xsk_buff_pool.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681
  1. // SPDX-License-Identifier: GPL-2.0
  2. #include <net/xsk_buff_pool.h>
  3. #include <net/xdp_sock.h>
  4. #include <net/xdp_sock_drv.h>
  5. #include "xsk_queue.h"
  6. #include "xdp_umem.h"
  7. #include "xsk.h"
  8. void xp_add_xsk(struct xsk_buff_pool *pool, struct xdp_sock *xs)
  9. {
  10. unsigned long flags;
  11. if (!xs->tx)
  12. return;
  13. spin_lock_irqsave(&pool->xsk_tx_list_lock, flags);
  14. list_add_rcu(&xs->tx_list, &pool->xsk_tx_list);
  15. spin_unlock_irqrestore(&pool->xsk_tx_list_lock, flags);
  16. }
  17. void xp_del_xsk(struct xsk_buff_pool *pool, struct xdp_sock *xs)
  18. {
  19. unsigned long flags;
  20. if (!xs->tx)
  21. return;
  22. spin_lock_irqsave(&pool->xsk_tx_list_lock, flags);
  23. list_del_rcu(&xs->tx_list);
  24. spin_unlock_irqrestore(&pool->xsk_tx_list_lock, flags);
  25. }
  26. void xp_destroy(struct xsk_buff_pool *pool)
  27. {
  28. if (!pool)
  29. return;
  30. kvfree(pool->tx_descs);
  31. kvfree(pool->heads);
  32. kvfree(pool);
  33. }
  34. int xp_alloc_tx_descs(struct xsk_buff_pool *pool, struct xdp_sock *xs)
  35. {
  36. pool->tx_descs = kvcalloc(xs->tx->nentries, sizeof(*pool->tx_descs),
  37. GFP_KERNEL);
  38. if (!pool->tx_descs)
  39. return -ENOMEM;
  40. return 0;
  41. }
  42. struct xsk_buff_pool *xp_create_and_assign_umem(struct xdp_sock *xs,
  43. struct xdp_umem *umem)
  44. {
  45. bool unaligned = umem->flags & XDP_UMEM_UNALIGNED_CHUNK_FLAG;
  46. struct xsk_buff_pool *pool;
  47. struct xdp_buff_xsk *xskb;
  48. u32 i, entries;
  49. entries = unaligned ? umem->chunks : 0;
  50. pool = kvzalloc(struct_size(pool, free_heads, entries), GFP_KERNEL);
  51. if (!pool)
  52. goto out;
  53. pool->heads = kvcalloc(umem->chunks, sizeof(*pool->heads), GFP_KERNEL);
  54. if (!pool->heads)
  55. goto out;
  56. if (xs->tx)
  57. if (xp_alloc_tx_descs(pool, xs))
  58. goto out;
  59. pool->chunk_mask = ~((u64)umem->chunk_size - 1);
  60. pool->addrs_cnt = umem->size;
  61. pool->heads_cnt = umem->chunks;
  62. pool->free_heads_cnt = umem->chunks;
  63. pool->headroom = umem->headroom;
  64. pool->chunk_size = umem->chunk_size;
  65. pool->chunk_shift = ffs(umem->chunk_size) - 1;
  66. pool->unaligned = unaligned;
  67. pool->frame_len = umem->chunk_size - umem->headroom -
  68. XDP_PACKET_HEADROOM;
  69. pool->umem = umem;
  70. pool->addrs = umem->addrs;
  71. INIT_LIST_HEAD(&pool->free_list);
  72. INIT_LIST_HEAD(&pool->xsk_tx_list);
  73. spin_lock_init(&pool->xsk_tx_list_lock);
  74. spin_lock_init(&pool->cq_lock);
  75. refcount_set(&pool->users, 1);
  76. pool->fq = xs->fq_tmp;
  77. pool->cq = xs->cq_tmp;
  78. for (i = 0; i < pool->free_heads_cnt; i++) {
  79. xskb = &pool->heads[i];
  80. xskb->pool = pool;
  81. xskb->xdp.frame_sz = umem->chunk_size - umem->headroom;
  82. INIT_LIST_HEAD(&xskb->free_list_node);
  83. if (pool->unaligned)
  84. pool->free_heads[i] = xskb;
  85. else
  86. xp_init_xskb_addr(xskb, pool, i * pool->chunk_size);
  87. }
