hmm.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600
  1. // SPDX-License-Identifier: GPL-2.0-or-later
  2. /*
  3. * Copyright 2013 Red Hat Inc.
  4. *
  5. * Authors: Jérôme Glisse <[email protected]>
  6. */
  7. /*
  8. * Refer to include/linux/hmm.h for information about heterogeneous memory
  9. * management or HMM for short.
  10. */
  11. #include <linux/pagewalk.h>
  12. #include <linux/hmm.h>
  13. #include <linux/init.h>
  14. #include <linux/rmap.h>
  15. #include <linux/swap.h>
  16. #include <linux/slab.h>
  17. #include <linux/sched.h>
  18. #include <linux/mmzone.h>
  19. #include <linux/pagemap.h>
  20. #include <linux/swapops.h>
  21. #include <linux/hugetlb.h>
  22. #include <linux/memremap.h>
  23. #include <linux/sched/mm.h>
  24. #include <linux/jump_label.h>
  25. #include <linux/dma-mapping.h>
  26. #include <linux/mmu_notifier.h>
  27. #include <linux/memory_hotplug.h>
  28. #include "internal.h"
  29. struct hmm_vma_walk {
  30. struct hmm_range *range;
  31. unsigned long last;
  32. };
  33. enum {
  34. HMM_NEED_FAULT = 1 << 0,
  35. HMM_NEED_WRITE_FAULT = 1 << 1,
  36. HMM_NEED_ALL_BITS = HMM_NEED_FAULT | HMM_NEED_WRITE_FAULT,
  37. };
  38. static int hmm_pfns_fill(unsigned long addr, unsigned long end,
  39. struct hmm_range *range, unsigned long cpu_flags)
  40. {
  41. unsigned long i = (addr - range->start) >> PAGE_SHIFT;
  42. for (; addr < end; addr += PAGE_SIZE, i++)
  43. range->hmm_pfns[i] = cpu_flags;
  44. return 0;
  45. }
  46. /*
  47. * hmm_vma_fault() - fault in a range lacking valid pmd or pte(s)
  48. * @addr: range virtual start address (inclusive)
  49. * @end: range virtual end address (exclusive)
  50. * @required_fault: HMM_NEED_* flags
  51. * @walk: mm_walk structure
  52. * Return: -EBUSY after page fault, or page fault error
  53. *
  54. * This function will be called whenever pmd_none() or pte_none() returns true,
  55. * or whenever there is no page directory covering the virtual address range.
  56. */
  57. static int hmm_vma_fault(unsigned long addr, unsigned long end,
  58. unsigned int required_fault, struct mm_walk *walk)
  59. {
  60. struct hmm_vma_walk *hmm_vma_walk = walk->private;
  61. struct vm_area_struct *vma = walk->vma;
  62. unsigned int fault_flags = FAULT_FLAG_REMOTE;
  63. WARN_ON_ONCE(!required_fault);
  64. hmm_vma_walk->last = addr;
  65. if (required_fault & HMM_NEED_WRITE_FAULT) {
  66. if (!(vma->vm_flags & VM_WRITE))
  67. return -EPERM;
  68. fault_flags |= FAULT_FLAG_WRITE;
  69. }
  70. for (; addr < end; addr += PAGE_SIZE)
  71. if (handle_mm_fault(vma, addr, fault_flags, NULL) &
  72. VM_FAULT_ERROR)
  73. return -EFAULT;
  74. return -EBUSY;
  75. }
  76. static unsigned int hmm_pte_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
  77. unsigned long pfn_req_flags,
  78. unsigned long cpu_flags)
  79. {
  80. struct hmm_range *range = hmm_vma_walk->range;
  81. /*
  82. * So we not only consider the individual per page request we also
  83. * consider the default flags requested for the range. The API can
  84. * be used 2 ways. The first one where the HMM user coalesces
  85. * multiple page faults into one request and sets flags per pfn for
  86. * those faults. The second one where the HMM user wants to pre-
  87. * fault a range with specific flags. For the latter one it is a
  88. * waste to have the user pre-fill the pfn arrays with a default
  89. * flags value.
