123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142 |
- // SPDX-License-Identifier: GPL-2.0
- /*
- * Kernel internal timers
- *
- * Copyright (C) 1991, 1992 Linus Torvalds
- *
- * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
- *
- * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
- * "A Kernel Model for Precision Timekeeping" by Dave Mills
- * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
- * serialize accesses to xtime/lost_ticks).
- * Copyright (C) 1998 Andrea Arcangeli
- * 1999-03-10 Improved NTP compatibility by Ulrich Windl
- * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
- * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
- * Copyright (C) 2000, 2001, 2002 Ingo Molnar
- * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
- */
- #include <linux/kernel_stat.h>
- #include <linux/export.h>
- #include <linux/interrupt.h>
- #include <linux/percpu.h>
- #include <linux/init.h>
- #include <linux/mm.h>
- #include <linux/swap.h>
- #include <linux/pid_namespace.h>
- #include <linux/notifier.h>
- #include <linux/thread_info.h>
- #include <linux/time.h>
- #include <linux/jiffies.h>
- #include <linux/posix-timers.h>
- #include <linux/cpu.h>
- #include <linux/syscalls.h>
- #include <linux/delay.h>
- #include <linux/tick.h>
- #include <linux/kallsyms.h>
- #include <linux/irq_work.h>
- #include <linux/sched/signal.h>
- #include <linux/sched/sysctl.h>
- #include <linux/sched/nohz.h>
- #include <linux/sched/debug.h>
- #include <linux/slab.h>
- #include <linux/compat.h>
- #include <linux/random.h>
- #include <linux/sysctl.h>
- #include <linux/uaccess.h>
- #include <asm/unistd.h>
- #include <asm/div64.h>
- #include <asm/timex.h>
- #include <asm/io.h>
- #include "tick-internal.h"
- #define CREATE_TRACE_POINTS
- #include <trace/events/timer.h>
- #undef CREATE_TRACE_POINTS
- #include <trace/hooks/timer.h>
- EXPORT_TRACEPOINT_SYMBOL_GPL(hrtimer_expire_entry);
- EXPORT_TRACEPOINT_SYMBOL_GPL(hrtimer_expire_exit);
- __visible u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
- EXPORT_SYMBOL(jiffies_64);
- /*
- * The timer wheel has LVL_DEPTH array levels. Each level provides an array of
- * LVL_SIZE buckets. Each level is driven by its own clock and therefor each
- * level has a different granularity.
- *
- * The level granularity is: LVL_CLK_DIV ^ lvl
- * The level clock frequency is: HZ / (LVL_CLK_DIV ^ level)
- *
- * The array level of a newly armed timer depends on the relative expiry
- * time. The farther the expiry time is away the higher the array level and
- * therefor the granularity becomes.
- *
- * Contrary to the original timer wheel implementation, which aims for 'exact'
- * expiry of the timers, this implementation removes the need for recascading
- * the timers into the lower array levels. The previous 'classic' timer wheel
- * implementation of the kernel already violated the 'exact' expiry by adding
- * slack to the expiry time to provide batched expiration. The granularity
- * levels provide implicit batching.
- *
- * This is an optimization of the original timer wheel implementation for the
- * majority of the timer wheel use cases: timeouts. The vast majority of
- * timeout timers (networking, disk I/O ...) are canceled before expiry. If
- * the timeout expires it indicates that normal operation is disturbed, so it
- * does not matter much whether the timeout comes with a slight delay.
- *
- * The only exception to this are networking timers with a small expiry
- * time. They rely on the granularity. Those fit into the first wheel level,
- * which has HZ granularity.
- *
- * We don't have cascading anymore. timers with a expiry time above the
- * capacity of the last wheel level are force expired at the maximum timeout
- * value of the last wheel level. From data sampling we know that the maximum
- * value observed is 5 days (network connection tracking), so this should not
- * be an issue.
- *
- * The currently chosen array constants values are a good compromise between
- * array size and granularity.
