shadow.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * This file contains KASAN runtime code that manages shadow memory for
  4. * generic and software tag-based KASAN modes.
  5. *
  6. * Copyright (c) 2014 Samsung Electronics Co., Ltd.
  7. * Author: Andrey Ryabinin <[email protected]>
  8. *
  9. * Some code borrowed from https://github.com/xairy/kasan-prototype by
  10. * Andrey Konovalov <[email protected]>
  11. */
  12. #include <linux/init.h>
  13. #include <linux/kasan.h>
  14. #include <linux/kernel.h>
  15. #include <linux/kfence.h>
  16. #include <linux/kmemleak.h>
  17. #include <linux/memory.h>
  18. #include <linux/mm.h>
  19. #include <linux/string.h>
  20. #include <linux/types.h>
  21. #include <linux/vmalloc.h>
  22. #include <asm/cacheflush.h>
  23. #include <asm/tlbflush.h>
  24. #include "kasan.h"
  25. bool __kasan_check_read(const volatile void *p, unsigned int size)
  26. {
  27. return kasan_check_range((unsigned long)p, size, false, _RET_IP_);
  28. }
  29. EXPORT_SYMBOL(__kasan_check_read);
  30. bool __kasan_check_write(const volatile void *p, unsigned int size)
  31. {
  32. return kasan_check_range((unsigned long)p, size, true, _RET_IP_);
  33. }
  34. EXPORT_SYMBOL(__kasan_check_write);
  35. #undef memset
  36. void *memset(void *addr, int c, size_t len)
  37. {
  38. if (!kasan_check_range((unsigned long)addr, len, true, _RET_IP_))
  39. return NULL;
  40. return __memset(addr, c, len);
  41. }
  42. #ifdef __HAVE_ARCH_MEMMOVE
  43. #undef memmove
  44. void *memmove(void *dest, const void *src, size_t len)
  45. {
  46. if (!kasan_check_range((unsigned long)src, len, false, _RET_IP_) ||
  47. !kasan_check_range((unsigned long)dest, len, true, _RET_IP_))
  48. return NULL;
  49. return __memmove(dest, src, len);
  50. }
  51. #endif
  52. #undef memcpy
  53. void *memcpy(void *dest, const void *src, size_t len)
  54. {
  55. if (!kasan_check_range((unsigned long)src, len, false, _RET_IP_) ||
  56. !kasan_check_range((unsigned long)dest, len, true, _RET_IP_))
  57. return NULL;
  58. return __memcpy(dest, src, len);
  59. }
  60. void kasan_poison(const void *addr, size_t size, u8 value, bool init)
  61. {
  62. void *shadow_start, *shadow_end;
  63. if (!kasan_arch_is_ready())
  64. return;
  65. /*
  66. * Perform shadow offset calculation based on untagged address, as
  67. * some of the callers (e.g. kasan_poison_object_data) pass tagged
  68. * addresses to this function.
  69. */
  70. addr = kasan_reset_tag(addr);
  71. /* Skip KFENCE memory if called explicitly outside of sl*b. */
  72. if (is_kfence_address(addr))
  73. return;
  74. if (WARN_ON((unsigned long)addr & KASAN_GRANULE_MASK))
  75. return;
  76. if (WARN_ON(size & KASAN_GRANULE_MASK))
  77. return;
  78. shadow_start = kasan_mem_to_shadow(addr);
  79. shadow_end = kasan_mem_to_shadow(addr + size);
  80. __memset(shadow_start, value, shadow_end - shadow_start);
  81. }
  82. EXPORT_SYMBOL(kasan_poison);
  83. #ifdef CONFIG_KASAN_GENERIC
  84. void kasan_poison_last_granule(const void *addr, size_t size)
  85. {
  86. if (!kasan_arch_is_ready())
  87. return;
  88. if (size & KASAN_GRANULE_MASK) {
  89. u8 *shadow = (u8 *)kasan_mem_to_shadow(addr + size);
  90. *shadow = size & KASAN_GRANULE_MASK;
  91. }
  92. }
  93. #endif
  94. void kasan_unpoison(const void *addr, size_t size, bool init)
  95. {
  96. u8 tag = get_tag(addr);
  97. /*
  98. * Perform shadow offset calculation based on untagged address, as
  99. * some of the callers (e.g. kasan_unpoison_object_data) pass tagged
  100. * addresses to this function.
  101. */
  102. addr = kasan_reset_tag(addr);
  103. /*
  104. * Skip KFENCE memory if called explicitly outside of sl*b. Also note
  105. * that calls to ksize(), where size is not a multiple of machine-word
  106. * size, would otherwise poison the invalid portion of the word.
