mlock.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * linux/mm/mlock.c
  4. *
  5. * (C) Copyright 1995 Linus Torvalds
  6. * (C) Copyright 2002 Christoph Hellwig
  7. */
  8. #include <linux/capability.h>
  9. #include <linux/mman.h>
  10. #include <linux/mm.h>
  11. #include <linux/sched/user.h>
  12. #include <linux/swap.h>
  13. #include <linux/swapops.h>
  14. #include <linux/pagemap.h>
  15. #include <linux/pagevec.h>
  16. #include <linux/pagewalk.h>
  17. #include <linux/mempolicy.h>
  18. #include <linux/syscalls.h>
  19. #include <linux/sched.h>
  20. #include <linux/export.h>
  21. #include <linux/rmap.h>
  22. #include <linux/mmzone.h>
  23. #include <linux/hugetlb.h>
  24. #include <linux/memcontrol.h>
  25. #include <linux/mm_inline.h>
  26. #include <linux/secretmem.h>
  27. #include "internal.h"
  28. struct mlock_pvec {
  29. local_lock_t lock;
  30. struct pagevec vec;
  31. };
  32. static DEFINE_PER_CPU(struct mlock_pvec, mlock_pvec) = {
  33. .lock = INIT_LOCAL_LOCK(lock),
  34. };
  35. bool can_do_mlock(void)
  36. {
  37. if (rlimit(RLIMIT_MEMLOCK) != 0)
  38. return true;
  39. if (capable(CAP_IPC_LOCK))
  40. return true;
  41. return false;
  42. }
  43. EXPORT_SYMBOL(can_do_mlock);
  44. /*
  45. * Mlocked pages are marked with PageMlocked() flag for efficient testing
  46. * in vmscan and, possibly, the fault path; and to support semi-accurate
  47. * statistics.
  48. *
  49. * An mlocked page [PageMlocked(page)] is unevictable. As such, it will
  50. * be placed on the LRU "unevictable" list, rather than the [in]active lists.
  51. * The unevictable list is an LRU sibling list to the [in]active lists.
  52. * PageUnevictable is set to indicate the unevictable state.
  53. */
  54. static struct lruvec *__mlock_page(struct page *page, struct lruvec *lruvec)
  55. {
  56. /* There is nothing more we can do while it's off LRU */
  57. if (!TestClearPageLRU(page))
  58. return lruvec;
  59. lruvec = folio_lruvec_relock_irq(page_folio(page), lruvec);
  60. if (unlikely(page_evictable(page))) {
  61. /*
  62. * This is a little surprising, but quite possible:
  63. * PageMlocked must have got cleared already by another CPU.
  64. * Could this page be on the Unevictable LRU? I'm not sure,
  65. * but move it now if so.
  66. */
  67. if (PageUnevictable(page)) {
  68. del_page_from_lru_list(page, lruvec);
  69. ClearPageUnevictable(page);
  70. add_page_to_lru_list(page, lruvec);
  71. __count_vm_events(UNEVICTABLE_PGRESCUED,
  72. thp_nr_pages(page));
  73. }
  74. goto out;
  75. }
  76. if (PageUnevictable(page)) {
  77. if (PageMlocked(page))
  78. page->mlock_count++;
  79. goto out;
  80. }
  81. del_page_from_lru_list(page, lruvec);
  82. ClearPageActive(page);
  83. SetPageUnevictable(page);
  84. page->mlock_count = !!PageMlocked(page);
  85. add_page_to_lru_list(page, lruvec);
  86. __count_vm_events(UNEVICTABLE_PGCULLED, thp_nr_pages(page));
  87. out:
  88. SetPageLRU(page);
  89. return lruvec;
  90. }
  91. static struct lruvec *__mlock_new_page(struct page *page, struct lruvec *lruvec)
  92. {
  93. VM_BUG_ON_PAGE(PageLRU(page), page);
  94. lruvec = folio_lruvec_relock_irq(page_folio(page), lruvec);
  95. /* As above, this is a little surprising, but possible */
  96. if (unlikely(page_evictable(page)))
  97. goto out;
  98. SetPageUnevictable(page);
  99. page->mlock_count = !!PageMlocked(page);
  100. __count_vm_events(UNEVICTABLE_PGCULLED, thp_nr_pages(page));
  101. out:
  102. add_page_to_lru_list(page, lruvec);
  103. SetPageLRU(page);
  104. return lruvec;
  105. }
