123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598 |
- // SPDX-License-Identifier: GPL-2.0
- /*
- * This file contains KASAN runtime code that manages shadow memory for
- * generic and software tag-based KASAN modes.
- *
- * Copyright (c) 2014 Samsung Electronics Co., Ltd.
- * Author: Andrey Ryabinin <[email protected]>
- *
- * Some code borrowed from https://github.com/xairy/kasan-prototype by
- * Andrey Konovalov <[email protected]>
- */
- #include <linux/init.h>
- #include <linux/kasan.h>
- #include <linux/kernel.h>
- #include <linux/kfence.h>
- #include <linux/kmemleak.h>
- #include <linux/memory.h>
- #include <linux/mm.h>
- #include <linux/string.h>
- #include <linux/types.h>
- #include <linux/vmalloc.h>
- #include <asm/cacheflush.h>
- #include <asm/tlbflush.h>
- #include "kasan.h"
- bool __kasan_check_read(const volatile void *p, unsigned int size)
- {
- return kasan_check_range((unsigned long)p, size, false, _RET_IP_);
- }
- EXPORT_SYMBOL(__kasan_check_read);
- bool __kasan_check_write(const volatile void *p, unsigned int size)
- {
- return kasan_check_range((unsigned long)p, size, true, _RET_IP_);
- }
- EXPORT_SYMBOL(__kasan_check_write);
- #undef memset
- void *memset(void *addr, int c, size_t len)
- {
- if (!kasan_check_range((unsigned long)addr, len, true, _RET_IP_))
- return NULL;
- return __memset(addr, c, len);
- }
- #ifdef __HAVE_ARCH_MEMMOVE
- #undef memmove
- void *memmove(void *dest, const void *src, size_t len)
- {
- if (!kasan_check_range((unsigned long)src, len, false, _RET_IP_) ||
- !kasan_check_range((unsigned long)dest, len, true, _RET_IP_))
- return NULL;
- return __memmove(dest, src, len);
- }
- #endif
- #undef memcpy
- void *memcpy(void *dest, const void *src, size_t len)
- {
- if (!kasan_check_range((unsigned long)src, len, false, _RET_IP_) ||
- !kasan_check_range((unsigned long)dest, len, true, _RET_IP_))
- return NULL;
- return __memcpy(dest, src, len);
- }
- void kasan_poison(const void *addr, size_t size, u8 value, bool init)
- {
- void *shadow_start, *shadow_end;
- if (!kasan_arch_is_ready())
- return;
- /*
- * Perform shadow offset calculation based on untagged address, as
- * some of the callers (e.g. kasan_poison_object_data) pass tagged
- * addresses to this function.
- */
- addr = kasan_reset_tag(addr);
- /* Skip KFENCE memory if called explicitly outside of sl*b. */
- if (is_kfence_address(addr))
- return;
- if (WARN_ON((unsigned long)addr & KASAN_GRANULE_MASK))
- return;
- if (WARN_ON(size & KASAN_GRANULE_MASK))
- return;
- shadow_start = kasan_mem_to_shadow(addr);
- shadow_end = kasan_mem_to_shadow(addr + size);
- __memset(shadow_start, value, shadow_end - shadow_start);
- }
- EXPORT_SYMBOL(kasan_poison);
- #ifdef CONFIG_KASAN_GENERIC
- void kasan_poison_last_granule(const void *addr, size_t size)
- {
- if (!kasan_arch_is_ready())
- return;
- if (size & KASAN_GRANULE_MASK) {
- u8 *shadow = (u8 *)kasan_mem_to_shadow(addr + size);
- *shadow = size & KASAN_GRANULE_MASK;
- }
- }
- #endif
- void kasan_unpoison(const void *addr, size_t size, bool init)
- {
- u8 tag = get_tag(addr);
- /*
- * Perform shadow offset calculation based on untagged address, as
- * some of the callers (e.g. kasan_unpoison_object_data) pass tagged
- * addresses to this function.
- */
- addr = kasan_reset_tag(addr);
- /*
- * Skip KFENCE memory if called explicitly outside of sl*b. Also note
- * that calls to ksize(), where size is not a multiple of machine-word
- * size, would otherwise poison the invalid portion of the word.