  107. */
  108. if (is_kfence_address(addr))
  109. return;
  110. if (WARN_ON((unsigned long)addr & KASAN_GRANULE_MASK))
  111. return;
  112. /* Unpoison all granules that cover the object. */
  113. kasan_poison(addr, round_up(size, KASAN_GRANULE_SIZE), tag, false);
  114. /* Partially poison the last granule for the generic mode. */
  115. if (IS_ENABLED(CONFIG_KASAN_GENERIC))
  116. kasan_poison_last_granule(addr, size);
  117. }
  118. #ifdef CONFIG_MEMORY_HOTPLUG
  119. static bool shadow_mapped(unsigned long addr)
  120. {
  121. pgd_t *pgd = pgd_offset_k(addr);
  122. p4d_t *p4d;
  123. pud_t *pud;
  124. pmd_t *pmd;
  125. pte_t *pte;
  126. if (pgd_none(*pgd))
  127. return false;
  128. p4d = p4d_offset(pgd, addr);
  129. if (p4d_none(*p4d))
  130. return false;
  131. pud = pud_offset(p4d, addr);
  132. if (pud_none(*pud))
  133. return false;
  134. /*
  135. * We can't use pud_large() or pud_huge(), the first one is
  136. * arch-specific, the last one depends on HUGETLB_PAGE. So let's abuse
  137. * pud_bad(), if pud is bad then it's bad because it's huge.
  138. */
  139. if (pud_bad(*pud))
  140. return true;
  141. pmd = pmd_offset(pud, addr);
  142. if (pmd_none(*pmd))
  143. return false;
  144. if (pmd_bad(*pmd))
  145. return true;
  146. pte = pte_offset_kernel(pmd, addr);
  147. return !pte_none(*pte);
  148. }
  149. static int __meminit kasan_mem_notifier(struct notifier_block *nb,
  150. unsigned long action, void *data)
  151. {
  152. struct memory_notify *mem_data = data;
  153. unsigned long nr_shadow_pages, start_kaddr, shadow_start;
  154. unsigned long shadow_end, shadow_size;
  155. nr_shadow_pages = mem_data->nr_pages >> KASAN_SHADOW_SCALE_SHIFT;
  156. start_kaddr = (unsigned long)pfn_to_kaddr(mem_data->start_pfn);
  157. shadow_start = (unsigned long)kasan_mem_to_shadow((void *)start_kaddr);
  158. shadow_size = nr_shadow_pages << PAGE_SHIFT;
  159. shadow_end = shadow_start + shadow_size;
  160. if (WARN_ON(mem_data->nr_pages % KASAN_GRANULE_SIZE) ||
  161. WARN_ON(start_kaddr % KASAN_MEMORY_PER_SHADOW_PAGE))
  162. return NOTIFY_BAD;
  163. switch (action) {
  164. case MEM_GOING_ONLINE: {
  165. void *ret;
  166. /*
  167. * If shadow is mapped already than it must have been mapped
  168. * during the boot. This could happen if we onlining previously
  169. * offlined memory.
  170. */
  171. if (shadow_mapped(shadow_start))
  172. return NOTIFY_OK;
  173. ret = __vmalloc_node_range(shadow_size, PAGE_SIZE, shadow_start,
  174. shadow_end, GFP_KERNEL,
  175. PAGE_KERNEL, VM_NO_GUARD,
  176. pfn_to_nid(mem_data->start_pfn),
  177. __builtin_return_address(0));
  178. if (!ret)
  179. return NOTIFY_BAD;
  180. kmemleak_ignore(ret);
  181. return NOTIFY_OK;
  182. }
  183. case MEM_CANCEL_ONLINE:
  184. case MEM_OFFLINE: {
  185. struct vm_struct *vm;
  186. /*
  187. * shadow_start was either mapped during boot by kasan_init()
  188. * or during memory online by __vmalloc_node_range().
  189. * In the latter case we can use vfree() to free shadow.
  190. * Non-NULL result of the find_vm_area() will tell us if
  191. * that was the second case.
  192. *
  193. * Currently it's not possible to free shadow mapped
  194. * during boot by kasan_init(). It's because the code
  195. * to do that hasn't been written yet. So we'll just
  196. * leak the memory.