  106. static struct lruvec *__munlock_page(struct page *page, struct lruvec *lruvec)
  107. {
  108. int nr_pages = thp_nr_pages(page);
  109. bool isolated = false;
  110. if (!TestClearPageLRU(page))
  111. goto munlock;
  112. isolated = true;
  113. lruvec = folio_lruvec_relock_irq(page_folio(page), lruvec);
  114. if (PageUnevictable(page)) {
  115. /* Then mlock_count is maintained, but might undercount */
  116. if (page->mlock_count)
  117. page->mlock_count--;
  118. if (page->mlock_count)
  119. goto out;
  120. }
  121. /* else assume that was the last mlock: reclaim will fix it if not */
  122. munlock:
  123. if (TestClearPageMlocked(page)) {
  124. __mod_zone_page_state(page_zone(page), NR_MLOCK, -nr_pages);
  125. if (isolated || !PageUnevictable(page))
  126. __count_vm_events(UNEVICTABLE_PGMUNLOCKED, nr_pages);
  127. else
  128. __count_vm_events(UNEVICTABLE_PGSTRANDED, nr_pages);
  129. }
  130. /* page_evictable() has to be checked *after* clearing Mlocked */
  131. if (isolated && PageUnevictable(page) && page_evictable(page)) {
  132. del_page_from_lru_list(page, lruvec);
  133. ClearPageUnevictable(page);
  134. add_page_to_lru_list(page, lruvec);
  135. __count_vm_events(UNEVICTABLE_PGRESCUED, nr_pages);
  136. }
  137. out:
  138. if (isolated)
  139. SetPageLRU(page);
  140. return lruvec;
  141. }
  142. /*
  143. * Flags held in the low bits of a struct page pointer on the mlock_pvec.
  144. */
  145. #define LRU_PAGE 0x1
  146. #define NEW_PAGE 0x2
  147. static inline struct page *mlock_lru(struct page *page)
  148. {
  149. return (struct page *)((unsigned long)page + LRU_PAGE);
  150. }
  151. static inline struct page *mlock_new(struct page *page)
  152. {
  153. return (struct page *)((unsigned long)page + NEW_PAGE);
  154. }
  155. /*
  156. * mlock_pagevec() is derived from pagevec_lru_move_fn():
  157. * perhaps that can make use of such page pointer flags in future,
  158. * but for now just keep it for mlock. We could use three separate
  159. * pagevecs instead, but one feels better (munlocking a full pagevec
  160. * does not need to drain mlocking pagevecs first).
  161. */
  162. static void mlock_pagevec(struct pagevec *pvec)
  163. {
  164. struct lruvec *lruvec = NULL;
  165. unsigned long mlock;
  166. struct page *page;
  167. int i;
  168. for (i = 0; i < pagevec_count(pvec); i++) {
  169. page = pvec->pages[i];
  170. mlock = (unsigned long)page & (LRU_PAGE | NEW_PAGE);
  171. page = (struct page *)((unsigned long)page - mlock);
  172. pvec->pages[i] = page;
  173. if (mlock & LRU_PAGE)
  174. lruvec = __mlock_page(page, lruvec);
  175. else if (mlock & NEW_PAGE)
  176. lruvec = __mlock_new_page(page, lruvec);
  177. else
  178. lruvec = __munlock_page(page, lruvec);
  179. }
  180. if (lruvec)
  181. unlock_page_lruvec_irq(lruvec);
  182. release_pages(pvec->pages, pvec->nr);
  183. pagevec_reinit(pvec);
  184. }
  185. void mlock_page_drain_local(void)
  186. {
  187. struct pagevec *pvec;
  188. local_lock(&mlock_pvec.lock);
  189. pvec = this_cpu_ptr(&mlock_pvec.vec);
  190. if (pagevec_count(pvec))
  191. mlock_pagevec(pvec);
  192. local_unlock(&mlock_pvec.lock);
  193. }
  194. void mlock_page_drain_remote(int cpu)
  195. {
  196. struct pagevec *pvec;
  197. WARN_ON_ONCE(cpu_online(cpu));
  198. pvec = &per_cpu(mlock_pvec.vec, cpu);
  199. if (pagevec_count(pvec))
  200. mlock_pagevec(pvec);
  201. }
  202. bool need_mlock_page_drain(int cpu)
  203. {
  204. return pagevec_count(&per_cpu(mlock_pvec.vec, cpu));
  205. }
  206. /**
  207. * mlock_folio - mlock a folio already on (or temporarily off) LRU
  208. * @folio: folio to be mlocked.