- */
- if (is_kfence_address(addr))
- return;
- if (WARN_ON((unsigned long)addr & KASAN_GRANULE_MASK))
- return;
- /* Unpoison all granules that cover the object. */
- kasan_poison(addr, round_up(size, KASAN_GRANULE_SIZE), tag, false);
- /* Partially poison the last granule for the generic mode. */
- if (IS_ENABLED(CONFIG_KASAN_GENERIC))
- kasan_poison_last_granule(addr, size);
- }
- #ifdef CONFIG_MEMORY_HOTPLUG
- static bool shadow_mapped(unsigned long addr)
- {
- pgd_t *pgd = pgd_offset_k(addr);
- p4d_t *p4d;
- pud_t *pud;
- pmd_t *pmd;
- pte_t *pte;
- if (pgd_none(*pgd))
- return false;
- p4d = p4d_offset(pgd, addr);
- if (p4d_none(*p4d))
- return false;
- pud = pud_offset(p4d, addr);
- if (pud_none(*pud))
- return false;
- /*
- * We can't use pud_large() or pud_huge(), the first one is
- * arch-specific, the last one depends on HUGETLB_PAGE. So let's abuse
- * pud_bad(), if pud is bad then it's bad because it's huge.
- */
- if (pud_bad(*pud))
- return true;
- pmd = pmd_offset(pud, addr);
- if (pmd_none(*pmd))
- return false;
- if (pmd_bad(*pmd))
- return true;
- pte = pte_offset_kernel(pmd, addr);
- return !pte_none(*pte);
- }
- static int __meminit kasan_mem_notifier(struct notifier_block *nb,
- unsigned long action, void *data)
- {
- struct memory_notify *mem_data = data;
- unsigned long nr_shadow_pages, start_kaddr, shadow_start;
- unsigned long shadow_end, shadow_size;
- nr_shadow_pages = mem_data->nr_pages >> KASAN_SHADOW_SCALE_SHIFT;
- start_kaddr = (unsigned long)pfn_to_kaddr(mem_data->start_pfn);
- shadow_start = (unsigned long)kasan_mem_to_shadow((void *)start_kaddr);
- shadow_size = nr_shadow_pages << PAGE_SHIFT;
- shadow_end = shadow_start + shadow_size;
- if (WARN_ON(mem_data->nr_pages % KASAN_GRANULE_SIZE) ||
- WARN_ON(start_kaddr % KASAN_MEMORY_PER_SHADOW_PAGE))
- return NOTIFY_BAD;
- switch (action) {
- case MEM_GOING_ONLINE: {
- void *ret;
- /*
- * If shadow is mapped already than it must have been mapped
- * during the boot. This could happen if we onlining previously
- * offlined memory.
- */
- if (shadow_mapped(shadow_start))
- return NOTIFY_OK;
- ret = __vmalloc_node_range(shadow_size, PAGE_SIZE, shadow_start,
- shadow_end, GFP_KERNEL,
- PAGE_KERNEL, VM_NO_GUARD,
- pfn_to_nid(mem_data->start_pfn),
- __builtin_return_address(0));
- if (!ret)
- return NOTIFY_BAD;
- kmemleak_ignore(ret);
- return NOTIFY_OK;
- }
- case MEM_CANCEL_ONLINE:
- case MEM_OFFLINE: {
- struct vm_struct *vm;
- /*
- * shadow_start was either mapped during boot by kasan_init()
- * or during memory online by __vmalloc_node_range().
- * In the latter case we can use vfree() to free shadow.
- * Non-NULL result of the find_vm_area() will tell us if
- * that was the second case.
- *
- * Currently it's not possible to free shadow mapped
- * during boot by kasan_init(). It's because the code
- * to do that hasn't been written yet. So we'll just
- * leak the memory.