  90. */
  91. pfn_req_flags &= range->pfn_flags_mask;
  92. pfn_req_flags |= range->default_flags;
  93. /* We aren't ask to do anything ... */
  94. if (!(pfn_req_flags & HMM_PFN_REQ_FAULT))
  95. return 0;
  96. /* Need to write fault ? */
  97. if ((pfn_req_flags & HMM_PFN_REQ_WRITE) &&
  98. !(cpu_flags & HMM_PFN_WRITE))
  99. return HMM_NEED_FAULT | HMM_NEED_WRITE_FAULT;
  100. /* If CPU page table is not valid then we need to fault */
  101. if (!(cpu_flags & HMM_PFN_VALID))
  102. return HMM_NEED_FAULT;
  103. return 0;
  104. }
  105. static unsigned int
  106. hmm_range_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
  107. const unsigned long hmm_pfns[], unsigned long npages,
  108. unsigned long cpu_flags)
  109. {
  110. struct hmm_range *range = hmm_vma_walk->range;
  111. unsigned int required_fault = 0;
  112. unsigned long i;
  113. /*
  114. * If the default flags do not request to fault pages, and the mask does
  115. * not allow for individual pages to be faulted, then
  116. * hmm_pte_need_fault() will always return 0.
  117. */
  118. if (!((range->default_flags | range->pfn_flags_mask) &
  119. HMM_PFN_REQ_FAULT))
  120. return 0;
  121. for (i = 0; i < npages; ++i) {
  122. required_fault |= hmm_pte_need_fault(hmm_vma_walk, hmm_pfns[i],
  123. cpu_flags);
  124. if (required_fault == HMM_NEED_ALL_BITS)
  125. return required_fault;
  126. }
  127. return required_fault;
  128. }
  129. static int hmm_vma_walk_hole(unsigned long addr, unsigned long end,
  130. __always_unused int depth, struct mm_walk *walk)
  131. {
  132. struct hmm_vma_walk *hmm_vma_walk = walk->private;
  133. struct hmm_range *range = hmm_vma_walk->range;
  134. unsigned int required_fault;
  135. unsigned long i, npages;
  136. unsigned long *hmm_pfns;
  137. i = (addr - range->start) >> PAGE_SHIFT;
  138. npages = (end - addr) >> PAGE_SHIFT;
  139. hmm_pfns = &range->hmm_pfns[i];
  140. required_fault =
  141. hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0);
  142. if (!walk->vma) {
  143. if (required_fault)
  144. return -EFAULT;
  145. return hmm_pfns_fill(addr, end, range, HMM_PFN_ERROR);
  146. }
  147. if (required_fault)
  148. return hmm_vma_fault(addr, end, required_fault, walk);
  149. return hmm_pfns_fill(addr, end, range, 0);
  150. }
  151. static inline unsigned long hmm_pfn_flags_order(unsigned long order)
  152. {
  153. return order << HMM_PFN_ORDER_SHIFT;
  154. }
  155. static inline unsigned long pmd_to_hmm_pfn_flags(struct hmm_range *range,
  156. pmd_t pmd)
  157. {
  158. if (pmd_protnone(pmd))
  159. return 0;
  160. return (pmd_write(pmd) ? (HMM_PFN_VALID | HMM_PFN_WRITE) :
  161. HMM_PFN_VALID) |
  162. hmm_pfn_flags_order(PMD_SHIFT - PAGE_SHIFT);
  163. }
  164. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  165. static int hmm_vma_handle_pmd(struct mm_walk *walk, unsigned long addr,
  166. unsigned long end, unsigned long hmm_pfns[],
  167. pmd_t pmd)
  168. {
  169. struct hmm_vma_walk *hmm_vma_walk = walk->private;
  170. struct hmm_range *range = hmm_vma_walk->range;
  171. unsigned long pfn, npages, i;
  172. unsigned int required_fault;
  173. unsigned long cpu_flags;
  174. npages = (end - addr) >> PAGE_SHIFT;
  175. cpu_flags = pmd_to_hmm_pfn_flags(range, pmd);