  209. */
  210. void mlock_folio(struct folio *folio)
  211. {
  212. struct pagevec *pvec;
  213. local_lock(&mlock_pvec.lock);
  214. pvec = this_cpu_ptr(&mlock_pvec.vec);
  215. if (!folio_test_set_mlocked(folio)) {
  216. int nr_pages = folio_nr_pages(folio);
  217. zone_stat_mod_folio(folio, NR_MLOCK, nr_pages);
  218. __count_vm_events(UNEVICTABLE_PGMLOCKED, nr_pages);
  219. }
  220. folio_get(folio);
  221. if (!pagevec_add(pvec, mlock_lru(&folio->page)) ||
  222. folio_test_large(folio) || lru_cache_disabled())
  223. mlock_pagevec(pvec);
  224. local_unlock(&mlock_pvec.lock);
  225. }
  226. /**
  227. * mlock_new_page - mlock a newly allocated page not yet on LRU
  228. * @page: page to be mlocked, either a normal page or a THP head.
  229. */
  230. void mlock_new_page(struct page *page)
  231. {
  232. struct pagevec *pvec;
  233. int nr_pages = thp_nr_pages(page);
  234. local_lock(&mlock_pvec.lock);
  235. pvec = this_cpu_ptr(&mlock_pvec.vec);
  236. SetPageMlocked(page);
  237. mod_zone_page_state(page_zone(page), NR_MLOCK, nr_pages);
  238. __count_vm_events(UNEVICTABLE_PGMLOCKED, nr_pages);
  239. get_page(page);
  240. if (!pagevec_add(pvec, mlock_new(page)) ||
  241. PageHead(page) || lru_cache_disabled())
  242. mlock_pagevec(pvec);
  243. local_unlock(&mlock_pvec.lock);
  244. }
  245. /**
  246. * munlock_page - munlock a page
  247. * @page: page to be munlocked, either a normal page or a THP head.
  248. */
  249. void munlock_page(struct page *page)
  250. {
  251. struct pagevec *pvec;
  252. local_lock(&mlock_pvec.lock);
  253. pvec = this_cpu_ptr(&mlock_pvec.vec);
  254. /*
  255. * TestClearPageMlocked(page) must be left to __munlock_page(),
  256. * which will check whether the page is multiply mlocked.