  88. return pool;
  89. out:
  90. xp_destroy(pool);
  91. return NULL;
  92. }
  93. void xp_set_rxq_info(struct xsk_buff_pool *pool, struct xdp_rxq_info *rxq)
  94. {
  95. u32 i;
  96. for (i = 0; i < pool->heads_cnt; i++)
  97. pool->heads[i].xdp.rxq = rxq;
  98. }
  99. EXPORT_SYMBOL(xp_set_rxq_info);
  100. static void xp_disable_drv_zc(struct xsk_buff_pool *pool)
  101. {
  102. struct netdev_bpf bpf;
  103. int err;
  104. ASSERT_RTNL();
  105. if (pool->umem->zc) {
  106. bpf.command = XDP_SETUP_XSK_POOL;
  107. bpf.xsk.pool = NULL;
  108. bpf.xsk.queue_id = pool->queue_id;
  109. err = pool->netdev->netdev_ops->ndo_bpf(pool->netdev, &bpf);
  110. if (err)
  111. WARN(1, "Failed to disable zero-copy!\n");
  112. }
  113. }
  114. int xp_assign_dev(struct xsk_buff_pool *pool,
  115. struct net_device *netdev, u16 queue_id, u16 flags)
  116. {
  117. bool force_zc, force_copy;
  118. struct netdev_bpf bpf;
  119. int err = 0;
  120. ASSERT_RTNL();
  121. force_zc = flags & XDP_ZEROCOPY;
  122. force_copy = flags & XDP_COPY;
  123. if (force_zc && force_copy)
  124. return -EINVAL;
  125. if (xsk_get_pool_from_qid(netdev, queue_id))
  126. return -EBUSY;
  127. pool->netdev = netdev;
  128. pool->queue_id = queue_id;
  129. err = xsk_reg_pool_at_qid(netdev, pool, queue_id);
  130. if (err)
  131. return err;
  132. if (flags & XDP_USE_NEED_WAKEUP)
  133. pool->uses_need_wakeup = true;
  134. /* Tx needs to be explicitly woken up the first time. Also
  135. * for supporting drivers that do not implement this
  136. * feature. They will always have to call sendto() or poll().
  137. */
  138. pool->cached_need_wakeup = XDP_WAKEUP_TX;
  139. dev_hold(netdev);
  140. if (force_copy)
  141. /* For copy-mode, we are done. */
  142. return 0;
  143. if (!netdev->netdev_ops->ndo_bpf ||
  144. !netdev->netdev_ops->ndo_xsk_wakeup) {
  145. err = -EOPNOTSUPP;
  146. goto err_unreg_pool;
  147. }
  148. bpf.command = XDP_SETUP_XSK_POOL;
  149. bpf.xsk.pool = pool;
  150. bpf.xsk.queue_id = queue_id;
  151. err = netdev->netdev_ops->ndo_bpf(netdev, &bpf);
  152. if (err)
  153. goto err_unreg_pool;
  154. if (!pool->dma_pages) {
  155. WARN(1, "Driver did not DMA map zero-copy buffers");
  156. err = -EINVAL;
  157. goto err_unreg_xsk;
  158. }
  159. pool->umem->zc = true;
  160. return 0;
  161. err_unreg_xsk:
  162. xp_disable_drv_zc(pool);
  163. err_unreg_pool:
  164. if (!force_zc)
  165. err = 0; /* fallback to copy mode */
  166. if (err) {
  167. xsk_clear_pool_at_qid(netdev, queue_id);
  168. dev_put(netdev);
  169. }
  170. return err;
  171. }
  172. int xp_assign_dev_shared(struct xsk_buff_pool *pool, struct xdp_sock *umem_xs,
  173. struct net_device *dev, u16 queue_id)
  174. {
  175. u16 flags;
  176. struct xdp_umem *umem = umem_xs->umem;
  177. /* One fill and completion ring required for each queue id. */
  178. if (!pool->fq || !pool->cq)
  179. return -EINVAL;
  180. flags = umem->zc ? XDP_ZEROCOPY : XDP_COPY;
  181. if (umem_xs->pool->uses_need_wakeup)
  182. flags |= XDP_USE_NEED_WAKEUP;
