rt700-sdw.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579
  1. // SPDX-License-Identifier: GPL-2.0
  2. //
  3. // rt700-sdw.c -- rt700 ALSA SoC audio driver
  4. //
  5. // Copyright(c) 2019 Realtek Semiconductor Corp.
  6. //
  7. //
  8. #include <linux/delay.h>
  9. #include <linux/device.h>
  10. #include <linux/mod_devicetable.h>
  11. #include <linux/soundwire/sdw.h>
  12. #include <linux/soundwire/sdw_type.h>
  13. #include <linux/soundwire/sdw_registers.h>
  14. #include <linux/module.h>
  15. #include <linux/pm_runtime.h>
  16. #include <linux/regmap.h>
  17. #include <sound/soc.h>
  18. #include "rt700.h"
  19. #include "rt700-sdw.h"
  20. static bool rt700_readable_register(struct device *dev, unsigned int reg)
  21. {
  22. switch (reg) {
  23. case 0x00e0:
  24. case 0x00f0:
  25. case 0x2000 ... 0x200e:
  26. case 0x2012 ... 0x2016:
  27. case 0x201a ... 0x2027:
  28. case 0x2029 ... 0x202a:
  29. case 0x202d ... 0x2034:
  30. case 0x2200 ... 0x2204:
  31. case 0x2206 ... 0x2212:
  32. case 0x2220 ... 0x2223:
  33. case 0x2230 ... 0x2231:
  34. case 0x3000 ... 0x3fff:
  35. case 0x7000 ... 0x7fff:
  36. case 0x8300 ... 0x83ff:
  37. case 0x9c00 ... 0x9cff:
  38. case 0xb900 ... 0xb9ff:
  39. case 0x75201a:
  40. case 0x752045:
  41. case 0x752046:
  42. case 0x752048:
  43. case 0x75204a:
  44. case 0x75206b:
  45. case 0x752080:
  46. case 0x752081:
  47. return true;
  48. default:
  49. return false;
  50. }
  51. }
  52. static bool rt700_volatile_register(struct device *dev, unsigned int reg)
  53. {
  54. switch (reg) {
  55. case 0x2009:
  56. case 0x2016:
  57. case 0x201b:
  58. case 0x201c:
  59. case 0x201d:
  60. case 0x201f:
  61. case 0x2021:
  62. case 0x2023:
  63. case 0x2230:
  64. case 0x200b ... 0x200e: /* i2c read */
  65. case 0x2012 ... 0x2015: /* HD-A read */
  66. case 0x202d ... 0x202f: /* BRA */
  67. case 0x2201 ... 0x2212: /* i2c debug */
  68. case 0x2220 ... 0x2223: /* decoded HD-A */
  69. case 0x9c00 ... 0x9cff:
  70. case 0xb900 ... 0xb9ff:
  71. case 0xff01:
  72. case 0x75201a:
  73. case 0x752046:
  74. case 0x752080:
  75. case 0x752081:
  76. return true;
  77. default:
  78. return false;
  79. }
  80. }
  81. static int rt700_sdw_read(void *context, unsigned int reg, unsigned int *val)
  82. {
  83. struct device *dev = context;
  84. struct rt700_priv *rt700 = dev_get_drvdata(dev);
  85. unsigned int sdw_data_3, sdw_data_2, sdw_data_1, sdw_data_0;
  86. unsigned int reg2 = 0, reg3 = 0, reg4 = 0, mask, nid, val2;
  87. unsigned int is_hda_reg = 1, is_index_reg = 0;
  88. int ret;
  89. if (reg > 0xffff)
  90. is_index_reg = 1;
  91. mask = reg & 0xf000;
  92. if (is_index_reg) { /* index registers */
  93. val2 = reg & 0xff;
  94. reg = reg >> 8;
  95. nid = reg & 0xff;
  96. ret = regmap_write(rt700->sdw_regmap, reg, 0);
  97. if (ret < 0)
  98. return ret;
  99. reg2 = reg + 0x1000;
  100. reg2 |= 0x80;
  101. ret = regmap_write(rt700->sdw_regmap, reg2, val2);
  102. if (ret < 0)
  103. return ret;
  104. reg3 = RT700_PRIV_DATA_R_H | nid;
  105. ret = regmap_write(rt700->sdw_regmap,
  106. reg3, ((*val >> 8) & 0xff));
  107. if (ret < 0)
  108. return ret;
  109. reg4 = reg3 + 0x1000;
  110. reg4 |= 0x80;
  111. ret = regmap_write(rt700->sdw_regmap, reg4, (*val & 0xff));
  112. if (ret < 0)
  113. return ret;
  114. } else if (mask == 0x3000) {