  257. */
  258. get_page(page);
  259. if (!pagevec_add(pvec, page) ||
  260. PageHead(page) || lru_cache_disabled())
  261. mlock_pagevec(pvec);
  262. local_unlock(&mlock_pvec.lock);
  263. }
  264. static int mlock_pte_range(pmd_t *pmd, unsigned long addr,
  265. unsigned long end, struct mm_walk *walk)
  266. {
  267. struct vm_area_struct *vma = walk->vma;
  268. spinlock_t *ptl;
  269. pte_t *start_pte, *pte;
  270. struct page *page;
  271. ptl = pmd_trans_huge_lock(pmd, vma);
  272. if (ptl) {
  273. if (!pmd_present(*pmd))
  274. goto out;
  275. if (is_huge_zero_pmd(*pmd))
  276. goto out;
  277. page = pmd_page(*pmd);
  278. if (vma->vm_flags & VM_LOCKED)
  279. mlock_folio(page_folio(page));
  280. else
  281. munlock_page(page);
  282. goto out;
  283. }
  284. start_pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
  285. for (pte = start_pte; addr != end; pte++, addr += PAGE_SIZE) {
  286. if (!pte_present(*pte))
  287. continue;
  288. page = vm_normal_page(vma, addr, *pte);
  289. if (!page || is_zone_device_page(page))
  290. continue;
  291. if (PageTransCompound(page))
  292. continue;
  293. if (vma->vm_flags & VM_LOCKED)
  294. mlock_folio(page_folio(page));
  295. else
  296. munlock_page(page);
  297. }
  298. pte_unmap(start_pte);
  299. out:
  300. spin_unlock(ptl);
  301. cond_resched();
  302. return 0;
  303. }
  304. /*
  305. * mlock_vma_pages_range() - mlock any pages already in the range,
  306. * or munlock all pages in the range.
  307. * @vma - vma containing range to be mlock()ed or munlock()ed
  308. * @start - start address in @vma of the range
  309. * @end - end of range in @vma
  310. * @newflags - the new set of flags for @vma.
  311. *
  312. * Called for mlock(), mlock2() and mlockall(), to set @vma VM_LOCKED;
  313. * called for munlock() and munlockall(), to clear VM_LOCKED from @vma.
  314. */
  315. static void mlock_vma_pages_range(struct vm_area_struct *vma,
  316. unsigned long start, unsigned long end, vm_flags_t newflags)
  317. {
  318. static const struct mm_walk_ops mlock_walk_ops = {
  319. .pmd_entry = mlock_pte_range,
  320. .walk_lock = PGWALK_WRLOCK_VERIFY,
  321. };
  322. /*
  323. * There is a slight chance that concurrent page migration,
  324. * or page reclaim finding a page of this now-VM_LOCKED vma,
  325. * will call mlock_vma_page() and raise page's mlock_count:
  326. * double counting, leaving the page unevictable indefinitely.
  327. * Communicate this danger to mlock_vma_page() with VM_IO,
  328. * which is a VM_SPECIAL flag not allowed on VM_LOCKED vmas.
  329. * mmap_lock is held in write mode here, so this weird
  330. * combination should not be visible to other mmap_lock users;
  331. * but WRITE_ONCE so rmap walkers must see VM_IO if VM_LOCKED.
  332. */
  333. if (newflags & VM_LOCKED)
  334. newflags |= VM_IO;
  335. vma_start_write(vma);
  336. vm_flags_reset_once(vma, newflags);
  337. lru_add_drain();
  338. walk_page_range(vma->vm_mm, start, end, &mlock_walk_ops, NULL);
  339. lru_add_drain();
  340. if (newflags & VM_IO) {
  341. newflags &= ~VM_IO;
  342. vm_flags_reset_once(vma, newflags);
  343. }
  344. }
  345. /*
  346. * mlock_fixup - handle mlock[all]/munlock[all] requests.
  347. *
  348. * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
  349. * munlock is a no-op. However, for some special vmas, we go ahead and
  350. * populate the ptes.
  351. *
  352. * For vmas that pass the filters, merge/split as appropriate.
  353. */
  354. static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
  355. unsigned long start, unsigned long end, vm_flags_t newflags)
  356. {
  357. struct mm_struct *mm = vma->vm_mm;
  358. pgoff_t pgoff;
  359. int nr_pages;
  360. int ret = 0;
  361. vm_flags_t oldflags = vma->vm_flags;
  362. if (newflags == oldflags || (oldflags & VM_SPECIAL) ||
  363. is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm) ||
  364. vma_is_dax(vma) || vma_is_secretmem(vma))
  365. /* don't set VM_LOCKED or VM_LOCKONFAULT and don't count */
  366. goto out;
  367. pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
  368. *prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma,
  369. vma->vm_file, pgoff, vma_policy(vma),
  370. vma->vm_userfaultfd_ctx, anon_vma_name(vma));
  371. if (*prev) {
  372. vma = *prev;
  373. goto success;
  374. }
  375. if (start != vma->vm_start) {
  376. ret = split_vma(mm, vma, start, 1);
  377. if (ret)
  378. goto out;
  379. }
  380. if (end != vma->vm_end) {
  381. ret = split_vma(mm, vma, end, 0);
  382. if (ret)
  383. goto out;
  384. }
  385. success:
  386. /*
  387. * Keep track of amount of locked VM.