  197. */
  198. vm = find_vm_area((void *)shadow_start);
  199. if (vm)
  200. vfree((void *)shadow_start);
  201. }
  202. }
  203. return NOTIFY_OK;
  204. }
  205. static int __init kasan_memhotplug_init(void)
  206. {
  207. hotplug_memory_notifier(kasan_mem_notifier, 0);
  208. return 0;
  209. }
  210. core_initcall(kasan_memhotplug_init);
  211. #endif
  212. #ifdef CONFIG_KASAN_VMALLOC
  213. void __init __weak kasan_populate_early_vm_area_shadow(void *start,
  214. unsigned long size)
  215. {
  216. }
  217. static int kasan_populate_vmalloc_pte(pte_t *ptep, unsigned long addr,
  218. void *unused)
  219. {
  220. unsigned long page;
  221. pte_t pte;
  222. if (likely(!pte_none(*ptep)))
  223. return 0;
  224. page = __get_free_page(GFP_KERNEL);
  225. if (!page)
  226. return -ENOMEM;
  227. memset((void *)page, KASAN_VMALLOC_INVALID, PAGE_SIZE);
  228. pte = pfn_pte(PFN_DOWN(__pa(page)), PAGE_KERNEL);
  229. spin_lock(&init_mm.page_table_lock);
  230. if (likely(pte_none(*ptep))) {
  231. set_pte_at(&init_mm, addr, ptep, pte);
  232. page = 0;
  233. }
  234. spin_unlock(&init_mm.page_table_lock);
  235. if (page)
  236. free_page(page);
  237. return 0;
  238. }
  239. int kasan_populate_vmalloc(unsigned long addr, unsigned long size)
  240. {
  241. unsigned long shadow_start, shadow_end;
  242. int ret;
  243. if (!kasan_arch_is_ready())
  244. return 0;
  245. if (!is_vmalloc_or_module_addr((void *)addr))
  246. return 0;
  247. shadow_start = (unsigned long)kasan_mem_to_shadow((void *)addr);
  248. shadow_end = (unsigned long)kasan_mem_to_shadow((void *)addr + size);
  249. /*
  250. * User Mode Linux maps enough shadow memory for all of virtual memory
  251. * at boot, so doesn't need to allocate more on vmalloc, just clear it.
  252. *
  253. * The remaining CONFIG_UML checks in this file exist for the same
  254. * reason.
  255. */
  256. if (IS_ENABLED(CONFIG_UML)) {
  257. __memset((void *)shadow_start, KASAN_VMALLOC_INVALID, shadow_end - shadow_start);
  258. return 0;
  259. }
  260. shadow_start = PAGE_ALIGN_DOWN(shadow_start);
  261. shadow_end = PAGE_ALIGN(shadow_end);
  262. ret = apply_to_page_range(&init_mm, shadow_start,
  263. shadow_end - shadow_start,
  264. kasan_populate_vmalloc_pte, NULL);
  265. if (ret)
  266. return ret;
  267. flush_cache_vmap(shadow_start, shadow_end);
  268. /*
  269. * We need to be careful about inter-cpu effects here. Consider:
  270. *
  271. * CPU#0 CPU#1
  272. * WRITE_ONCE(p, vmalloc(100)); while (x = READ_ONCE(p)) ;
  273. * p[99] = 1;
  274. *
  275. * With compiler instrumentation, that ends up looking like this:
  276. *
  277. * CPU#0 CPU#1
  278. * // vmalloc() allocates memory
  279. * // let a = area->addr
  280. * // we reach kasan_populate_vmalloc
  281. * // and call kasan_unpoison:
  282. * STORE shadow(a), unpoison_val
  283. * ...
  284. * STORE shadow(a+99), unpoison_val x = LOAD p
  285. * // rest of vmalloc process <data dependency>
  286. * STORE p, a LOAD shadow(x+99)
  287. *
  288. * If there is no barrier between the end of unpoisoning the shadow
  289. * and the store of the result to p, the stores could be committed
  290. * in a different order by CPU#0, and CPU#1 could erroneously observe
  291. * poison in the shadow.
  292. *
  293. * We need some sort of barrier between the stores.
  294. *
  295. * In the vmalloc() case, this is provided by a smp_wmb() in
  296. * clear_vm_uninitialized_flag(). In the per-cpu allocator and in
  297. * get_vm_area() and friends, the caller gets shadow allocated but
  298. * doesn't have any pages mapped into the virtual address space that
  299. * has been reserved. Mapping those pages in will involve taking and
  300. * releasing a page-table lock, which will provide the barrier.
  301. */
  302. return 0;
  303. }
  304. static int kasan_depopulate_vmalloc_pte(pte_t *ptep, unsigned long addr,
  305. void *unused)
  306. {
  307. unsigned long page;
  308. page = (unsigned long)__va(pte_pfn(*ptep) << PAGE_SHIFT);
  309. spin_lock(&init_mm.page_table_lock);
  310. if (likely(!pte_none(*ptep))) {
  311. pte_clear(&init_mm, addr, ptep);
  312. free_page(page);
  313. }
  314. spin_unlock(&init_mm.page_table_lock);
  315. return 0;
  316. }
  317. /*
  318. * Release the backing for the vmalloc region [start, end), which
  319. * lies within the free region [free_region_start, free_region_end).