- *
- * This results in the following granularity and range levels:
- *
- * HZ 1000 steps
- * Level Offset Granularity Range
- * 0 0 1 ms 0 ms - 63 ms
- * 1 64 8 ms 64 ms - 511 ms
- * 2 128 64 ms 512 ms - 4095 ms (512ms - ~4s)
- * 3 192 512 ms 4096 ms - 32767 ms (~4s - ~32s)
- * 4 256 4096 ms (~4s) 32768 ms - 262143 ms (~32s - ~4m)
- * 5 320 32768 ms (~32s) 262144 ms - 2097151 ms (~4m - ~34m)
- * 6 384 262144 ms (~4m) 2097152 ms - 16777215 ms (~34m - ~4h)
- * 7 448 2097152 ms (~34m) 16777216 ms - 134217727 ms (~4h - ~1d)
- * 8 512 16777216 ms (~4h) 134217728 ms - 1073741822 ms (~1d - ~12d)
- *
- * HZ 300
- * Level Offset Granularity Range
- * 0 0 3 ms 0 ms - 210 ms
- * 1 64 26 ms 213 ms - 1703 ms (213ms - ~1s)
- * 2 128 213 ms 1706 ms - 13650 ms (~1s - ~13s)
- * 3 192 1706 ms (~1s) 13653 ms - 109223 ms (~13s - ~1m)
- * 4 256 13653 ms (~13s) 109226 ms - 873810 ms (~1m - ~14m)
- * 5 320 109226 ms (~1m) 873813 ms - 6990503 ms (~14m - ~1h)
- * 6 384 873813 ms (~14m) 6990506 ms - 55924050 ms (~1h - ~15h)
- * 7 448 6990506 ms (~1h) 55924053 ms - 447392423 ms (~15h - ~5d)
- * 8 512 55924053 ms (~15h) 447392426 ms - 3579139406 ms (~5d - ~41d)
- *
- * HZ 250
- * Level Offset Granularity Range
- * 0 0 4 ms 0 ms - 255 ms
- * 1 64 32 ms 256 ms - 2047 ms (256ms - ~2s)
- * 2 128 256 ms 2048 ms - 16383 ms (~2s - ~16s)
- * 3 192 2048 ms (~2s) 16384 ms - 131071 ms (~16s - ~2m)
- * 4 256 16384 ms (~16s) 131072 ms - 1048575 ms (~2m - ~17m)
- * 5 320 131072 ms (~2m) 1048576 ms - 8388607 ms (~17m - ~2h)
- * 6 384 1048576 ms (~17m) 8388608 ms - 67108863 ms (~2h - ~18h)
- * 7 448 8388608 ms (~2h) 67108864 ms - 536870911 ms (~18h - ~6d)
- * 8 512 67108864 ms (~18h) 536870912 ms - 4294967288 ms (~6d - ~49d)
- *
- * HZ 100
- * Level Offset Granularity Range
- * 0 0 10 ms 0 ms - 630 ms
- * 1 64 80 ms 640 ms - 5110 ms (640ms - ~5s)
- * 2 128 640 ms 5120 ms - 40950 ms (~5s - ~40s)
- * 3 192 5120 ms (~5s) 40960 ms - 327670 ms (~40s - ~5m)
- * 4 256 40960 ms (~40s) 327680 ms - 2621430 ms (~5m - ~43m)
- * 5 320 327680 ms (~5m) 2621440 ms - 20971510 ms (~43m - ~5h)
- * 6 384 2621440 ms (~43m) 20971520 ms - 167772150 ms (~5h - ~1d)
- * 7 448 20971520 ms (~5h) 167772160 ms - 1342177270 ms (~1d - ~15d)
- */
- /* Clock divisor for the next level */
- #define LVL_CLK_SHIFT 3
- #define LVL_CLK_DIV (1UL << LVL_CLK_SHIFT)
- #define LVL_CLK_MASK (LVL_CLK_DIV - 1)
- #define LVL_SHIFT(n) ((n) * LVL_CLK_SHIFT)
- #define LVL_GRAN(n) (1UL << LVL_SHIFT(n))
- /*
- * The time start value for each level to select the bucket at enqueue
- * time. We start from the last possible delta of the previous level
- * so that we can later add an extra LVL_GRAN(n) to n (see calc_index()).