  388. */
  389. nr_pages = (end - start) >> PAGE_SHIFT;
  390. if (!(newflags & VM_LOCKED))
  391. nr_pages = -nr_pages;
  392. else if (oldflags & VM_LOCKED)
  393. nr_pages = 0;
  394. mm->locked_vm += nr_pages;
  395. /*
  396. * vm_flags is protected by the mmap_lock held in write mode.
  397. * It's okay if try_to_unmap_one unmaps a page just after we
  398. * set VM_LOCKED, populate_vma_page_range will bring it back.
  399. */
  400. if ((newflags & VM_LOCKED) && (oldflags & VM_LOCKED)) {
  401. /* No work to do, and mlocking twice would be wrong */
  402. vma_start_write(vma);
  403. vm_flags_reset(vma, newflags);
  404. } else {
  405. mlock_vma_pages_range(vma, start, end, newflags);
  406. }
  407. out:
  408. *prev = vma;
  409. return ret;
  410. }
  411. static int apply_vma_lock_flags(unsigned long start, size_t len,
  412. vm_flags_t flags)
  413. {
  414. unsigned long nstart, end, tmp;
  415. struct vm_area_struct *vma, *prev;
  416. int error;
  417. MA_STATE(mas, &current->mm->mm_mt, start, start);
  418. VM_BUG_ON(offset_in_page(start));
  419. VM_BUG_ON(len != PAGE_ALIGN(len));
  420. end = start + len;
  421. if (end < start)
  422. return -EINVAL;
  423. if (end == start)
  424. return 0;
  425. vma = mas_walk(&mas);
  426. if (!vma)
  427. return -ENOMEM;
  428. if (start > vma->vm_start)
  429. prev = vma;
  430. else
  431. prev = mas_prev(&mas, 0);
  432. for (nstart = start ; ; ) {
  433. vm_flags_t newflags = vma->vm_flags & ~VM_LOCKED_MASK;
  434. newflags |= flags;
  435. /* Here we know that vma->vm_start <= nstart < vma->vm_end. */
  436. tmp = vma->vm_end;
  437. if (tmp > end)
  438. tmp = end;
  439. error = mlock_fixup(vma, &prev, nstart, tmp, newflags);
  440. if (error)
  441. break;
  442. nstart = tmp;
  443. if (nstart < prev->vm_end)
  444. nstart = prev->vm_end;
  445. if (nstart >= end)
  446. break;
  447. vma = find_vma(prev->vm_mm, prev->vm_end);
  448. if (!vma || vma->vm_start != nstart) {
  449. error = -ENOMEM;
  450. break;
  451. }
  452. }
  453. return error;
  454. }
  455. /*
  456. * Go through vma areas and sum size of mlocked
  457. * vma pages, as return value.
  458. * Note deferred memory locking case(mlock2(,,MLOCK_ONFAULT)
  459. * is also counted.