  115. reg += 0x8000;
  116. ret = regmap_write(rt700->sdw_regmap, reg, *val);
  117. if (ret < 0)
  118. return ret;
  119. } else if (mask == 0x7000) {
  120. reg += 0x2000;
  121. reg |= 0x800;
  122. ret = regmap_write(rt700->sdw_regmap,
  123. reg, ((*val >> 8) & 0xff));
  124. if (ret < 0)
  125. return ret;
  126. reg2 = reg + 0x1000;
  127. reg2 |= 0x80;
  128. ret = regmap_write(rt700->sdw_regmap, reg2, (*val & 0xff));
  129. if (ret < 0)
  130. return ret;
  131. } else if ((reg & 0xff00) == 0x8300) { /* for R channel */
  132. reg2 = reg - 0x1000;
  133. reg2 &= ~0x80;
  134. ret = regmap_write(rt700->sdw_regmap,
  135. reg2, ((*val >> 8) & 0xff));
  136. if (ret < 0)
  137. return ret;
  138. ret = regmap_write(rt700->sdw_regmap, reg, (*val & 0xff));
  139. if (ret < 0)
  140. return ret;
  141. } else if (mask == 0x9000) {
  142. ret = regmap_write(rt700->sdw_regmap,
  143. reg, ((*val >> 8) & 0xff));
  144. if (ret < 0)
  145. return ret;
  146. reg2 = reg + 0x1000;
  147. reg2 |= 0x80;
  148. ret = regmap_write(rt700->sdw_regmap, reg2, (*val & 0xff));
  149. if (ret < 0)
  150. return ret;
  151. } else if (mask == 0xb000) {
  152. ret = regmap_write(rt700->sdw_regmap, reg, *val);
  153. if (ret < 0)
  154. return ret;
  155. } else {
  156. ret = regmap_read(rt700->sdw_regmap, reg, val);
  157. if (ret < 0)
  158. return ret;
  159. is_hda_reg = 0;
  160. }
  161. if (is_hda_reg || is_index_reg) {
  162. sdw_data_3 = 0;
  163. sdw_data_2 = 0;
  164. sdw_data_1 = 0;
  165. sdw_data_0 = 0;
  166. ret = regmap_read(rt700->sdw_regmap,
  167. RT700_READ_HDA_3, &sdw_data_3);
  168. if (ret < 0)
  169. return ret;
  170. ret = regmap_read(rt700->sdw_regmap,
  171. RT700_READ_HDA_2, &sdw_data_2);
  172. if (ret < 0)
  173. return ret;
  174. ret = regmap_read(rt700->sdw_regmap,
  175. RT700_READ_HDA_1, &sdw_data_1);
  176. if (ret < 0)
  177. return ret;
  178. ret = regmap_read(rt700->sdw_regmap,
  179. RT700_READ_HDA_0, &sdw_data_0);
  180. if (ret < 0)
  181. return ret;
  182. *val = ((sdw_data_3 & 0xff) << 24) |
  183. ((sdw_data_2 & 0xff) << 16) |
  184. ((sdw_data_1 & 0xff) << 8) | (sdw_data_0 & 0xff);
  185. }
  186. if (is_hda_reg == 0)
  187. dev_dbg(dev, "[%s] %04x => %08x\n", __func__, reg, *val);
  188. else if (is_index_reg)
  189. dev_dbg(dev, "[%s] %04x %04x %04x %04x => %08x\n",
  190. __func__, reg, reg2, reg3, reg4, *val);
  191. else
  192. dev_dbg(dev, "[%s] %04x %04x => %08x\n",
  193. __func__, reg, reg2, *val);
  194. return 0;
  195. }
  196. static int rt700_sdw_write(void *context, unsigned int reg, unsigned int val)
  197. {
  198. struct device *dev = context;
  199. struct rt700_priv *rt700 = dev_get_drvdata(dev);
  200. unsigned int reg2 = 0, reg3, reg4, nid, mask, val2;
  201. unsigned int is_index_reg = 0;
  202. int ret;
  203. if (reg > 0xffff)
  204. is_index_reg = 1;
  205. mask = reg & 0xf000;
  206. if (is_index_reg) { /* index registers */
  207. val2 = reg & 0xff;
  208. reg = reg >> 8;
  209. nid = reg & 0xff;
  210. ret = regmap_write(rt700->sdw_regmap, reg, 0);
  211. if (ret < 0)
  212. return ret;
  213. reg2 = reg + 0x1000;
  214. reg2 |= 0x80;
  215. ret = regmap_write(rt700->sdw_regmap, reg2, val2);
  216. if (ret < 0)
  217. return ret;
  218. reg3 = RT700_PRIV_DATA_W_H | nid;
  219. ret = regmap_write(rt700->sdw_regmap,
  220. reg3, ((val >> 8) & 0xff));