  183. return xp_assign_dev(pool, dev, queue_id, flags);
  184. }
  185. void xp_clear_dev(struct xsk_buff_pool *pool)
  186. {
  187. if (!pool->netdev)
  188. return;
  189. xp_disable_drv_zc(pool);
  190. xsk_clear_pool_at_qid(pool->netdev, pool->queue_id);
  191. dev_put(pool->netdev);
  192. pool->netdev = NULL;
  193. }
  194. static void xp_release_deferred(struct work_struct *work)
  195. {
  196. struct xsk_buff_pool *pool = container_of(work, struct xsk_buff_pool,
  197. work);
  198. rtnl_lock();
  199. xp_clear_dev(pool);
  200. rtnl_unlock();
  201. if (pool->fq) {
  202. xskq_destroy(pool->fq);
  203. pool->fq = NULL;
  204. }
  205. if (pool->cq) {
  206. xskq_destroy(pool->cq);
  207. pool->cq = NULL;
  208. }
  209. xdp_put_umem(pool->umem, false);
  210. xp_destroy(pool);
  211. }
  212. void xp_get_pool(struct xsk_buff_pool *pool)
  213. {
  214. refcount_inc(&pool->users);
  215. }
  216. bool xp_put_pool(struct xsk_buff_pool *pool)
  217. {
  218. if (!pool)
  219. return false;
  220. if (refcount_dec_and_test(&pool->users)) {
  221. INIT_WORK(&pool->work, xp_release_deferred);
  222. schedule_work(&pool->work);
  223. return true;
  224. }
  225. return false;
  226. }
  227. static struct xsk_dma_map *xp_find_dma_map(struct xsk_buff_pool *pool)
  228. {
  229. struct xsk_dma_map *dma_map;
  230. list_for_each_entry(dma_map, &pool->umem->xsk_dma_list, list) {
  231. if (dma_map->netdev == pool->netdev)
  232. return dma_map;
  233. }
  234. return NULL;
  235. }
  236. static struct xsk_dma_map *xp_create_dma_map(struct device *dev, struct net_device *netdev,
  237. u32 nr_pages, struct xdp_umem *umem)
  238. {
  239. struct xsk_dma_map *dma_map;
  240. dma_map = kzalloc(sizeof(*dma_map), GFP_KERNEL);
  241. if (!dma_map)
  242. return NULL;
  243. dma_map->dma_pages = kvcalloc(nr_pages, sizeof(*dma_map->dma_pages), GFP_KERNEL);
  244. if (!dma_map->dma_pages) {
  245. kfree(dma_map);
  246. return NULL;
  247. }
  248. dma_map->netdev = netdev;
  249. dma_map->dev = dev;
  250. dma_map->dma_need_sync = false;
  251. dma_map->dma_pages_cnt = nr_pages;
  252. refcount_set(&dma_map->users, 1);
  253. list_add(&dma_map->list, &umem->xsk_dma_list);
  254. return dma_map;
  255. }
  256. static void xp_destroy_dma_map(struct xsk_dma_map *dma_map)
  257. {
  258. list_del(&dma_map->list);
  259. kvfree(dma_map->dma_pages);
  260. kfree(dma_map);
  261. }
  262. static void __xp_dma_unmap(struct xsk_dma_map *dma_map, unsigned long attrs)
  263. {
  264. dma_addr_t *dma;
  265. u32 i;
  266. for (i = 0; i < dma_map->dma_pages_cnt; i++) {
  267. dma = &dma_map->dma_pages[i];
  268. if (*dma) {
  269. *dma &= ~XSK_NEXT_PG_CONTIG_MASK;
  270. dma_unmap_page_attrs(dma_map->dev, *dma, PAGE_SIZE,
  271. DMA_BIDIRECTIONAL, attrs);
  272. *dma = 0;
  273. }
  274. }
  275. xp_destroy_dma_map(dma_map);
  276. }
  277. void xp_dma_unmap(struct xsk_buff_pool *pool, unsigned long attrs)
  278. {
  279. struct xsk_dma_map *dma_map;
  280. if (pool->dma_pages_cnt == 0)
  281. return;