  176. required_fault =
  177. hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, cpu_flags);
  178. if (required_fault)
  179. return hmm_vma_fault(addr, end, required_fault, walk);
  180. pfn = pmd_pfn(pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
  181. for (i = 0; addr < end; addr += PAGE_SIZE, i++, pfn++)
  182. hmm_pfns[i] = pfn | cpu_flags;
  183. return 0;
  184. }
  185. #else /* CONFIG_TRANSPARENT_HUGEPAGE */
  186. /* stub to allow the code below to compile */
  187. int hmm_vma_handle_pmd(struct mm_walk *walk, unsigned long addr,
  188. unsigned long end, unsigned long hmm_pfns[], pmd_t pmd);
  189. #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
  190. static inline unsigned long pte_to_hmm_pfn_flags(struct hmm_range *range,
  191. pte_t pte)
  192. {
  193. if (pte_none(pte) || !pte_present(pte) || pte_protnone(pte))
  194. return 0;
  195. return pte_write(pte) ? (HMM_PFN_VALID | HMM_PFN_WRITE) : HMM_PFN_VALID;
  196. }
  197. static int hmm_vma_handle_pte(struct mm_walk *walk, unsigned long addr,
  198. unsigned long end, pmd_t *pmdp, pte_t *ptep,
  199. unsigned long *hmm_pfn)
  200. {
  201. struct hmm_vma_walk *hmm_vma_walk = walk->private;
  202. struct hmm_range *range = hmm_vma_walk->range;
  203. unsigned int required_fault;
  204. unsigned long cpu_flags;
  205. pte_t pte = *ptep;
  206. uint64_t pfn_req_flags = *hmm_pfn;
  207. if (pte_none_mostly(pte)) {
  208. required_fault =
  209. hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, 0);
  210. if (required_fault)
  211. goto fault;
  212. *hmm_pfn = 0;
  213. return 0;
  214. }
  215. if (!pte_present(pte)) {
  216. swp_entry_t entry = pte_to_swp_entry(pte);
  217. /*
  218. * Don't fault in device private pages owned by the caller,
  219. * just report the PFN.
  220. */
  221. if (is_device_private_entry(entry) &&
  222. pfn_swap_entry_to_page(entry)->pgmap->owner ==
  223. range->dev_private_owner) {
  224. cpu_flags = HMM_PFN_VALID;
  225. if (is_writable_device_private_entry(entry))
  226. cpu_flags |= HMM_PFN_WRITE;
  227. *hmm_pfn = swp_offset_pfn(entry) | cpu_flags;
  228. return 0;
  229. }
  230. required_fault =
  231. hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, 0);
  232. if (!required_fault) {
  233. *hmm_pfn = 0;
  234. return 0;
  235. }
  236. if (!non_swap_entry(entry))
  237. goto fault;
  238. if (is_device_private_entry(entry))
  239. goto fault;
  240. if (is_device_exclusive_entry(entry))
  241. goto fault;
  242. if (is_migration_entry(entry)) {
  243. pte_unmap(ptep);
  244. hmm_vma_walk->last = addr;
  245. migration_entry_wait(walk->mm, pmdp, addr);
  246. return -EBUSY;
  247. }
  248. /* Report error for everything else */
  249. pte_unmap(ptep);
  250. return -EFAULT;
  251. }
  252. cpu_flags = pte_to_hmm_pfn_flags(range, pte);
  253. required_fault =
  254. hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, cpu_flags);
  255. if (required_fault)
  256. goto fault;
  257. /*
  258. * Bypass devmap pte such as DAX page when all pfn requested
  259. * flags(pfn_req_flags) are fulfilled.
  260. * Since each architecture defines a struct page for the zero page, just
  261. * fall through and treat it like a normal page.