- */
- #define LVL_START(n) ((LVL_SIZE - 1) << (((n) - 1) * LVL_CLK_SHIFT))
- /* Size of each clock level */
- #define LVL_BITS 6
- #define LVL_SIZE (1UL << LVL_BITS)
- #define LVL_MASK (LVL_SIZE - 1)
- #define LVL_OFFS(n) ((n) * LVL_SIZE)
- /* Level depth */
- #if HZ > 100
- # define LVL_DEPTH 9
- # else
- # define LVL_DEPTH 8
- #endif
- /* The cutoff (max. capacity of the wheel) */
- #define WHEEL_TIMEOUT_CUTOFF (LVL_START(LVL_DEPTH))
- #define WHEEL_TIMEOUT_MAX (WHEEL_TIMEOUT_CUTOFF - LVL_GRAN(LVL_DEPTH - 1))
- /*
- * The resulting wheel size. If NOHZ is configured we allocate two
- * wheels so we have a separate storage for the deferrable timers.
- */
- #define WHEEL_SIZE (LVL_SIZE * LVL_DEPTH)
- #ifdef CONFIG_NO_HZ_COMMON
- # define NR_BASES 2
- # define BASE_STD 0
- # define BASE_DEF 1
- #else
- # define NR_BASES 1
- # define BASE_STD 0
- # define BASE_DEF 0
- #endif
- struct timer_base {
- raw_spinlock_t lock;
- struct timer_list *running_timer;
- #ifdef CONFIG_PREEMPT_RT
- spinlock_t expiry_lock;
- atomic_t timer_waiters;
- #endif
- unsigned long clk;
- unsigned long next_expiry;
- unsigned int cpu;
- bool next_expiry_recalc;
- bool is_idle;
- bool timers_pending;
- DECLARE_BITMAP(pending_map, WHEEL_SIZE);
- struct hlist_head vectors[WHEEL_SIZE];
- } ____cacheline_aligned;
- static DEFINE_PER_CPU(struct timer_base, timer_bases[NR_BASES]);
- #ifdef CONFIG_NO_HZ_COMMON
- static DEFINE_STATIC_KEY_FALSE(timers_nohz_active);
- static DEFINE_MUTEX(timer_keys_mutex);
- static void timer_update_keys(struct work_struct *work);
- static DECLARE_WORK(timer_update_work, timer_update_keys);
- #ifdef CONFIG_SMP
- static unsigned int sysctl_timer_migration = 1;
- DEFINE_STATIC_KEY_FALSE(timers_migration_enabled);
- static void timers_update_migration(void)
- {
- if (sysctl_timer_migration && tick_nohz_active)
- static_branch_enable(&timers_migration_enabled);
- else
- static_branch_disable(&timers_migration_enabled);
- }
- #ifdef CONFIG_SYSCTL
- static int timer_migration_handler(struct ctl_table *table, int write,
- void *buffer, size_t *lenp, loff_t *ppos)
- {
- int ret;
- mutex_lock(&timer_keys_mutex);
- ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
- if (!ret && write)
- timers_update_migration();
- mutex_unlock(&timer_keys_mutex);
- return ret;
- }
- static struct ctl_table timer_sysctl[] = {
- {
- .procname = "timer_migration",
- .data = &sysctl_timer_migration,
- .maxlen = sizeof(unsigned int),
- .mode = 0644,
- .proc_handler = timer_migration_handler,
- .extra1 = SYSCTL_ZERO,
- .extra2 = SYSCTL_ONE,
- },
- {}
- };
- static int __init timer_sysctl_init(void)
- {
- register_sysctl("kernel", timer_sysctl);
- return 0;
- }
- device_initcall(timer_sysctl_init);
- #endif /* CONFIG_SYSCTL */
- #else /* CONFIG_SMP */
- static inline void timers_update_migration(void) { }
- #endif /* !CONFIG_SMP */
- static void timer_update_keys(struct work_struct *work)
- {
- mutex_lock(&timer_keys_mutex);
- timers_update_migration();
- static_branch_enable(&timers_nohz_active);
- mutex_unlock(&timer_keys_mutex);
- }
- void timers_update_nohz(void)
- {
- schedule_work(&timer_update_work);
- }
- static inline bool is_timers_nohz_active(void)
- {
- return static_branch_unlikely(&timers_nohz_active);
- }
- #else
- static inline bool is_timers_nohz_active(void) { return false; }
- #endif /* NO_HZ_COMMON */
- static unsigned long round_jiffies_common(unsigned long j, int cpu,
- bool force_up)
- {
- int rem;
- unsigned long original = j;
- /*
- * We don't want all cpus firing their timers at once hitting the
- * same lock or cachelines, so we skew each extra cpu with an extra
- * 3 jiffies. This 3 jiffies came originally from the mm/ code which
- * already did this.