  320. *
  321. * This can be run lazily, long after the region was freed. It runs
  322. * under vmap_area_lock, so it's not safe to interact with the vmalloc/vmap
  323. * infrastructure.
  324. *
  325. * How does this work?
  326. * -------------------
  327. *
  328. * We have a region that is page aligned, labeled as A.
  329. * That might not map onto the shadow in a way that is page-aligned:
  330. *
  331. * start end
  332. * v v
  333. * |????????|????????|AAAAAAAA|AA....AA|AAAAAAAA|????????| < vmalloc
  334. * -------- -------- -------- -------- --------
  335. * | | | | |
  336. * | | | /-------/ |
  337. * \-------\|/------/ |/---------------/
  338. * ||| ||
  339. * |??AAAAAA|AAAAAAAA|AA??????| < shadow
  340. * (1) (2) (3)
  341. *
  342. * First we align the start upwards and the end downwards, so that the
  343. * shadow of the region aligns with shadow page boundaries. In the
  344. * example, this gives us the shadow page (2). This is the shadow entirely
  345. * covered by this allocation.
  346. *
  347. * Then we have the tricky bits. We want to know if we can free the
  348. * partially covered shadow pages - (1) and (3) in the example. For this,
  349. * we are given the start and end of the free region that contains this
  350. * allocation. Extending our previous example, we could have:
  351. *
  352. * free_region_start free_region_end
  353. * | start end |
  354. * v v v v
  355. * |FFFFFFFF|FFFFFFFF|AAAAAAAA|AA....AA|AAAAAAAA|FFFFFFFF| < vmalloc
  356. * -------- -------- -------- -------- --------
  357. * | | | | |
  358. * | | | /-------/ |
  359. * \-------\|/------/ |/---------------/
  360. * ||| ||
  361. * |FFAAAAAA|AAAAAAAA|AAF?????| < shadow
  362. * (1) (2) (3)
  363. *
  364. * Once again, we align the start of the free region up, and the end of
  365. * the free region down so that the shadow is page aligned. So we can free
  366. * page (1) - we know no allocation currently uses anything in that page,
  367. * because all of it is in the vmalloc free region. But we cannot free
  368. * page (3), because we can't be sure that the rest of it is unused.
  369. *
  370. * We only consider pages that contain part of the original region for
  371. * freeing: we don't try to free other pages from the free region or we'd
  372. * end up trying to free huge chunks of virtual address space.
  373. *
  374. * Concurrency
  375. * -----------
  376. *
  377. * How do we know that we're not freeing a page that is simultaneously
  378. * being used for a fresh allocation in kasan_populate_vmalloc(_pte)?
  379. *
  380. * We _can_ have kasan_release_vmalloc and kasan_populate_vmalloc running
  381. * at the same time. While we run under free_vmap_area_lock, the population
  382. * code does not.
  383. *
  384. * free_vmap_area_lock instead operates to ensure that the larger range
  385. * [free_region_start, free_region_end) is safe: because __alloc_vmap_area and
  386. * the per-cpu region-finding algorithm both run under free_vmap_area_lock,
  387. * no space identified as free will become used while we are running. This
  388. * means that so long as we are careful with alignment and only free shadow
  389. * pages entirely covered by the free region, we will not run in to any
  390. * trouble - any simultaneous allocations will be for disjoint regions.