  262. */
  263. if (!vm_normal_page(walk->vma, addr, pte) &&
  264. !pte_devmap(pte) &&
  265. !is_zero_pfn(pte_pfn(pte))) {
  266. if (hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, 0)) {
  267. pte_unmap(ptep);
  268. return -EFAULT;
  269. }
  270. *hmm_pfn = HMM_PFN_ERROR;
  271. return 0;
  272. }
  273. *hmm_pfn = pte_pfn(pte) | cpu_flags;
  274. return 0;
  275. fault:
  276. pte_unmap(ptep);
  277. /* Fault any virtual address we were asked to fault */
  278. return hmm_vma_fault(addr, end, required_fault, walk);
  279. }
  280. static int hmm_vma_walk_pmd(pmd_t *pmdp,
  281. unsigned long start,
  282. unsigned long end,
  283. struct mm_walk *walk)
  284. {
  285. struct hmm_vma_walk *hmm_vma_walk = walk->private;
  286. struct hmm_range *range = hmm_vma_walk->range;
  287. unsigned long *hmm_pfns =
  288. &range->hmm_pfns[(start - range->start) >> PAGE_SHIFT];
  289. unsigned long npages = (end - start) >> PAGE_SHIFT;
  290. unsigned long addr = start;
  291. pte_t *ptep;
  292. pmd_t pmd;
  293. again:
  294. pmd = READ_ONCE(*pmdp);
  295. if (pmd_none(pmd))
  296. return hmm_vma_walk_hole(start, end, -1, walk);
  297. if (thp_migration_supported() && is_pmd_migration_entry(pmd)) {
  298. if (hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0)) {
  299. hmm_vma_walk->last = addr;
  300. pmd_migration_entry_wait(walk->mm, pmdp);
  301. return -EBUSY;
  302. }
  303. return hmm_pfns_fill(start, end, range, 0);
  304. }
  305. if (!pmd_present(pmd)) {
  306. if (hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0))
  307. return -EFAULT;
  308. return hmm_pfns_fill(start, end, range, HMM_PFN_ERROR);
  309. }
  310. if (pmd_devmap(pmd) || pmd_trans_huge(pmd)) {
  311. /*
  312. * No need to take pmd_lock here, even if some other thread
  313. * is splitting the huge pmd we will get that event through
  314. * mmu_notifier callback.
  315. *
  316. * So just read pmd value and check again it's a transparent
  317. * huge or device mapping one and compute corresponding pfn
  318. * values.
  319. */
  320. pmd = pmd_read_atomic(pmdp);
  321. barrier();
  322. if (!pmd_devmap(pmd) && !pmd_trans_huge(pmd))
  323. goto again;
  324. return hmm_vma_handle_pmd(walk, addr, end, hmm_pfns, pmd);
  325. }
  326. /*
  327. * We have handled all the valid cases above ie either none, migration,
  328. * huge or transparent huge. At this point either it is a valid pmd
  329. * entry pointing to pte directory or it is a bad pmd that will not
  330. * recover.