- * The skew is done by adding 3*cpunr, then round, then subtract this
- * extra offset again.
- */
- j += cpu * 3;
- rem = j % HZ;
- /*
- * If the target jiffie is just after a whole second (which can happen
- * due to delays of the timer irq, long irq off times etc etc) then
- * we should round down to the whole second, not up. Use 1/4th second
- * as cutoff for this rounding as an extreme upper bound for this.
- * But never round down if @force_up is set.
- */
- if (rem < HZ/4 && !force_up) /* round down */
- j = j - rem;
- else /* round up */
- j = j - rem + HZ;
- /* now that we have rounded, subtract the extra skew again */
- j -= cpu * 3;
- /*
- * Make sure j is still in the future. Otherwise return the
- * unmodified value.
- */
- return time_is_after_jiffies(j) ? j : original;
- }
- /**
- * __round_jiffies - function to round jiffies to a full second
- * @j: the time in (absolute) jiffies that should be rounded
- * @cpu: the processor number on which the timeout will happen
- *
- * __round_jiffies() rounds an absolute time in the future (in jiffies)
- * up or down to (approximately) full seconds. This is useful for timers
- * for which the exact time they fire does not matter too much, as long as
- * they fire approximately every X seconds.
- *
- * By rounding these timers to whole seconds, all such timers will fire
- * at the same time, rather than at various times spread out. The goal
- * of this is to have the CPU wake up less, which saves power.
- *
- * The exact rounding is skewed for each processor to avoid all
- * processors firing at the exact same time, which could lead
- * to lock contention or spurious cache line bouncing.
- *
- * The return value is the rounded version of the @j parameter.
- */
- unsigned long __round_jiffies(unsigned long j, int cpu)
- {
- return round_jiffies_common(j, cpu, false);
- }
- EXPORT_SYMBOL_GPL(__round_jiffies);
- /**
- * __round_jiffies_relative - function to round jiffies to a full second
- * @j: the time in (relative) jiffies that should be rounded
- * @cpu: the processor number on which the timeout will happen
- *
- * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
- * up or down to (approximately) full seconds. This is useful for timers
- * for which the exact time they fire does not matter too much, as long as
- * they fire approximately every X seconds.
- *
- * By rounding these timers to whole seconds, all such timers will fire
- * at the same time, rather than at various times spread out. The goal
- * of this is to have the CPU wake up less, which saves power.
- *
- * The exact rounding is skewed for each processor to avoid all
- * processors firing at the exact same time, which could lead
- * to lock contention or spurious cache line bouncing.
- *
- * The return value is the rounded version of the @j parameter.
- */
- unsigned long __round_jiffies_relative(unsigned long j, int cpu)
- {
- unsigned long j0 = jiffies;
- /* Use j0 because jiffies might change while we run */
- return round_jiffies_common(j + j0, cpu, false) - j0;
- }
- EXPORT_SYMBOL_GPL(__round_jiffies_relative);
- /**
- * round_jiffies - function to round jiffies to a full second
- * @j: the time in (absolute) jiffies that should be rounded
- *
- * round_jiffies() rounds an absolute time in the future (in jiffies)
- * up or down to (approximately) full seconds. This is useful for timers
- * for which the exact time they fire does not matter too much, as long as
- * they fire approximately every X seconds.
