs42xx);
  1240. ret = part_is_valid(tscs42xx);
  1241. if (ret <= 0) {
  1242. dev_err(&i2c->dev, "No valid part (%d)\n", ret);
  1243. ret = -ENODEV;
  1244. return ret;
  1245. }
  1246. ret = regmap_write(tscs42xx->regmap, R_RESET, RV_RESET_ENABLE);
  1247. if (ret < 0) {
  1248. dev_err(&i2c->dev, "Failed to reset device (%d)\n", ret);
  1249. return ret;
  1250. }
  1251. ret = regmap_register_patch(tscs42xx->regmap, tscs42xx_patch,
  1252. ARRAY_SIZE(tscs42xx_patch));
  1253. if (ret < 0) {
  1254. dev_err(&i2c->dev, "Failed to apply patch (%d)\n", ret);
  1255. return ret;
  1256. }
  1257. mutex_init(&tscs42xx->audio_params_lock);
  1258. mutex_init(&tscs42xx->coeff_ram_lock);
  1259. mutex_init(&tscs42xx->pll_lock);
  1260. ret = devm_snd_soc_register_component(&i2c->dev,
  1261. &soc_codec_dev_tscs42xx, &tscs42xx_dai, 1);
  1262. if (ret) {
  1263. dev_err(&i2c->dev, "Failed to register codec (%d)\n", ret);
  1264. return ret;
  1265. }
  1266. return 0;
  1267. }
  1268. static const struct i2c_device_id tscs42xx_i2c_id[] = {
  1269. { "tscs42A1", 0 },
  1270. { "tscs42A2", 0 },
  1271. { }
  1272. };
  1273. MODULE_DEVICE_TABLE(i2c, tscs42xx_i2c_id);
  1274. static const struct of_device_id tscs42xx_of_match[] = {
  1275. { .compatible = "tempo,tscs42A1", },
  1276. { .compatible = "tempo,tscs42A2", },
  1277. { }
  1278. };
  1279. MODULE_DEVICE_TABLE(of, tscs42xx_of_match);
  1280. static struct i2c_driver tscs42xx_i2c_driver = {
  1281. .driver = {
  1282. .name = "tscs42xx",
  1283. .of_match_table = tscs42xx_of_match,
  1284. },
  1285. .probe_new = tscs42xx_i2c_probe,
  1286. .id_table = tscs42xx_i2c_id,
  1287. };
  1288. module_i2c_driver(tscs42xx_i2c_driver);
  1289. MODULE_AUTHOR("Tempo Semiconductor <[email protected]");
  1290. MODULE_DESCRIPTION("ASoC TSCS42xx driver");
  1291. MODULE_LICENSE("GPL");