  331. */
  332. if (pmd_bad(pmd)) {
  333. if (hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0))
  334. return -EFAULT;
  335. return hmm_pfns_fill(start, end, range, HMM_PFN_ERROR);
  336. }
  337. ptep = pte_offset_map(pmdp, addr);
  338. for (; addr < end; addr += PAGE_SIZE, ptep++, hmm_pfns++) {
  339. int r;
  340. r = hmm_vma_handle_pte(walk, addr, end, pmdp, ptep, hmm_pfns);
  341. if (r) {
  342. /* hmm_vma_handle_pte() did pte_unmap() */
  343. return r;
  344. }
  345. }
  346. pte_unmap(ptep - 1);
  347. return 0;
  348. }
  349. #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && \
  350. defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
  351. static inline unsigned long pud_to_hmm_pfn_flags(struct hmm_range *range,
  352. pud_t pud)
  353. {
  354. if (!pud_present(pud))
  355. return 0;
  356. return (pud_write(pud) ? (HMM_PFN_VALID | HMM_PFN_WRITE) :
  357. HMM_PFN_VALID) |
  358. hmm_pfn_flags_order(PUD_SHIFT - PAGE_SHIFT);
  359. }
  360. static int hmm_vma_walk_pud(pud_t *pudp, unsigned long start, unsigned long end,
  361. struct mm_walk *walk)
  362. {
  363. struct hmm_vma_walk *hmm_vma_walk = walk->private;
  364. struct hmm_range *range = hmm_vma_walk->range;
  365. unsigned long addr = start;
  366. pud_t pud;
  367. spinlock_t *ptl = pud_trans_huge_lock(pudp, walk->vma);
  368. if (!ptl)
  369. return 0;
  370. /* Normally we don't want to split the huge page */
  371. walk->action = ACTION_CONTINUE;
  372. pud = READ_ONCE(*pudp);
  373. if (pud_none(pud)) {
  374. spin_unlock(ptl);
  375. return hmm_vma_walk_hole(start, end, -1, walk);
  376. }
  377. if (pud_huge(pud) && pud_devmap(pud)) {
  378. unsigned long i, npages, pfn;
  379. unsigned int required_fault;
  380. unsigned long *hmm_pfns;
  381. unsigned long cpu_flags;
  382. if (!pud_present(pud)) {
  383. spin_unlock(ptl);
  384. return hmm_vma_walk_hole(start, end, -1, walk);
  385. }
  386. i = (addr - range->start) >> PAGE_SHIFT;
  387. npages = (end - addr) >> PAGE_SHIFT;
  388. hmm_pfns = &range->hmm_pfns[i];
  389. cpu_flags = pud_to_hmm_pfn_flags(range, pud);
  390. required_fault = hmm_range_need_fault(hmm_vma_walk, hmm_pfns,
  391. npages, cpu_flags);
  392. if (required_fault) {
  393. spin_unlock(ptl);
  394. return hmm_vma_fault(addr, end, required_fault, walk);
  395. }
  396. pfn = pud_pfn(pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
  397. for (i = 0; i < npages; ++i, ++pfn)
  398. hmm_pfns[i] = pfn | cpu_flags;
  399. goto out_unlock;
  400. }
  401. /* Ask for the PUD to be split */
  402. walk->action = ACTION_SUBTREE;
  403. out_unlock:
  404. spin_unlock(ptl);
  405. return 0;
  406. }
  407. #else
  408. #define hmm_vma_walk_pud NULL
  409. #endif
  410. #ifdef CONFIG_HUGETLB_PAGE
  411. static int hmm_vma_walk_hugetlb_entry(pte_t *pte, unsigned long hmask,
  412. unsigned long start, unsigned long end,
  413. struct mm_walk *walk)
  414. {
  415. unsigned long addr = start, i, pfn;
  416. struct hmm_vma_walk *hmm_vma_walk = walk->private;
  417. struct hmm_range *range = hmm_vma_walk->range;
  418. struct vm_area_struct *vma = walk->vma;
  419. unsigned int required_fault;
  420. unsigned long pfn_req_flags;
  421. unsigned long cpu_flags;
  422. spinlock_t *ptl;
  423. pte_t entry;
  424. ptl = huge_pte_lock(hstate_vma(vma), walk->mm, pte);
  425. entry = huge_ptep_get(pte);
  426. i = (start - range->start) >> PAGE_SHIFT;
  427. pfn_req_flags = range->hmm_pfns[i];
  428. cpu_flags = pte_to_hmm_pfn_flags(range, entry) |
  429. hmm_pfn_flags_order(huge_page_order(hstate_vma(vma)));
  430. required_fault =
  431. hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, cpu_flags);
  432. if (required_fault) {
  433. spin_unlock(ptl);
  434. return hmm_vma_fault(addr, end, required_fault, walk);
  435. }
  436. pfn = pte_pfn(entry) + ((start & ~hmask) >> PAGE_SHIFT);
  437. for (; addr < end; addr += PAGE_SIZE, i++, pfn++)
  438. range->hmm_pfns[i] = pfn | cpu_flags;
  439. spin_unlock(ptl);
  440. return 0;
  441. }
  442. #else
  443. #define hmm_vma_walk_hugetlb_entry NULL
  444. #endif /* CONFIG_HUGETLB_PAGE */
  445. static int hmm_vma_walk_test(unsigned long start, unsigned long end,
  446. struct mm_walk *walk)
  447. {
  448. struct hmm_vma_walk *hmm_vma_walk = walk->private;
  449. struct hmm_range *range = hmm_vma_walk->range;
  450. struct vm_area_struct *vma = walk->vma;
  451. if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)) &&
  452. vma->vm_flags & VM_READ)
  453. return 0;
  454. /*
  455. * vma ranges that don't have struct page backing them or map I/O
  456. * devices directly cannot be handled by hmm_range_fault().