  460. * Return value: previously mlocked page counts
  461. */
  462. static unsigned long count_mm_mlocked_page_nr(struct mm_struct *mm,
  463. unsigned long start, size_t len)
  464. {
  465. struct vm_area_struct *vma;
  466. unsigned long count = 0;
  467. unsigned long end;
  468. VMA_ITERATOR(vmi, mm, start);
  469. /* Don't overflow past ULONG_MAX */
  470. if (unlikely(ULONG_MAX - len < start))
  471. end = ULONG_MAX;
  472. else
  473. end = start + len;
  474. for_each_vma_range(vmi, vma, end) {
  475. if (vma->vm_flags & VM_LOCKED) {
  476. if (start > vma->vm_start)
  477. count -= (start - vma->vm_start);
  478. if (end < vma->vm_end) {
  479. count += end - vma->vm_start;
  480. break;
  481. }
  482. count += vma->vm_end - vma->vm_start;
  483. }
  484. }
  485. return count >> PAGE_SHIFT;
  486. }
  487. /*
  488. * convert get_user_pages() return value to posix mlock() error
  489. */
  490. static int __mlock_posix_error_return(long retval)
  491. {
  492. if (retval == -EFAULT)
  493. retval = -ENOMEM;
  494. else if (retval == -ENOMEM)
  495. retval = -EAGAIN;
  496. return retval;
  497. }
  498. static __must_check int do_mlock(unsigned long start, size_t len, vm_flags_t flags)
  499. {
  500. unsigned long locked;
  501. unsigned long lock_limit;
  502. int error = -ENOMEM;
  503. start = untagged_addr(start);
  504. if (!can_do_mlock())
  505. return -EPERM;
  506. len = PAGE_ALIGN(len + (offset_in_page(start)));
  507. start &= PAGE_MASK;
  508. lock_limit = rlimit(RLIMIT_MEMLOCK);
  509. lock_limit >>= PAGE_SHIFT;
  510. locked = len >> PAGE_SHIFT;
  511. if (mmap_write_lock_killable(current->mm))
  512. return -EINTR;
  513. locked += current->mm->locked_vm;
  514. if ((locked > lock_limit) && (!capable(CAP_IPC_LOCK))) {
  515. /*
  516. * It is possible that the regions requested intersect with
  517. * previously mlocked areas, that part area in "mm->locked_vm"
  518. * should not be counted to new mlock increment count. So check
  519. * and adjust locked count if necessary.
  520. */
  521. locked -= count_mm_mlocked_page_nr(current->mm,
  522. start, len);
  523. }
  524. /* check against resource limits */
  525. if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
  526. error = apply_vma_lock_flags(start, len, flags);
  527. mmap_write_unlock(current->mm);
  528. if (error)
  529. return error;
  530. error = __mm_populate(start, len, 0);
  531. if (error)
  532. return __mlock_posix_error_return(error);
  533. return 0;
  534. }
  535. SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len)
  536. {
  537. return do_mlock(start, len, VM_LOCKED);
  538. }
  539. SYSCALL_DEFINE3(mlock2, unsigned long, start, size_t, len, int, flags)
  540. {
  541. vm_flags_t vm_flags = VM_LOCKED;
  542. if (flags & ~MLOCK_ONFAULT)
  543. return -EINVAL;
  544. if (flags & MLOCK_ONFAULT)
  545. vm_flags |= VM_LOCKONFAULT;
  546. return do_mlock(start, len, vm_flags);
  547. }
  548. SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len)
  549. {
  550. int ret;
  551. start = untagged_addr(start);
  552. len = PAGE_ALIGN(len + (offset_in_page(start)));
  553. start &= PAGE_MASK;
  554. if (mmap_write_lock_killable(current->mm))
  555. return -EINTR;
  556. ret = apply_vma_lock_flags(start, len, 0);
  557. mmap_write_unlock(current->mm);
  558. return ret;
  559. }
  560. /*
  561. * Take the MCL_* flags passed into mlockall (or 0 if called from munlockall)
  562. * and translate into the appropriate modifications to mm->def_flags and/or the
  563. * flags for all current VMAs.
  564. *
  565. * There are a couple of subtleties with this. If mlockall() is called multiple
  566. * times with different flags, the values do not necessarily stack. If mlockall
  567. * is called once including the MCL_FUTURE flag and then a second time without
  568. * it, VM_LOCKED and VM_LOCKONFAULT will be cleared from mm->def_flags.