- */
- vm = find_vm_area((void *)shadow_start);
- if (vm)
- vfree((void *)shadow_start);
- }
- }
- return NOTIFY_OK;
- }
- static int __init kasan_memhotplug_init(void)
- {
- hotplug_memory_notifier(kasan_mem_notifier, 0);
- return 0;
- }
- core_initcall(kasan_memhotplug_init);
- #endif
- #ifdef CONFIG_KASAN_VMALLOC
- void __init __weak kasan_populate_early_vm_area_shadow(void *start,
- unsigned long size)
- {
- }
- static int kasan_populate_vmalloc_pte(pte_t *ptep, unsigned long addr,
- void *unused)
- {
- unsigned long page;
- pte_t pte;
- if (likely(!pte_none(*ptep)))
- return 0;
- page = __get_free_page(GFP_KERNEL);
- if (!page)
- return -ENOMEM;
- memset((void *)page, KASAN_VMALLOC_INVALID, PAGE_SIZE);
- pte = pfn_pte(PFN_DOWN(__pa(page)), PAGE_KERNEL);
- spin_lock(&init_mm.page_table_lock);
- if (likely(pte_none(*ptep))) {
- set_pte_at(&init_mm, addr, ptep, pte);
- page = 0;
- }
- spin_unlock(&init_mm.page_table_lock);
- if (page)
- free_page(page);
- return 0;
- }
- int kasan_populate_vmalloc(unsigned long addr, unsigned long size)
- {
- unsigned long shadow_start, shadow_end;
- int ret;
- if (!kasan_arch_is_ready())
- return 0;
- if (!is_vmalloc_or_module_addr((void *)addr))
- return 0;
- shadow_start = (unsigned long)kasan_mem_to_shadow((void *)addr);
- shadow_end = (unsigned long)kasan_mem_to_shadow((void *)addr + size);
- /*
- * User Mode Linux maps enough shadow memory for all of virtual memory
- * at boot, so doesn't need to allocate more on vmalloc, just clear it.
- *
- * The remaining CONFIG_UML checks in this file exist for the same
- * reason.
- */
- if (IS_ENABLED(CONFIG_UML)) {
- __memset((void *)shadow_start, KASAN_VMALLOC_INVALID, shadow_end - shadow_start);
- return 0;
- }
- shadow_start = PAGE_ALIGN_DOWN(shadow_start);
- shadow_end = PAGE_ALIGN(shadow_end);
- ret = apply_to_page_range(&init_mm, shadow_start,
- shadow_end - shadow_start,
- kasan_populate_vmalloc_pte, NULL);
- if (ret)
- return ret;
- flush_cache_vmap(shadow_start, shadow_end);
- /*
- * We need to be careful about inter-cpu effects here. Consider:
- *
- * CPU#0 CPU#1
- * WRITE_ONCE(p, vmalloc(100)); while (x = READ_ONCE(p)) ;
- * p[99] = 1;
- *
- * With compiler instrumentation, that ends up looking like this:
- *
- * CPU#0 CPU#1
- * // vmalloc() allocates memory
- * // let a = area->addr
- * // we reach kasan_populate_vmalloc
- * // and call kasan_unpoison:
- * STORE shadow(a), unpoison_val
- * ...
- * STORE shadow(a+99), unpoison_val x = LOAD p
- * // rest of vmalloc process <data dependency>
- * STORE p, a LOAD shadow(x+99)
- *
- * If there is no barrier between the end of unpoisoning the shadow
- * and the store of the result to p, the stores could be committed
- * in a different order by CPU#0, and CPU#1 could erroneously observe
- * poison in the shadow.
- *
- * We need some sort of barrier between the stores.
- *
- * In the vmalloc() case, this is provided by a smp_wmb() in
- * clear_vm_uninitialized_flag(). In the per-cpu allocator and in
- * get_vm_area() and friends, the caller gets shadow allocated but
- * doesn't have any pages mapped into the virtual address space that
- * has been reserved. Mapping those pages in will involve taking and
- * releasing a page-table lock, which will provide the barrier.
- */
- return 0;
- }
- static int kasan_depopulate_vmalloc_pte(pte_t *ptep, unsigned long addr,
- void *unused)
- {
- unsigned long page;
- page = (unsigned long)__va(pte_pfn(*ptep) << PAGE_SHIFT);
- spin_lock(&init_mm.page_table_lock);
- if (likely(!pte_none(*ptep))) {
- pte_clear(&init_mm, addr, ptep);
- free_page(page);
- }
- spin_unlock(&init_mm.page_table_lock);
- return 0;
- }
- /*
- * Release the backing for the vmalloc region [start, end), which
- * lies within the free region [free_region_start, free_region_end).