  221. if (ret < 0)
  222. return ret;
  223. reg4 = reg3 + 0x1000;
  224. reg4 |= 0x80;
  225. ret = regmap_write(rt700->sdw_regmap, reg4, (val & 0xff));
  226. if (ret < 0)
  227. return ret;
  228. is_index_reg = 1;
  229. } else if (reg < 0x4fff) {
  230. ret = regmap_write(rt700->sdw_regmap, reg, val);
  231. if (ret < 0)
  232. return ret;
  233. } else if (reg == 0xff01) {
  234. ret = regmap_write(rt700->sdw_regmap, reg, val);
  235. if (ret < 0)
  236. return ret;
  237. } else if (mask == 0x7000) {
  238. ret = regmap_write(rt700->sdw_regmap,
  239. reg, ((val >> 8) & 0xff));
  240. if (ret < 0)
  241. return ret;
  242. reg2 = reg + 0x1000;
  243. reg2 |= 0x80;
  244. ret = regmap_write(rt700->sdw_regmap, reg2, (val & 0xff));
  245. if (ret < 0)
  246. return ret;
  247. } else if ((reg & 0xff00) == 0x8300) { /* for R channel */
  248. reg2 = reg - 0x1000;
  249. reg2 &= ~0x80;
  250. ret = regmap_write(rt700->sdw_regmap,
  251. reg2, ((val >> 8) & 0xff));
  252. if (ret < 0)
  253. return ret;
  254. ret = regmap_write(rt700->sdw_regmap, reg, (val & 0xff));
  255. if (ret < 0)
  256. return ret;
  257. }
  258. if (reg2 == 0)
  259. dev_dbg(dev, "[%s] %04x <= %04x\n", __func__, reg, val);
  260. else if (is_index_reg)
  261. dev_dbg(dev, "[%s] %04x %04x %04x %04x <= %04x %04x\n",
  262. __func__, reg, reg2, reg3, reg4, val2, val);
  263. else
  264. dev_dbg(dev, "[%s] %04x %04x <= %04x\n",
  265. __func__, reg, reg2, val);
  266. return 0;
  267. }
  268. static const struct regmap_config rt700_regmap = {
  269. .reg_bits = 24,
  270. .val_bits = 32,
  271. .readable_reg = rt700_readable_register,
  272. .volatile_reg = rt700_volatile_register,
  273. .max_register = 0x755800,
  274. .reg_defaults = rt700_reg_defaults,
  275. .num_reg_defaults = ARRAY_SIZE(rt700_reg_defaults),
  276. .cache_type = REGCACHE_RBTREE,
  277. .use_single_read = true,
  278. .use_single_write = true,
  279. .reg_read = rt700_sdw_read,
  280. .reg_write = rt700_sdw_write,
  281. };
  282. static const struct regmap_config rt700_sdw_regmap = {
  283. .name = "sdw",
  284. .reg_bits = 32,
  285. .val_bits = 8,
  286. .readable_reg = rt700_readable_register,
  287. .max_register = 0xff01,
  288. .cache_type = REGCACHE_NONE,
  289. .use_single_read = true,
  290. .use_single_write = true,
  291. };
  292. static int rt700_update_status(struct sdw_slave *slave,
  293. enum sdw_slave_status status)
  294. {
  295. struct rt700_priv *rt700 = dev_get_drvdata(&slave->dev);
  296. /* Update the status */
  297. rt700->status = status;
  298. if (status == SDW_SLAVE_UNATTACHED)
  299. rt700->hw_init = false;
  300. /*
  301. * Perform initialization only if slave status is present and
  302. * hw_init flag is false
  303. */
  304. if (rt700->hw_init || rt700->status != SDW_SLAVE_ATTACHED)
  305. return 0;
  306. /* perform I/O transfers required for Slave initialization */
  307. return rt700_io_init(&slave->dev, slave);
  308. }
  309. static int rt700_read_prop(struct sdw_slave *slave)
  310. {
  311. struct sdw_slave_prop *prop = &slave->prop;
  312. int nval, i;
  313. u32 bit;
  314. unsigned long addr;
  315. struct sdw_dpn_prop *dpn;
  316. prop->scp_int1_mask = SDW_SCP_INT1_IMPL_DEF | SDW_SCP_INT1_BUS_CLASH |
  317. SDW_SCP_INT1_PARITY;
  318. prop->quirks = SDW_SLAVE_QUIRKS_INVALID_INITIAL_PARITY;