- *
- * By rounding these timers to whole seconds, all such timers will fire
- * at the same time, rather than at various times spread out. The goal
- * of this is to have the CPU wake up less, which saves power.
- *
- * The return value is the rounded version of the @j parameter.
- */
- unsigned long round_jiffies(unsigned long j)
- {
- return round_jiffies_common(j, raw_smp_processor_id(), false);
- }
- EXPORT_SYMBOL_GPL(round_jiffies);
- /**
- * round_jiffies_relative - function to round jiffies to a full second
- * @j: the time in (relative) jiffies that should be rounded
- *
- * round_jiffies_relative() rounds a time delta in the future (in jiffies)
- * up or down to (approximately) full seconds. This is useful for timers
- * for which the exact time they fire does not matter too much, as long as
- * they fire approximately every X seconds.
- *
- * By rounding these timers to whole seconds, all such timers will fire
- * at the same time, rather than at various times spread out. The goal
- * of this is to have the CPU wake up less, which saves power.
- *
- * The return value is the rounded version of the @j parameter.
- */
- unsigned long round_jiffies_relative(unsigned long j)
- {
- return __round_jiffies_relative(j, raw_smp_processor_id());
- }
- EXPORT_SYMBOL_GPL(round_jiffies_relative);
- /**
- * __round_jiffies_up - function to round jiffies up to a full second
- * @j: the time in (absolute) jiffies that should be rounded
- * @cpu: the processor number on which the timeout will happen
- *
- * This is the same as __round_jiffies() except that it will never
- * round down. This is useful for timeouts for which the exact time
- * of firing does not matter too much, as long as they don't fire too
- * early.
- */
- unsigned long __round_jiffies_up(unsigned long j, int cpu)
- {
- return round_jiffies_common(j, cpu, true);
- }
- EXPORT_SYMBOL_GPL(__round_jiffies_up);
- /**
- * __round_jiffies_up_relative - function to round jiffies up to a full second
- * @j: the time in (relative) jiffies that should be rounded
- * @cpu: the processor number on which the timeout will happen
- *
- * This is the same as __round_jiffies_relative() except that it will never
- * round down. This is useful for timeouts for which the exact time
- * of firing does not matter too much, as long as they don't fire too
- * early.
- */
- unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
- {
- unsigned long j0 = jiffies;
- /* Use j0 because jiffies might change while we run */
- return round_jiffies_common(j + j0, cpu, true) - j0;
- }
- EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
- /**
- * round_jiffies_up - function to round jiffies up to a full second
- * @j: the time in (absolute) jiffies that should be rounded
- *
- * This is the same as round_jiffies() except that it will never
- * round down. This is useful for timeouts for which the exact time
- * of firing does not matter too much, as long as they don't fire too
- * early.
- */
- unsigned long round_jiffies_up(unsigned long j)
- {
- return round_jiffies_common(j, raw_smp_processor_id(), true);
- }
- EXPORT_SYMBOL_GPL(round_jiffies_up);
- /**
- * round_jiffies_up_relative - function to round jiffies up to a full second
- * @j: the time in (relative) jiffies that should be rounded
- *
- * This is the same as round_jiffies_relative() except that it will never
- * round down. This is useful for timeouts for which the exact time
- * of firing does not matter too much, as long as they don't fire too
- * early.
- */
- unsigned long round_jiffies_up_relative(unsigned long j)
- {
- return __round_jiffies_up_relative(j, raw_smp_processor_id());
- }
- EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
- static inline unsigned int timer_get_idx(struct timer_list *timer)
- {
- return (timer->flags & TIMER_ARRAYMASK) >> TIMER_ARRAYSHIFT;
- }
- static inline void timer_set_idx(struct timer_list *timer, unsigned int idx)
- {
- timer->flags = (timer->flags & ~TIMER_ARRAYMASK) |
- idx << TIMER_ARRAYSHIFT;
- }
- /*
- * Helper function to calculate the array index for a given expiry
- * time.
