tcp_recovery.c 7.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237
  1. // SPDX-License-Identifier: GPL-2.0
  2. #include <linux/tcp.h>
  3. #include <net/tcp.h>
  4. static u32 tcp_rack_reo_wnd(const struct sock *sk)
  5. {
  6. struct tcp_sock *tp = tcp_sk(sk);
  7. if (!tp->reord_seen) {
  8. /* If reordering has not been observed, be aggressive during
  9. * the recovery or starting the recovery by DUPACK threshold.
  10. */
  11. if (inet_csk(sk)->icsk_ca_state >= TCP_CA_Recovery)
  12. return 0;
  13. if (tp->sacked_out >= tp->reordering &&
  14. !(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_recovery) &
  15. TCP_RACK_NO_DUPTHRESH))
  16. return 0;
  17. }
  18. /* To be more reordering resilient, allow min_rtt/4 settling delay.
  19. * Use min_rtt instead of the smoothed RTT because reordering is
  20. * often a path property and less related to queuing or delayed ACKs.
  21. * Upon receiving DSACKs, linearly increase the window up to the
  22. * smoothed RTT.
  23. */
  24. return min((tcp_min_rtt(tp) >> 2) * tp->rack.reo_wnd_steps,
  25. tp->srtt_us >> 3);
  26. }
  27. s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb, u32 reo_wnd)
  28. {
  29. return tp->rack.rtt_us + reo_wnd -
  30. tcp_stamp_us_delta(tp->tcp_mstamp, tcp_skb_timestamp_us(skb));
  31. }
  32. /* RACK loss detection (IETF draft draft-ietf-tcpm-rack-01):
  33. *
  34. * Marks a packet lost, if some packet sent later has been (s)acked.
  35. * The underlying idea is similar to the traditional dupthresh and FACK
  36. * but they look at different metrics:
  37. *
  38. * dupthresh: 3 OOO packets delivered (packet count)
  39. * FACK: sequence delta to highest sacked sequence (sequence space)
  40. * RACK: sent time delta to the latest delivered packet (time domain)
  41. *
  42. * The advantage of RACK is it applies to both original and retransmitted
  43. * packet and therefore is robust against tail losses. Another advantage
  44. * is being more resilient to reordering by simply allowing some
  45. * "settling delay", instead of tweaking the dupthresh.
  46. *
  47. * When tcp_rack_detect_loss() detects some packets are lost and we
  48. * are not already in the CA_Recovery state, either tcp_rack_reo_timeout()
  49. * or tcp_time_to_recover()'s "Trick#1: the loss is proven" code path will
  50. * make us enter the CA_Recovery state.
  51. */
  52. static void tcp_rack_detect_loss(struct sock *sk, u32 *reo_timeout)
  53. {
  54. struct tcp_sock *tp = tcp_sk(sk);
  55. struct sk_buff *skb, *n;
  56. u32 reo_wnd;
  57. *reo_timeout = 0;
  58. reo_wnd = tcp_rack_reo_wnd(sk);
  59. list_for_each_entry_safe(skb, n, &tp->tsorted_sent_queue,
  60. tcp_tsorted_anchor) {
  61. struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
  62. s32 remaining;
  63. /* Skip ones marked lost but not yet retransmitted */
  64. if ((scb->sacked & TCPCB_LOST) &&
  65. !(scb->sacked & TCPCB_SACKED_RETRANS))
  66. continue;
  67. if (!tcp_skb_sent_after(tp->rack.mstamp,
  68. tcp_skb_timestamp_us(skb),
  69. tp->rack.end_seq, scb->end_seq))
  70. break;
  71. /* A packet is lost if it has not been s/acked beyond
  72. * the recent RTT plus the reordering window.
  73. */
  74. remaining = tcp_rack_skb_timeout(tp, skb, reo_wnd);
  75. if (remaining <= 0) {
  76. tcp_mark_skb_lost(sk, skb);
  77. list_del_init(&skb->tcp_tsorted_anchor);
  78. } else {
  79. /* Record maximum wait time */
  80. *reo_timeout = max_t(u32, *reo_timeout, remaining);
  81. }
  82. }
  83. }
  84. bool tcp_rack_mark_lost(struct sock *sk)
  85. {
  86. struct tcp_sock *tp = tcp_sk(sk);
  87. u32 timeout;
  88. if (!tp->rack.advanced)
  89. return false;
  90. /* Reset the advanced flag to avoid unnecessary queue scanning */
  91. tp->rack.advanced = 0;
  92. tcp_rack_detect_loss(sk, &timeout);
  93. if (timeout) {
  94. timeout = usecs_to_jiffies(timeout + TCP_TIMEOUT_MIN_US);
  95. inet_csk_reset_xmit_timer(sk, ICSK_TIME_REO_TIMEOUT,
  96. timeout, inet_csk(sk)->icsk_rto);
  97. }
  98. return !!timeout;
  99. }
  100. /* Record the most recently (re)sent time among the (s)acked packets
  101. * This is "Step 3: Advance RACK.xmit_time and update RACK.RTT" from
  102. * draft-cheng-tcpm-rack-00.txt
  103. */
  104. void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
  105. u64 xmit_time)
  106. {
  107. u32 rtt_us;
  108. rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, xmit_time);
  109. if (rtt_us < tcp_min_rtt(tp) && (sacked & TCPCB_RETRANS)) {
  110. /* If the sacked packet was retransmitted, it's ambiguous
  111. * whether the retransmission or the original (or the prior
  112. * retransmission) was sacked.