- *
- * This can be run lazily, long after the region was freed. It runs
- * under vmap_area_lock, so it's not safe to interact with the vmalloc/vmap
- * infrastructure.
- *
- * How does this work?
- * -------------------
- *
- * We have a region that is page aligned, labeled as A.
- * That might not map onto the shadow in a way that is page-aligned:
- *
- * start end
- * v v
- * |????????|????????|AAAAAAAA|AA....AA|AAAAAAAA|????????| < vmalloc
- * -------- -------- -------- -------- --------
- * | | | | |
- * | | | /-------/ |
- * \-------\|/------/ |/---------------/
- * ||| ||
- * |??AAAAAA|AAAAAAAA|AA??????| < shadow
- * (1) (2) (3)
- *
- * First we align the start upwards and the end downwards, so that the
- * shadow of the region aligns with shadow page boundaries. In the
- * example, this gives us the shadow page (2). This is the shadow entirely
- * covered by this allocation.
- *
- * Then we have the tricky bits. We want to know if we can free the
- * partially covered shadow pages - (1) and (3) in the example. For this,
- * we are given the start and end of the free region that contains this
- * allocation. Extending our previous example, we could have:
- *
- * free_region_start free_region_end
- * | start end |
- * v v v v
- * |FFFFFFFF|FFFFFFFF|AAAAAAAA|AA....AA|AAAAAAAA|FFFFFFFF| < vmalloc
- * -------- -------- -------- -------- --------
- * | | | | |
- * | | | /-------/ |
- * \-------\|/------/ |/---------------/
- * ||| ||
- * |FFAAAAAA|AAAAAAAA|AAF?????| < shadow
- * (1) (2) (3)
- *
- * Once again, we align the start of the free region up, and the end of
- * the free region down so that the shadow is page aligned. So we can free
- * page (1) - we know no allocation currently uses anything in that page,
- * because all of it is in the vmalloc free region. But we cannot free
- * page (3), because we can't be sure that the rest of it is unused.
- *
- * We only consider pages that contain part of the original region for
- * freeing: we don't try to free other pages from the free region or we'd
- * end up trying to free huge chunks of virtual address space.
- *
- * Concurrency
- * -----------
- *
- * How do we know that we're not freeing a page that is simultaneously
- * being used for a fresh allocation in kasan_populate_vmalloc(_pte)?
- *
- * We _can_ have kasan_release_vmalloc and kasan_populate_vmalloc running
- * at the same time. While we run under free_vmap_area_lock, the population
- * code does not.
- *
- * free_vmap_area_lock instead operates to ensure that the larger range
- * [free_region_start, free_region_end) is safe: because __alloc_vmap_area and
- * the per-cpu region-finding algorithm both run under free_vmap_area_lock,
- * no space identified as free will become used while we are running. This
- * means that so long as we are careful with alignment and only free shadow
- * pages entirely covered by the free region, we will not run in to any
- * trouble - any simultaneous allocations will be for disjoint regions.
