123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292 |
- // SPDX-License-Identifier: GPL-2.0
- /*
- * A fast, small, non-recursive O(n log n) sort for the Linux kernel
- *
- * This performs n*log2(n) + 0.37*n + o(n) comparisons on average,
- * and 1.5*n*log2(n) + O(n) in the (very contrived) worst case.
- *
- * Glibc qsort() manages n*log2(n) - 1.26*n for random inputs (1.63*n
- * better) at the expense of stack usage and much larger code to avoid
- * quicksort's O(n^2) worst case.
- */
- #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
- #include <linux/types.h>
- #include <linux/export.h>
- #include <linux/sort.h>
- /**
- * is_aligned - is this pointer & size okay for word-wide copying?
- * @base: pointer to data
- * @size: size of each element
- * @align: required alignment (typically 4 or 8)
- *
- * Returns true if elements can be copied using word loads and stores.
- * The size must be a multiple of the alignment, and the base address must
- * be if we do not have CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS.
- *
- * For some reason, gcc doesn't know to optimize "if (a & mask || b & mask)"
- * to "if ((a | b) & mask)", so we do that by hand.
- */
- __attribute_const__ __always_inline
- static bool is_aligned(const void *base, size_t size, unsigned char align)
- {
- unsigned char lsbits = (unsigned char)size;
- (void)base;
- #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
- lsbits |= (unsigned char)(uintptr_t)base;
- #endif
- return (lsbits & (align - 1)) == 0;
- }
- /**
- * swap_words_32 - swap two elements in 32-bit chunks
- * @a: pointer to the first element to swap
- * @b: pointer to the second element to swap
- * @n: element size (must be a multiple of 4)
- *
- * Exchange the two objects in memory. This exploits base+index addressing,
- * which basically all CPUs have, to minimize loop overhead computations.
- *
- * For some reason, on x86 gcc 7.3.0 adds a redundant test of n at the
- * bottom of the loop, even though the zero flag is still valid from the
- * subtract (since the intervening mov instructions don't alter the flags).
- * Gcc 8.1.0 doesn't have that problem.
- */
- static void swap_words_32(void *a, void *b, size_t n)
- {
- do {
- u32 t = *(u32 *)(a + (n -= 4));
- *(u32 *)(a + n) = *(u32 *)(b + n);
- *(u32 *)(b + n) = t;
- } while (n);
- }
- /**
- * swap_words_64 - swap two elements in 64-bit chunks
- * @a: pointer to the first element to swap
- * @b: pointer to the second element to swap
- * @n: element size (must be a multiple of 8)
- *
- * Exchange the two objects in memory. This exploits base+index
- * addressing, which basically all CPUs have, to minimize loop overhead
- * computations.
- *
- * We'd like to use 64-bit loads if possible. If they're not, emulating
- * one requires base+index+4 addressing which x86 has but most other
- * processors do not. If CONFIG_64BIT, we definitely have 64-bit loads,
- * but it's possible to have 64-bit loads without 64-bit pointers (e.g.
- * x32 ABI). Are there any cases the kernel needs to worry about?
- */
- static void swap_words_64(void *a, void *b, size_t n)
- {
- do {
- #ifdef CONFIG_64BIT
- u64 t = *(u64 *)(a + (n -= 8));
- *(u64 *)(a + n) = *(u64 *)(b + n);
- *(u64 *)(b + n) = t;
- #else
- /* Use two 32-bit transfers to avoid base+index+4 addressing */
- u32 t = *(u32 *)(a + (n -= 4));
- *(u32 *)(a + n) = *(u32 *)(b + n);
- *(u32 *)(b + n) = t;
- t = *(u32 *)(a + (n -= 4));
- *(u32 *)(a + n) = *(u32 *)(b + n);
- *(u32 *)(b + n) = t;
- #endif
- } while (n);
- }
- /**
- * swap_bytes - swap two elements a byte at a time
- * @a: pointer to the first element to swap
- * @b: pointer to the second element to swap
- * @n: element size
- *
- * This is the fallback if alignment doesn't allow using larger chunks.
- */
- static void swap_bytes(void *a, void *b, size_t n)
- {
- do {
- char t = ((char *)a)[--n];
- ((char *)a)[n] = ((char *)b)[n];
- ((char *)b)[n] = t;
- } while (n);
- }
- /*
- * The values are arbitrary as long as they can't be confused with
- * a pointer, but small integers make for the smallest compare
- * instructions.
- */
- #define SWAP_WORDS_64 (swap_r_func_t)0
- #define SWAP_WORDS_32 (swap_r_func_t)1
- #define SWAP_BYTES (swap_r_func_t)2
- #define SWAP_WRAPPER (swap_r_func_t)3
- struct wrapper {
- cmp_func_t cmp;
- swap_func_t swap;
- };
- /*
- * The function pointer is last to make tail calls most efficient if the
- * compiler decides not to inline this function.