  282. dma_map = xp_find_dma_map(pool);
  283. if (!dma_map) {
  284. WARN(1, "Could not find dma_map for device");
  285. return;
  286. }
  287. if (!refcount_dec_and_test(&dma_map->users))
  288. return;
  289. __xp_dma_unmap(dma_map, attrs);
  290. kvfree(pool->dma_pages);
  291. pool->dma_pages_cnt = 0;
  292. pool->dev = NULL;
  293. }
  294. EXPORT_SYMBOL(xp_dma_unmap);
  295. static void xp_check_dma_contiguity(struct xsk_dma_map *dma_map)
  296. {
  297. u32 i;
  298. for (i = 0; i < dma_map->dma_pages_cnt - 1; i++) {
  299. if (dma_map->dma_pages[i] + PAGE_SIZE == dma_map->dma_pages[i + 1])
  300. dma_map->dma_pages[i] |= XSK_NEXT_PG_CONTIG_MASK;
  301. else
  302. dma_map->dma_pages[i] &= ~XSK_NEXT_PG_CONTIG_MASK;
  303. }
  304. }
  305. static int xp_init_dma_info(struct xsk_buff_pool *pool, struct xsk_dma_map *dma_map)
  306. {
  307. if (!pool->unaligned) {
  308. u32 i;
  309. for (i = 0; i < pool->heads_cnt; i++) {
  310. struct xdp_buff_xsk *xskb = &pool->heads[i];
  311. xp_init_xskb_dma(xskb, pool, dma_map->dma_pages, xskb->orig_addr);
  312. }
  313. }
  314. pool->dma_pages = kvcalloc(dma_map->dma_pages_cnt, sizeof(*pool->dma_pages), GFP_KERNEL);
  315. if (!pool->dma_pages)
  316. return -ENOMEM;
  317. pool->dev = dma_map->dev;
  318. pool->dma_pages_cnt = dma_map->dma_pages_cnt;
  319. pool->dma_need_sync = dma_map->dma_need_sync;
  320. memcpy(pool->dma_pages, dma_map->dma_pages,
  321. pool->dma_pages_cnt * sizeof(*pool->dma_pages));
  322. return 0;
  323. }
  324. int xp_dma_map(struct xsk_buff_pool *pool, struct device *dev,
  325. unsigned long attrs, struct page **pages, u32 nr_pages)
  326. {
  327. struct xsk_dma_map *dma_map;
  328. dma_addr_t dma;
  329. int err;
  330. u32 i;
  331. dma_map = xp_find_dma_map(pool);
  332. if (dma_map) {
  333. err = xp_init_dma_info(pool, dma_map);
  334. if (err)
  335. return err;
  336. refcount_inc(&dma_map->users);
  337. return 0;
  338. }
  339. dma_map = xp_create_dma_map(dev, pool->netdev, nr_pages, pool->umem);
  340. if (!dma_map)
  341. return -ENOMEM;
  342. for (i = 0; i < dma_map->dma_pages_cnt; i++) {
  343. dma = dma_map_page_attrs(dev, pages[i], 0, PAGE_SIZE,
  344. DMA_BIDIRECTIONAL, attrs);
  345. if (dma_mapping_error(dev, dma)) {
  346. __xp_dma_unmap(dma_map, attrs);
  347. return -ENOMEM;
  348. }
  349. if (dma_need_sync(dev, dma))
  350. dma_map->dma_need_sync = true;
  351. dma_map->dma_pages[i] = dma;
  352. }
  353. if (pool->unaligned)
  354. xp_check_dma_contiguity(dma_map);
  355. err = xp_init_dma_info(pool, dma_map);
  356. if (err) {
  357. __xp_dma_unmap(dma_map, attrs);
  358. return err;
  359. }
  360. return 0;
  361. }
  362. EXPORT_SYMBOL(xp_dma_map);
  363. static bool xp_addr_crosses_non_contig_pg(struct xsk_buff_pool *pool,
  364. u64 addr)
  365. {
  366. return xp_desc_crosses_non_contig_pg(pool, addr, pool->chunk_size);
  367. }
  368. static bool xp_check_unaligned(struct xsk_buff_pool *pool, u64 *addr)
  369. {
  370. *addr = xp_unaligned_extract_addr(*addr);
  371. if (*addr >= pool->addrs_cnt ||