  319. prop->paging_support = false;
  320. /* first we need to allocate memory for set bits in port lists */
  321. prop->source_ports = 0x14; /* BITMAP: 00010100 */
  322. prop->sink_ports = 0xA; /* BITMAP: 00001010 */
  323. nval = hweight32(prop->source_ports);
  324. prop->src_dpn_prop = devm_kcalloc(&slave->dev, nval,
  325. sizeof(*prop->src_dpn_prop),
  326. GFP_KERNEL);
  327. if (!prop->src_dpn_prop)
  328. return -ENOMEM;
  329. i = 0;
  330. dpn = prop->src_dpn_prop;
  331. addr = prop->source_ports;
  332. for_each_set_bit(bit, &addr, 32) {
  333. dpn[i].num = bit;
  334. dpn[i].type = SDW_DPN_FULL;
  335. dpn[i].simple_ch_prep_sm = true;
  336. dpn[i].ch_prep_timeout = 10;
  337. i++;
  338. }
  339. /* do this again for sink now */
  340. nval = hweight32(prop->sink_ports);
  341. prop->sink_dpn_prop = devm_kcalloc(&slave->dev, nval,
  342. sizeof(*prop->sink_dpn_prop),
  343. GFP_KERNEL);
  344. if (!prop->sink_dpn_prop)
  345. return -ENOMEM;
  346. i = 0;
  347. dpn = prop->sink_dpn_prop;
  348. addr = prop->sink_ports;
  349. for_each_set_bit(bit, &addr, 32) {
  350. dpn[i].num = bit;
  351. dpn[i].type = SDW_DPN_FULL;
  352. dpn[i].simple_ch_prep_sm = true;
  353. dpn[i].ch_prep_timeout = 10;
  354. i++;
  355. }
  356. /* set the timeout values */
  357. prop->clk_stop_timeout = 20;
  358. /* wake-up event */
  359. prop->wake_capable = 1;
  360. return 0;
  361. }
  362. static int rt700_bus_config(struct sdw_slave *slave,
  363. struct sdw_bus_params *params)
  364. {
  365. struct rt700_priv *rt700 = dev_get_drvdata(&slave->dev);
  366. int ret;
  367. memcpy(&rt700->params, params, sizeof(*params));
  368. ret = rt700_clock_config(&slave->dev);
  369. if (ret < 0)
  370. dev_err(&slave->dev, "Invalid clk config");
  371. return ret;
  372. }
  373. static int rt700_interrupt_callback(struct sdw_slave *slave,
  374. struct sdw_slave_intr_status *status)
  375. {
  376. struct rt700_priv *rt700 = dev_get_drvdata(&slave->dev);
  377. dev_dbg(&slave->dev,
  378. "%s control_port_stat=%x", __func__, status->control_port);
  379. mutex_lock(&rt700->disable_irq_lock);
  380. if (status->control_port & 0x4 && !rt700->disable_irq) {
  381. mod_delayed_work(system_power_efficient_wq,
  382. &rt700->jack_detect_work, msecs_to_jiffies(250));
  383. }
  384. mutex_unlock(&rt700->disable_irq_lock);
  385. return 0;
  386. }
  387. /*
  388. * slave_ops: callbacks for get_clock_stop_mode, clock_stop and
  389. * port_prep are not defined for now
  390. */
  391. static const struct sdw_slave_ops rt700_slave_ops = {
  392. .read_prop = rt700_read_prop,
  393. .interrupt_callback = rt700_interrupt_callback,
  394. .update_status = rt700_update_status,
  395. .bus_config = rt700_bus_config,
  396. };
  397. static int rt700_sdw_probe(struct sdw_slave *slave,
  398. const struct sdw_device_id *id)
  399. {
  400. struct regmap *sdw_regmap, *regmap;
  401. /* Regmap Initialization */
  402. sdw_regmap = devm_regmap_init_sdw(slave, &rt700_sdw_regmap);
  403. if (IS_ERR(sdw_regmap))
  404. return PTR_ERR(sdw_regmap);
  405. regmap = devm_regmap_init(&slave->dev, NULL,
  406. &slave->dev, &rt700_regmap);
  407. if (IS_ERR(regmap))
  408. return PTR_ERR(regmap);
  409. rt700_init(&slave->dev, sdw_regmap, regmap, slave);
  410. return 0;
  411. }
  412. static int rt700_sdw_remove(struct sdw_slave *slave)