  391. */
  392. void kasan_release_vmalloc(unsigned long start, unsigned long end,
  393. unsigned long free_region_start,
  394. unsigned long free_region_end)
  395. {
  396. void *shadow_start, *shadow_end;
  397. unsigned long region_start, region_end;
  398. unsigned long size;
  399. if (!kasan_arch_is_ready())
  400. return;
  401. region_start = ALIGN(start, KASAN_MEMORY_PER_SHADOW_PAGE);
  402. region_end = ALIGN_DOWN(end, KASAN_MEMORY_PER_SHADOW_PAGE);
  403. free_region_start = ALIGN(free_region_start, KASAN_MEMORY_PER_SHADOW_PAGE);
  404. if (start != region_start &&
  405. free_region_start < region_start)
  406. region_start -= KASAN_MEMORY_PER_SHADOW_PAGE;
  407. free_region_end = ALIGN_DOWN(free_region_end, KASAN_MEMORY_PER_SHADOW_PAGE);
  408. if (end != region_end &&
  409. free_region_end > region_end)
  410. region_end += KASAN_MEMORY_PER_SHADOW_PAGE;
  411. shadow_start = kasan_mem_to_shadow((void *)region_start);
  412. shadow_end = kasan_mem_to_shadow((void *)region_end);
  413. if (shadow_end > shadow_start) {
  414. size = shadow_end - shadow_start;
  415. if (IS_ENABLED(CONFIG_UML)) {
  416. __memset(shadow_start, KASAN_SHADOW_INIT, shadow_end - shadow_start);
  417. return;
  418. }
  419. apply_to_existing_page_range(&init_mm,
  420. (unsigned long)shadow_start,
  421. size, kasan_depopulate_vmalloc_pte,
  422. NULL);
  423. flush_tlb_kernel_range((unsigned long)shadow_start,
  424. (unsigned long)shadow_end);
  425. }
  426. }
  427. void *__kasan_unpoison_vmalloc(const void *start, unsigned long size,
  428. kasan_vmalloc_flags_t flags)
  429. {
  430. /*
  431. * Software KASAN modes unpoison both VM_ALLOC and non-VM_ALLOC
  432. * mappings, so the KASAN_VMALLOC_VM_ALLOC flag is ignored.
  433. * Software KASAN modes can't optimize zeroing memory by combining it
  434. * with setting memory tags, so the KASAN_VMALLOC_INIT flag is ignored.
  435. */
  436. if (!kasan_arch_is_ready())
  437. return (void *)start;
  438. if (!is_vmalloc_or_module_addr(start))
  439. return (void *)start;
  440. /*
  441. * Don't tag executable memory with the tag-based mode.
  442. * The kernel doesn't tolerate having the PC register tagged.
  443. */
  444. if (IS_ENABLED(CONFIG_KASAN_SW_TAGS) &&
  445. !(flags & KASAN_VMALLOC_PROT_NORMAL))
  446. return (void *)start;
  447. start = set_tag(start, kasan_random_tag());
  448. kasan_unpoison(start, size, false);
  449. return (void *)start;
  450. }
  451. /*
  452. * Poison the shadow for a vmalloc region. Called as part of the
  453. * freeing process at the time the region is freed.
  454. */
  455. void __kasan_poison_vmalloc(const void *start, unsigned long size)
  456. {
  457. if (!kasan_arch_is_ready())
  458. return;
  459. if (!is_vmalloc_or_module_addr(start))
  460. return;
  461. size = round_up(size, KASAN_GRANULE_SIZE);
  462. kasan_poison(start, size, KASAN_VMALLOC_INVALID, false);
  463. }
  464. #else /* CONFIG_KASAN_VMALLOC */
  465. int kasan_alloc_module_shadow(void *addr, size_t size, gfp_t gfp_mask)
  466. {
  467. void *ret;
  468. size_t scaled_size;
  469. size_t shadow_size;
  470. unsigned long shadow_start;
  471. shadow_start = (unsigned long)kasan_mem_to_shadow(addr);
  472. scaled_size = (size + KASAN_GRANULE_SIZE - 1) >>
  473. KASAN_SHADOW_SCALE_SHIFT;
  474. shadow_size = round_up(scaled_size, PAGE_SIZE);
  475. if (WARN_ON(!PAGE_ALIGNED(shadow_start)))
  476. return -EINVAL;
  477. if (IS_ENABLED(CONFIG_UML)) {
  478. __memset((void *)shadow_start, KASAN_SHADOW_INIT, shadow_size);
  479. return 0;
  480. }
  481. ret = __vmalloc_node_range(shadow_size, 1, shadow_start,
  482. shadow_start + shadow_size,
  483. GFP_KERNEL,
  484. PAGE_KERNEL, VM_NO_GUARD, NUMA_NO_NODE,
  485. __builtin_return_address(0));
  486. if (ret) {
  487. struct vm_struct *vm = find_vm_area(addr);
  488. __memset(ret, KASAN_SHADOW_INIT, shadow_size);
  489. vm->flags |= VM_KASAN;
  490. kmemleak_ignore(ret);
  491. if (vm->flags & VM_DEFER_KMEMLEAK)
  492. kmemleak_vmalloc(vm, size, gfp_mask);
  493. return 0;
  494. }
  495. return -ENOMEM;
  496. }
  497. void kasan_free_module_shadow(const struct vm_struct *vm)
  498. {
  499. if (IS_ENABLED(CONFIG_UML))
  500. return;
  501. if (vm->flags & VM_KASAN)
  502. vfree(kasan_mem_to_shadow(vm->addr));
  503. }
  504. #endif