- */
- static inline unsigned calc_index(unsigned long expires, unsigned lvl,
- unsigned long *bucket_expiry)
- {
- /*
- * The timer wheel has to guarantee that a timer does not fire
- * early. Early expiry can happen due to:
- * - Timer is armed at the edge of a tick
- * - Truncation of the expiry time in the outer wheel levels
- *
- * Round up with level granularity to prevent this.
- */
- trace_android_vh_timer_calc_index(lvl, &expires);
- expires = (expires >> LVL_SHIFT(lvl)) + 1;
- *bucket_expiry = expires << LVL_SHIFT(lvl);
- return LVL_OFFS(lvl) + (expires & LVL_MASK);
- }
- static int calc_wheel_index(unsigned long expires, unsigned long clk,
- unsigned long *bucket_expiry)
- {
- unsigned long delta = expires - clk;
- unsigned int idx;
- if (delta < LVL_START(1)) {
- idx = calc_index(expires, 0, bucket_expiry);
- } else if (delta < LVL_START(2)) {
- idx = calc_index(expires, 1, bucket_expiry);
- } else if (delta < LVL_START(3)) {
- idx = calc_index(expires, 2, bucket_expiry);
- } else if (delta < LVL_START(4)) {
- idx = calc_index(expires, 3, bucket_expiry);
- } else if (delta < LVL_START(5)) {
- idx = calc_index(expires, 4, bucket_expiry);
- } else if (delta < LVL_START(6)) {
- idx = calc_index(expires, 5, bucket_expiry);
- } else if (delta < LVL_START(7)) {
- idx = calc_index(expires, 6, bucket_expiry);
- } else if (LVL_DEPTH > 8 && delta < LVL_START(8)) {
- idx = calc_index(expires, 7, bucket_expiry);
- } else if ((long) delta < 0) {
- idx = clk & LVL_MASK;
- *bucket_expiry = clk;
- } else {
- /*
- * Force expire obscene large timeouts to expire at the
- * capacity limit of the wheel.
- */
- if (delta >= WHEEL_TIMEOUT_CUTOFF)
- expires = clk + WHEEL_TIMEOUT_MAX;
- idx = calc_index(expires, LVL_DEPTH - 1, bucket_expiry);
- }
- return idx;
- }
- static void
- trigger_dyntick_cpu(struct timer_base *base, struct timer_list *timer)
- {
- if (!is_timers_nohz_active())
- return;
- /*
- * TODO: This wants some optimizing similar to the code below, but we
- * will do that when we switch from push to pull for deferrable timers.
- */
- if (timer->flags & TIMER_DEFERRABLE) {
- if (tick_nohz_full_cpu(base->cpu))
- wake_up_nohz_cpu(base->cpu);
- return;
- }
- /*
- * We might have to IPI the remote CPU if the base is idle and the
- * timer is not deferrable. If the other CPU is on the way to idle
- * then it can't set base->is_idle as we hold the base lock:
- */
- if (base->is_idle)
- wake_up_nohz_cpu(base->cpu);
- }
- /*
- * Enqueue the timer into the hash bucket, mark it pending in
- * the bitmap, store the index in the timer flags then wake up
- * the target CPU if needed.
- */
- static void enqueue_timer(struct timer_base *base, struct timer_list *timer,
- unsigned int idx, unsigned long bucket_expiry)
- {
- hlist_add_head(&timer->entry, base->vectors + idx);
- __set_bit(idx, base->pending_map);
- timer_set_idx(timer, idx);
- trace_timer_start(timer, timer->expires, timer->flags);
- /*
- * Check whether this is the new first expiring timer. The
- * effective expiry time of the timer is required here
- * (bucket_expiry) instead of timer->expires.