  413. {
  414. struct rt700_priv *rt700 = dev_get_drvdata(&slave->dev);
  415. if (rt700->hw_init) {
  416. cancel_delayed_work_sync(&rt700->jack_detect_work);
  417. cancel_delayed_work_sync(&rt700->jack_btn_check_work);
  418. }
  419. if (rt700->first_hw_init)
  420. pm_runtime_disable(&slave->dev);
  421. return 0;
  422. }
  423. static const struct sdw_device_id rt700_id[] = {
  424. SDW_SLAVE_ENTRY_EXT(0x025d, 0x700, 0x1, 0, 0),
  425. {},
  426. };
  427. MODULE_DEVICE_TABLE(sdw, rt700_id);
  428. static int __maybe_unused rt700_dev_suspend(struct device *dev)
  429. {
  430. struct rt700_priv *rt700 = dev_get_drvdata(dev);
  431. if (!rt700->hw_init)
  432. return 0;
  433. cancel_delayed_work_sync(&rt700->jack_detect_work);
  434. cancel_delayed_work_sync(&rt700->jack_btn_check_work);
  435. regcache_cache_only(rt700->regmap, true);
  436. return 0;
  437. }
  438. static int __maybe_unused rt700_dev_system_suspend(struct device *dev)
  439. {
  440. struct sdw_slave *slave = dev_to_sdw_dev(dev);
  441. struct rt700_priv *rt700 = dev_get_drvdata(dev);
  442. int ret;
  443. if (!rt700->hw_init)
  444. return 0;
  445. /*
  446. * prevent new interrupts from being handled after the
  447. * deferred work completes and before the parent disables
  448. * interrupts on the link
  449. */
  450. mutex_lock(&rt700->disable_irq_lock);
  451. rt700->disable_irq = true;
  452. ret = sdw_update_no_pm(slave, SDW_SCP_INTMASK1,
  453. SDW_SCP_INT1_IMPL_DEF, 0);
  454. mutex_unlock(&rt700->disable_irq_lock);
  455. if (ret < 0) {
  456. /* log but don't prevent suspend from happening */
  457. dev_dbg(&slave->dev, "%s: could not disable imp-def interrupts\n:", __func__);
  458. }
  459. return rt700_dev_suspend(dev);
  460. }
  461. #define RT700_PROBE_TIMEOUT 5000
  462. static int __maybe_unused rt700_dev_resume(struct device *dev)
  463. {
  464. struct sdw_slave *slave = dev_to_sdw_dev(dev);
  465. struct rt700_priv *rt700 = dev_get_drvdata(dev);
  466. unsigned long time;
  467. if (!rt700->first_hw_init)
  468. return 0;
  469. if (!slave->unattach_request)
  470. goto regmap_sync;
  471. time = wait_for_completion_timeout(&slave->initialization_complete,
  472. msecs_to_jiffies(RT700_PROBE_TIMEOUT));
  473. if (!time) {
  474. dev_err(&slave->dev, "Initialization not complete, timed out\n");
  475. sdw_show_ping_status(slave->bus, true);
  476. return -ETIMEDOUT;
  477. }
  478. regmap_sync:
  479. slave->unattach_request = 0;
  480. regcache_cache_only(rt700->regmap, false);
  481. regcache_sync_region(rt700->regmap, 0x3000, 0x8fff);
  482. regcache_sync_region(rt700->regmap, 0x752010, 0x75206b);
  483. return 0;
  484. }
  485. static const struct dev_pm_ops rt700_pm = {
  486. SET_SYSTEM_SLEEP_PM_OPS(rt700_dev_system_suspend, rt700_dev_resume)
  487. SET_RUNTIME_PM_OPS(rt700_dev_suspend, rt700_dev_resume, NULL)
  488. };
  489. static struct sdw_driver rt700_sdw_driver = {
  490. .driver = {
  491. .name = "rt700",
  492. .owner = THIS_MODULE,
  493. .pm = &rt700_pm,
  494. },
  495. .probe = rt700_sdw_probe,
  496. .remove = rt700_sdw_remove,
  497. .ops = &rt700_slave_ops,
  498. .id_table = rt700_id,
  499. };
  500. module_sdw_driver(rt700_sdw_driver);
  501. MODULE_DESCRIPTION("ASoC RT700 driver SDW");
  502. MODULE_AUTHOR("Shuming Fan <[email protected]>");
  503. MODULE_LICENSE("GPL v2");