- */
- static void do_swap(void *a, void *b, size_t size, swap_r_func_t swap_func, const void *priv)
- {
- if (swap_func == SWAP_WRAPPER) {
- ((const struct wrapper *)priv)->swap(a, b, (int)size);
- return;
- }
- if (swap_func == SWAP_WORDS_64)
- swap_words_64(a, b, size);
- else if (swap_func == SWAP_WORDS_32)
- swap_words_32(a, b, size);
- else if (swap_func == SWAP_BYTES)
- swap_bytes(a, b, size);
- else
- swap_func(a, b, (int)size, priv);
- }
- #define _CMP_WRAPPER ((cmp_r_func_t)0L)
- static int do_cmp(const void *a, const void *b, cmp_r_func_t cmp, const void *priv)
- {
- if (cmp == _CMP_WRAPPER)
- return ((const struct wrapper *)priv)->cmp(a, b);
- return cmp(a, b, priv);
- }
- /**
- * parent - given the offset of the child, find the offset of the parent.
- * @i: the offset of the heap element whose parent is sought. Non-zero.
- * @lsbit: a precomputed 1-bit mask, equal to "size & -size"
- * @size: size of each element
- *
- * In terms of array indexes, the parent of element j = @i/@size is simply
- * (j-1)/2. But when working in byte offsets, we can't use implicit
- * truncation of integer divides.
- *
- * Fortunately, we only need one bit of the quotient, not the full divide.
- * @size has a least significant bit. That bit will be clear if @i is
- * an even multiple of @size, and set if it's an odd multiple.
- *
- * Logically, we're doing "if (i & lsbit) i -= size;", but since the
- * branch is unpredictable, it's done with a bit of clever branch-free
- * code instead.
- */
- __attribute_const__ __always_inline
- static size_t parent(size_t i, unsigned int lsbit, size_t size)
- {
- i -= size;
- i -= size & -(i & lsbit);
- return i / 2;
- }
- /**
- * sort_r - sort an array of elements
- * @base: pointer to data to sort
- * @num: number of elements
- * @size: size of each element
- * @cmp_func: pointer to comparison function
- * @swap_func: pointer to swap function or NULL
- * @priv: third argument passed to comparison function
- *
- * This function does a heapsort on the given array. You may provide
- * a swap_func function if you need to do something more than a memory
- * copy (e.g. fix up pointers or auxiliary data), but the built-in swap
- * avoids a slow retpoline and so is significantly faster.
- *
- * Sorting time is O(n log n) both on average and worst-case. While
- * quicksort is slightly faster on average, it suffers from exploitable
- * O(n*n) worst-case behavior and extra memory requirements that make
- * it less suitable for kernel use.
- */
- void sort_r(void *base, size_t num, size_t size,
- cmp_r_func_t cmp_func,
- swap_r_func_t swap_func,
- const void *priv)
- {
- /* pre-scale counters for performance */
- size_t n = num * size, a = (num/2) * size;
- const unsigned int lsbit = size & -size; /* Used to find parent */
- if (!a) /* num < 2 || size == 0 */
- return;
- /* called from 'sort' without swap function, let's pick the default */
- if (swap_func == SWAP_WRAPPER && !((struct wrapper *)priv)->swap)
- swap_func = NULL;
- if (!swap_func) {
- if (is_aligned(base, size, 8))
- swap_func = SWAP_WORDS_64;
- else if (is_aligned(base, size, 4))
- swap_func = SWAP_WORDS_32;
- else
- swap_func = SWAP_BYTES;
- }
- /*
- * Loop invariants:
- * 1. elements [a,n) satisfy the heap property (compare greater than
- * all of their children),
- * 2. elements [n,num*size) are sorted, and
- * 3. a <= b <= c <= d <= n (whenever they are valid).
- */
- for (;;) {
- size_t b, c, d;
- if (a) /* Building heap: sift down --a */
- a -= size;
- else if (n -= size) /* Sorting: Extract root to --n */
- do_swap(base, base + n, size, swap_func, priv);
- else /* Sort complete */
- break;
- /*
- * Sift element at "a" down into heap. This is the
- * "bottom-up" variant, which significantly reduces
- * calls to cmp_func(): we find the sift-down path all
- * the way to the leaves (one compare per level), then
- * backtrack to find where to insert the target element.
- *
- * Because elements tend to sift down close to the leaves,
- * this uses fewer compares than doing two per level
- * on the way down. (A bit more than half as many on
- * average, 3/4 worst-case.)
- */
- for (b = a; c = 2*b + size, (d = c + size) < n;)
- b = do_cmp(base + c, base + d, cmp_func, priv) >= 0 ? c : d;
- if (d == n) /* Special case last leaf with no sibling */
- b = c;
- /* Now backtrack from "b" to the correct location for "a" */
- while (b != a && do_cmp(base + a, base + b, cmp_func, priv) >= 0)
- b = parent(b, lsbit, size);
- c = b; /* Where "a" belongs */
- while (b != a) { /* Shift it into place */
- b = parent(b, lsbit, size);
- do_swap(base + b, base + c, size, swap_func, priv);
- }
- }
- }
- EXPORT_SYMBOL(sort_r);
- void sort(void *base, size_t num, size_t size,
- cmp_func_t cmp_func,
- swap_func_t swap_func)
- {
- struct wrapper w = {
- .cmp = cmp_func,
- .swap = swap_func,
- };
- return sort_r(base, num, size, _CMP_WRAPPER, SWAP_WRAPPER, &w);
- }
- EXPORT_SYMBOL(sort);
|