- */
- void kasan_release_vmalloc(unsigned long start, unsigned long end,
- unsigned long free_region_start,
- unsigned long free_region_end)
- {
- void *shadow_start, *shadow_end;
- unsigned long region_start, region_end;
- unsigned long size;
- if (!kasan_arch_is_ready())
- return;
- region_start = ALIGN(start, KASAN_MEMORY_PER_SHADOW_PAGE);
- region_end = ALIGN_DOWN(end, KASAN_MEMORY_PER_SHADOW_PAGE);
- free_region_start = ALIGN(free_region_start, KASAN_MEMORY_PER_SHADOW_PAGE);
- if (start != region_start &&
- free_region_start < region_start)
- region_start -= KASAN_MEMORY_PER_SHADOW_PAGE;
- free_region_end = ALIGN_DOWN(free_region_end, KASAN_MEMORY_PER_SHADOW_PAGE);
- if (end != region_end &&
- free_region_end > region_end)
- region_end += KASAN_MEMORY_PER_SHADOW_PAGE;
- shadow_start = kasan_mem_to_shadow((void *)region_start);
- shadow_end = kasan_mem_to_shadow((void *)region_end);
- if (shadow_end > shadow_start) {
- size = shadow_end - shadow_start;
- if (IS_ENABLED(CONFIG_UML)) {
- __memset(shadow_start, KASAN_SHADOW_INIT, shadow_end - shadow_start);
- return;
- }
- apply_to_existing_page_range(&init_mm,
- (unsigned long)shadow_start,
- size, kasan_depopulate_vmalloc_pte,
- NULL);
- flush_tlb_kernel_range((unsigned long)shadow_start,
- (unsigned long)shadow_end);
- }
- }
- void *__kasan_unpoison_vmalloc(const void *start, unsigned long size,
- kasan_vmalloc_flags_t flags)
- {
- /*
- * Software KASAN modes unpoison both VM_ALLOC and non-VM_ALLOC
- * mappings, so the KASAN_VMALLOC_VM_ALLOC flag is ignored.
- * Software KASAN modes can't optimize zeroing memory by combining it
- * with setting memory tags, so the KASAN_VMALLOC_INIT flag is ignored.
- */
- if (!kasan_arch_is_ready())
- return (void *)start;
- if (!is_vmalloc_or_module_addr(start))
- return (void *)start;
- /*
- * Don't tag executable memory with the tag-based mode.
- * The kernel doesn't tolerate having the PC register tagged.
- */
- if (IS_ENABLED(CONFIG_KASAN_SW_TAGS) &&
- !(flags & KASAN_VMALLOC_PROT_NORMAL))
- return (void *)start;
- start = set_tag(start, kasan_random_tag());
- kasan_unpoison(start, size, false);
- return (void *)start;
- }
- /*
- * Poison the shadow for a vmalloc region. Called as part of the
- * freeing process at the time the region is freed.
- */
- void __kasan_poison_vmalloc(const void *start, unsigned long size)
- {
- if (!kasan_arch_is_ready())
- return;
- if (!is_vmalloc_or_module_addr(start))
- return;
- size = round_up(size, KASAN_GRANULE_SIZE);
- kasan_poison(start, size, KASAN_VMALLOC_INVALID, false);
- }
- #else /* CONFIG_KASAN_VMALLOC */
- int kasan_alloc_module_shadow(void *addr, size_t size, gfp_t gfp_mask)
- {
- void *ret;
- size_t scaled_size;
- size_t shadow_size;
- unsigned long shadow_start;
- shadow_start = (unsigned long)kasan_mem_to_shadow(addr);
- scaled_size = (size + KASAN_GRANULE_SIZE - 1) >>
- KASAN_SHADOW_SCALE_SHIFT;
- shadow_size = round_up(scaled_size, PAGE_SIZE);
- if (WARN_ON(!PAGE_ALIGNED(shadow_start)))
- return -EINVAL;
- if (IS_ENABLED(CONFIG_UML)) {
- __memset((void *)shadow_start, KASAN_SHADOW_INIT, shadow_size);
- return 0;
- }
- ret = __vmalloc_node_range(shadow_size, 1, shadow_start,
- shadow_start + shadow_size,
- GFP_KERNEL,
- PAGE_KERNEL, VM_NO_GUARD, NUMA_NO_NODE,
- __builtin_return_address(0));
- if (ret) {
- struct vm_struct *vm = find_vm_area(addr);
- __memset(ret, KASAN_SHADOW_INIT, shadow_size);
- vm->flags |= VM_KASAN;
- kmemleak_ignore(ret);
- if (vm->flags & VM_DEFER_KMEMLEAK)
- kmemleak_vmalloc(vm, size, gfp_mask);
- return 0;
- }
- return -ENOMEM;
- }
- void kasan_free_module_shadow(const struct vm_struct *vm)
- {
- if (IS_ENABLED(CONFIG_UML))
- return;
- if (vm->flags & VM_KASAN)
- vfree(kasan_mem_to_shadow(vm->addr));
- }
- #endif
|