  569. */
  570. static int apply_mlockall_flags(int flags)
  571. {
  572. MA_STATE(mas, &current->mm->mm_mt, 0, 0);
  573. struct vm_area_struct *vma, *prev = NULL;
  574. vm_flags_t to_add = 0;
  575. current->mm->def_flags &= ~VM_LOCKED_MASK;
  576. if (flags & MCL_FUTURE) {
  577. current->mm->def_flags |= VM_LOCKED;
  578. if (flags & MCL_ONFAULT)
  579. current->mm->def_flags |= VM_LOCKONFAULT;
  580. if (!(flags & MCL_CURRENT))
  581. goto out;
  582. }
  583. if (flags & MCL_CURRENT) {
  584. to_add |= VM_LOCKED;
  585. if (flags & MCL_ONFAULT)
  586. to_add |= VM_LOCKONFAULT;
  587. }
  588. mas_for_each(&mas, vma, ULONG_MAX) {
  589. vm_flags_t newflags;
  590. newflags = vma->vm_flags & ~VM_LOCKED_MASK;
  591. newflags |= to_add;
  592. /* Ignore errors */
  593. mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags);
  594. mas_pause(&mas);
  595. cond_resched();
  596. }
  597. out:
  598. return 0;
  599. }
  600. SYSCALL_DEFINE1(mlockall, int, flags)
  601. {
  602. unsigned long lock_limit;
  603. int ret;
  604. if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE | MCL_ONFAULT)) ||
  605. flags == MCL_ONFAULT)
  606. return -EINVAL;
  607. if (!can_do_mlock())
  608. return -EPERM;
  609. lock_limit = rlimit(RLIMIT_MEMLOCK);
  610. lock_limit >>= PAGE_SHIFT;
  611. if (mmap_write_lock_killable(current->mm))
  612. return -EINTR;
  613. ret = -ENOMEM;
  614. if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
  615. capable(CAP_IPC_LOCK))
  616. ret = apply_mlockall_flags(flags);
  617. mmap_write_unlock(current->mm);
  618. if (!ret && (flags & MCL_CURRENT))
  619. mm_populate(0, TASK_SIZE);
  620. return ret;
  621. }
  622. SYSCALL_DEFINE0(munlockall)
  623. {
  624. int ret;
  625. if (mmap_write_lock_killable(current->mm))
  626. return -EINTR;
  627. ret = apply_mlockall_flags(0);
  628. mmap_write_unlock(current->mm);
  629. return ret;
  630. }
  631. /*
  632. * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
  633. * shm segments) get accounted against the user_struct instead.
  634. */
  635. static DEFINE_SPINLOCK(shmlock_user_lock);
  636. int user_shm_lock(size_t size, struct ucounts *ucounts)
  637. {
  638. unsigned long lock_limit, locked;
  639. long memlock;
  640. int allowed = 0;
  641. locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
  642. lock_limit = rlimit(RLIMIT_MEMLOCK);
  643. if (lock_limit != RLIM_INFINITY)
  644. lock_limit >>= PAGE_SHIFT;
  645. spin_lock(&shmlock_user_lock);
  646. memlock = inc_rlimit_ucounts(ucounts, UCOUNT_RLIMIT_MEMLOCK, locked);
  647. if ((memlock == LONG_MAX || memlock > lock_limit) && !capable(CAP_IPC_LOCK)) {
  648. dec_rlimit_ucounts(ucounts, UCOUNT_RLIMIT_MEMLOCK, locked);
  649. goto out;
  650. }
  651. if (!get_ucounts(ucounts)) {
  652. dec_rlimit_ucounts(ucounts, UCOUNT_RLIMIT_MEMLOCK, locked);
  653. allowed = 0;
  654. goto out;
  655. }
  656. allowed = 1;
  657. out:
  658. spin_unlock(&shmlock_user_lock);
  659. return allowed;
  660. }
  661. void user_shm_unlock(size_t size, struct ucounts *ucounts)
  662. {
  663. spin_lock(&shmlock_user_lock);
  664. dec_rlimit_ucounts(ucounts, UCOUNT_RLIMIT_MEMLOCK, (size + PAGE_SIZE - 1) >> PAGE_SHIFT);
  665. spin_unlock(&shmlock_user_lock);
  666. put_ucounts(ucounts);
  667. }