  457. *
  458. * If the vma does not allow read access, then assume that it does not
  459. * allow write access either. HMM does not support architectures that
  460. * allow write without read.
  461. *
  462. * If a fault is requested for an unsupported range then it is a hard
  463. * failure.
  464. */
  465. if (hmm_range_need_fault(hmm_vma_walk,
  466. range->hmm_pfns +
  467. ((start - range->start) >> PAGE_SHIFT),
  468. (end - start) >> PAGE_SHIFT, 0))
  469. return -EFAULT;
  470. hmm_pfns_fill(start, end, range, HMM_PFN_ERROR);
  471. /* Skip this vma and continue processing the next vma. */
  472. return 1;
  473. }
  474. static const struct mm_walk_ops hmm_walk_ops = {
  475. .pud_entry = hmm_vma_walk_pud,
  476. .pmd_entry = hmm_vma_walk_pmd,
  477. .pte_hole = hmm_vma_walk_hole,
  478. .hugetlb_entry = hmm_vma_walk_hugetlb_entry,
  479. .test_walk = hmm_vma_walk_test,
  480. .walk_lock = PGWALK_RDLOCK,
  481. };
  482. /**
  483. * hmm_range_fault - try to fault some address in a virtual address range
  484. * @range: argument structure
  485. *
  486. * Returns 0 on success or one of the following error codes:
  487. *
  488. * -EINVAL: Invalid arguments or mm or virtual address is in an invalid vma
  489. * (e.g., device file vma).
  490. * -ENOMEM: Out of memory.
  491. * -EPERM: Invalid permission (e.g., asking for write and range is read
  492. * only).
  493. * -EBUSY: The range has been invalidated and the caller needs to wait for
  494. * the invalidation to finish.
  495. * -EFAULT: A page was requested to be valid and could not be made valid
  496. * ie it has no backing VMA or it is illegal to access
  497. *
  498. * This is similar to get_user_pages(), except that it can read the page tables
  499. * without mutating them (ie causing faults).
  500. */
  501. int hmm_range_fault(struct hmm_range *range)
  502. {
  503. struct hmm_vma_walk hmm_vma_walk = {
  504. .range = range,
  505. .last = range->start,
  506. };
  507. struct mm_struct *mm = range->notifier->mm;
  508. int ret;
  509. mmap_assert_locked(mm);
  510. do {
  511. /* If range is no longer valid force retry. */
  512. if (mmu_interval_check_retry(range->notifier,
  513. range->notifier_seq))
  514. return -EBUSY;
  515. ret = walk_page_range(mm, hmm_vma_walk.last, range->end,
  516. &hmm_walk_ops, &hmm_vma_walk);
  517. /*
  518. * When -EBUSY is returned the loop restarts with
  519. * hmm_vma_walk.last set to an address that has not been stored
  520. * in pfns. All entries < last in the pfn array are set to their
  521. * output, and all >= are still at their input values.
  522. */
  523. } while (ret == -EBUSY);
  524. return ret;
  525. }
  526. EXPORT_SYMBOL(hmm_range_fault);