  113. *
  114. * If the original is lost, there is no ambiguity. Otherwise
  115. * we assume the original can be delayed up to aRTT + min_rtt.
  116. * the aRTT term is bounded by the fast recovery or timeout,
  117. * so it's at least one RTT (i.e., retransmission is at least
  118. * an RTT later).
  119. */
  120. return;
  121. }
  122. tp->rack.advanced = 1;
  123. tp->rack.rtt_us = rtt_us;
  124. if (tcp_skb_sent_after(xmit_time, tp->rack.mstamp,
  125. end_seq, tp->rack.end_seq)) {
  126. tp->rack.mstamp = xmit_time;
  127. tp->rack.end_seq = end_seq;
  128. }
  129. }
  130. /* We have waited long enough to accommodate reordering. Mark the expired
  131. * packets lost and retransmit them.
  132. */
  133. void tcp_rack_reo_timeout(struct sock *sk)
  134. {
  135. struct tcp_sock *tp = tcp_sk(sk);
  136. u32 timeout, prior_inflight;
  137. u32 lost = tp->lost;
  138. prior_inflight = tcp_packets_in_flight(tp);
  139. tcp_rack_detect_loss(sk, &timeout);
  140. if (prior_inflight != tcp_packets_in_flight(tp)) {
  141. if (inet_csk(sk)->icsk_ca_state != TCP_CA_Recovery) {
  142. tcp_enter_recovery(sk, false);
  143. if (!inet_csk(sk)->icsk_ca_ops->cong_control)
  144. tcp_cwnd_reduction(sk, 1, tp->lost - lost, 0);
  145. }
  146. tcp_xmit_retransmit_queue(sk);
  147. }
  148. if (inet_csk(sk)->icsk_pending != ICSK_TIME_RETRANS)
  149. tcp_rearm_rto(sk);
  150. }
  151. /* Updates the RACK's reo_wnd based on DSACK and no. of recoveries.
  152. *
  153. * If a DSACK is received that seems like it may have been due to reordering
  154. * triggering fast recovery, increment reo_wnd by min_rtt/4 (upper bounded
  155. * by srtt), since there is possibility that spurious retransmission was
  156. * due to reordering delay longer than reo_wnd.
  157. *
  158. * Persist the current reo_wnd value for TCP_RACK_RECOVERY_THRESH (16)
  159. * no. of successful recoveries (accounts for full DSACK-based loss
  160. * recovery undo). After that, reset it to default (min_rtt/4).
  161. *
  162. * At max, reo_wnd is incremented only once per rtt. So that the new
  163. * DSACK on which we are reacting, is due to the spurious retx (approx)
  164. * after the reo_wnd has been updated last time.
  165. *
  166. * reo_wnd is tracked in terms of steps (of min_rtt/4), rather than
  167. * absolute value to account for change in rtt.
  168. */
  169. void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs)
  170. {
  171. struct tcp_sock *tp = tcp_sk(sk);
  172. if ((READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_recovery) &
  173. TCP_RACK_STATIC_REO_WND) ||
  174. !rs->prior_delivered)
  175. return;
  176. /* Disregard DSACK if a rtt has not passed since we adjusted reo_wnd */
  177. if (before(rs->prior_delivered, tp->rack.last_delivered))
  178. tp->rack.dsack_seen = 0;
  179. /* Adjust the reo_wnd if update is pending */
  180. if (tp->rack.dsack_seen) {
  181. tp->rack.reo_wnd_steps = min_t(u32, 0xFF,
  182. tp->rack.reo_wnd_steps + 1);
  183. tp->rack.dsack_seen = 0;
  184. tp->rack.last_delivered = tp->delivered;
  185. tp->rack.reo_wnd_persist = TCP_RACK_RECOVERY_THRESH;
  186. } else if (!tp->rack.reo_wnd_persist) {
  187. tp->rack.reo_wnd_steps = 1;
  188. }
  189. }
  190. /* RFC6582 NewReno recovery for non-SACK connection. It simply retransmits
  191. * the next unacked packet upon receiving
  192. * a) three or more DUPACKs to start the fast recovery
  193. * b) an ACK acknowledging new data during the fast recovery.
  194. */
  195. void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced)
  196. {
  197. const u8 state = inet_csk(sk)->icsk_ca_state;
  198. struct tcp_sock *tp = tcp_sk(sk);
  199. if ((state < TCP_CA_Recovery && tp->sacked_out >= tp->reordering) ||
  200. (state == TCP_CA_Recovery && snd_una_advanced)) {
  201. struct sk_buff *skb = tcp_rtx_queue_head(sk);
  202. u32 mss;
  203. if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
  204. return;
  205. mss = tcp_skb_mss(skb);
  206. if (tcp_skb_pcount(skb) > 1 && skb->len > mss)
  207. tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
  208. mss, mss, GFP_ATOMIC);
  209. tcp_mark_skb_lost(sk, skb);
  210. }
  211. }