  372. *addr + pool->chunk_size > pool->addrs_cnt ||
  373. xp_addr_crosses_non_contig_pg(pool, *addr))
  374. return false;
  375. return true;
  376. }
  377. static bool xp_check_aligned(struct xsk_buff_pool *pool, u64 *addr)
  378. {
  379. *addr = xp_aligned_extract_addr(pool, *addr);
  380. return *addr < pool->addrs_cnt;
  381. }
  382. static struct xdp_buff_xsk *__xp_alloc(struct xsk_buff_pool *pool)
  383. {
  384. struct xdp_buff_xsk *xskb;
  385. u64 addr;
  386. bool ok;
  387. if (pool->free_heads_cnt == 0)
  388. return NULL;
  389. for (;;) {
  390. if (!xskq_cons_peek_addr_unchecked(pool->fq, &addr)) {
  391. pool->fq->queue_empty_descs++;
  392. return NULL;
  393. }
  394. ok = pool->unaligned ? xp_check_unaligned(pool, &addr) :
  395. xp_check_aligned(pool, &addr);
  396. if (!ok) {
  397. pool->fq->invalid_descs++;
  398. xskq_cons_release(pool->fq);
  399. continue;
  400. }
  401. break;
  402. }
  403. if (pool->unaligned) {
  404. xskb = pool->free_heads[--pool->free_heads_cnt];
  405. xp_init_xskb_addr(xskb, pool, addr);
  406. if (pool->dma_pages_cnt)
  407. xp_init_xskb_dma(xskb, pool, pool->dma_pages, addr);
  408. } else {
  409. xskb = &pool->heads[xp_aligned_extract_idx(pool, addr)];
  410. }
  411. xskq_cons_release(pool->fq);
  412. return xskb;
  413. }
  414. struct xdp_buff *xp_alloc(struct xsk_buff_pool *pool)
  415. {
  416. struct xdp_buff_xsk *xskb;
  417. if (!pool->free_list_cnt) {
  418. xskb = __xp_alloc(pool);
  419. if (!xskb)
  420. return NULL;
  421. } else {
  422. pool->free_list_cnt--;
  423. xskb = list_first_entry(&pool->free_list, struct xdp_buff_xsk,
  424. free_list_node);
  425. list_del_init(&xskb->free_list_node);
  426. }
  427. xskb->xdp.data = xskb->xdp.data_hard_start + XDP_PACKET_HEADROOM;
  428. xskb->xdp.data_meta = xskb->xdp.data;
  429. if (pool->dma_need_sync) {
  430. dma_sync_single_range_for_device(pool->dev, xskb->dma, 0,
  431. pool->frame_len,
  432. DMA_BIDIRECTIONAL);
  433. }
  434. return &xskb->xdp;
  435. }
  436. EXPORT_SYMBOL(xp_alloc);
  437. static u32 xp_alloc_new_from_fq(struct xsk_buff_pool *pool, struct xdp_buff **xdp, u32 max)
  438. {
  439. u32 i, cached_cons, nb_entries;
  440. if (max > pool->free_heads_cnt)
  441. max = pool->free_heads_cnt;
  442. max = xskq_cons_nb_entries(pool->fq, max);
  443. cached_cons = pool->fq->cached_cons;
  444. nb_entries = max;
  445. i = max;
  446. while (i--) {
  447. struct xdp_buff_xsk *xskb;
  448. u64 addr;
  449. bool ok;
  450. __xskq_cons_read_addr_unchecked(pool->fq, cached_cons++, &addr);
  451. ok = pool->unaligned ? xp_check_unaligned(pool, &addr) :
  452. xp_check_aligned(pool, &addr);
  453. if (unlikely(!ok)) {
  454. pool->fq->invalid_descs++;
  455. nb_entries--;
  456. continue;
  457. }
  458. if (pool->unaligned) {
  459. xskb = pool->free_heads[--pool->free_heads_cnt];
  460. xp_init_xskb_addr(xskb, pool, addr);
  461. if (pool->dma_pages_cnt)
  462. xp_init_xskb_dma(xskb, pool, pool->dma_pages, addr);
  463. } else {
  464. xskb = &pool->heads[xp_aligned_extract_idx(pool, addr)];
  465. }
  466. *xdp = &xskb->xdp;
  467. xdp++;
  468. }
  469. xskq_cons_release_n(pool->fq, max);
  470. return nb_entries;
  471. }
  472. static u32 xp_alloc_reused(struct xsk_buff_pool *pool, struct xdp_buff **xdp, u32 nb_entries)
  473. {
  474. struct xdp_buff_xsk *xskb;
  475. u32 i;
  476. nb_entries = min_t(u32, nb_entries, pool->free_list_cnt);
  477. i = nb_entries;
  478. while (i--) {
  479. xskb = list_first_entry(&pool->free_list, struct xdp_buff_xsk, free_list_node);
  480. list_del_init(&xskb->free_list_node);
  481. *xdp = &xskb->xdp;
  482. xdp++;
  483. }
  484. pool->free_list_cnt -= nb_entries;
  485. return nb_entries;
  486. }
  487. u32 xp_alloc_batch(struct xsk_buff_pool *pool, struct xdp_buff **xdp, u32 max)
  488. {
  489. u32 nb_entries1 = 0, nb_entries2;
  490. if (unlikely(pool->dma_need_sync)) {
  491. struct xdp_buff *buff;
  492. /* Slow path */
  493. buff = xp_alloc(pool);
  494. if (buff)
  495. *xdp = buff;
  496. return !!buff;
  497. }
  498. if (unlikely(pool->free_list_cnt)) {
  499. nb_entries1 = xp_alloc_reused(pool, xdp, max);
  500. if (nb_entries1 == max)
  501. return nb_entries1;
  502. max -= nb_entries1;
  503. xdp += nb_entries1;
  504. }
  505. nb_entries2 = xp_alloc_new_from_fq(pool, xdp, max);
  506. if (!nb_entries2)
  507. pool->fq->queue_empty_descs++;
  508. return nb_entries1 + nb_entries2;
  509. }
  510. EXPORT_SYMBOL(xp_alloc_batch);
  511. bool xp_can_alloc(struct xsk_buff_pool *pool, u32 count)
  512. {
  513. if (pool->free_list_cnt >= count)
  514. return true;
  515. return xskq_cons_has_entries(pool->fq, count - pool->free_list_cnt);
  516. }
  517. EXPORT_SYMBOL(xp_can_alloc);
  518. void xp_free(struct xdp_buff_xsk *xskb)
  519. {
  520. if (!list_empty(&xskb->free_list_node))
  521. return;
  522. xskb->pool->free_list_cnt++;
  523. list_add(&xskb->free_list_node, &xskb->pool->free_list);
  524. }
  525. EXPORT_SYMBOL(xp_free);
  526. void *xp_raw_get_data(struct xsk_buff_pool *pool, u64 addr)
  527. {
  528. addr = pool->unaligned ? xp_unaligned_add_offset_to_addr(addr) : addr;
  529. return pool->addrs + addr;
  530. }
  531. EXPORT_SYMBOL(xp_raw_get_data);
  532. dma_addr_t xp_raw_get_dma(struct xsk_buff_pool *pool, u64 addr)
  533. {
  534. addr = pool->unaligned ? xp_unaligned_add_offset_to_addr(addr) : addr;
  535. return (pool->dma_pages[addr >> PAGE_SHIFT] &
  536. ~XSK_NEXT_PG_CONTIG_MASK) +
  537. (addr & ~PAGE_MASK);
  538. }
  539. EXPORT_SYMBOL(xp_raw_get_dma);
  540. void xp_dma_sync_for_cpu_slow(struct xdp_buff_xsk *xskb)
  541. {
  542. dma_sync_single_range_for_cpu(xskb->pool->dev, xskb->dma, 0,
  543. xskb->pool->frame_len, DMA_BIDIRECTIONAL);
  544. }
  545. EXPORT_SYMBOL(xp_dma_sync_for_cpu_slow);
  546. void xp_dma_sync_for_device_slow(struct xsk_buff_pool *pool, dma_addr_t dma,
  547. size_t size)
  548. {
  549. dma_sync_single_range_for_device(pool->dev, dma, 0,
  550. size, DMA_BIDIRECTIONAL);
  551. }
  552. EXPORT_SYMBOL(xp_dma_sync_for_device_slow);