- */
- if (time_before(bucket_expiry, base->next_expiry)) {
- /*
- * Set the next expiry time and kick the CPU so it
- * can reevaluate the wheel:
- */
- base->next_expiry = bucket_expiry;
- base->timers_pending = true;
- base->next_expiry_recalc = false;
- trigger_dyntick_cpu(base, timer);
- }
- }
- static void internal_add_timer(struct timer_base *base, struct timer_list *timer)
- {
- unsigned long bucket_expiry;
- unsigned int idx;
- idx = calc_wheel_index(timer->expires, base->clk, &bucket_expiry);
- enqueue_timer(base, timer, idx, bucket_expiry);
- }
- #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
- static const struct debug_obj_descr timer_debug_descr;
- struct timer_hint {
- void (*function)(struct timer_list *t);
- long offset;
- };
- #define TIMER_HINT(fn, container, timr, hintfn) \
- { \
- .function = fn, \
- .offset = offsetof(container, hintfn) - \
- offsetof(container, timr) \
- }
- static const struct timer_hint timer_hints[] = {
- TIMER_HINT(delayed_work_timer_fn,
- struct delayed_work, timer, work.func),
- TIMER_HINT(kthread_delayed_work_timer_fn,
- struct kthread_delayed_work, timer, work.func),
- };
- static void *timer_debug_hint(void *addr)
- {
- struct timer_list *timer = addr;
- int i;
- for (i = 0; i < ARRAY_SIZE(timer_hints); i++) {
- if (timer_hints[i].function == timer->function) {
- void (**fn)(void) = addr + timer_hints[i].offset;
- return *fn;
- }
- }
- return timer->function;
- }
- static bool timer_is_static_object(void *addr)
- {
- struct timer_list *timer = addr;
- return (timer->entry.pprev == NULL &&
- timer->entry.next == TIMER_ENTRY_STATIC);
- }
- /*
- * fixup_init is called when:
- * - an active object is initialized
- */
- static bool timer_fixup_init(void *addr, enum debug_obj_state state)
- {
- struct timer_list *timer = addr;
- switch (state) {
- case ODEBUG_STATE_ACTIVE:
- del_timer_sync(timer);
- debug_object_init(timer, &timer_debug_descr);
- return true;
- default:
- return false;
- }
- }
- /* Stub timer callback for improperly used timers. */
- static void stub_timer(struct timer_list *unused)
- {
- WARN_ON(1);
- }
- /*
- * fixup_activate is called when:
- * - an active object is activated
- * - an unknown non-static object is activated
- */
- static bool timer_fixup_activate(void *addr, enum debug_obj_state state)
- {
- struct timer_list *timer = addr;
- switch (state) {
- case ODEBUG_STATE_NOTAVAILABLE:
- timer_setup(timer, stub_timer, 0);
- return true;
- case ODEBUG_STATE_ACTIVE:
- WARN_ON(1);
- fallthrough;
- default:
- return false;
- }
- }
- /*
- * fixup_free is called when:
- * - an active object is freed
- */
- static bool timer_fixup_free(void *addr, enum debug_obj_state state)
- {
- struct timer_list *timer = addr;
- switch (state) {
- case ODEBUG_STATE_ACTIVE:
- del_timer_sync(timer);
- debug_object_free(timer, &timer_debug_descr);
- return true;
- default:
- return false;
- }
- }
- /*
- * fixup_assert_init is called when:
- * - an untracked/uninit-ed object is found
- */
- static bool timer_fixup_assert_init(void *addr, enum debug_obj_state state)
- {
- struct timer_list *timer = addr;
- switch (state) {
- case ODEBUG_STATE_NOTAVAILABLE:
- timer_setup(timer, stub_timer, 0);
- return true;
- default:
- return false;
- }
- }
- static const struct debug_obj_descr timer_debug_descr = {
- .name = "timer_list",
- .debug_hint = timer_debug_hint,
- .is_static_object = timer_is_static_object,
- .fixup_init = timer_fixup_init,
- .fixup_activate = timer_fixup_activate,
- .fixup_free = timer_fixup_free,
- .fixup_assert_init = timer_fixup_assert_init,
- };
- static inline void debug_timer_init(struct timer_list *timer)
- {
- debug_object_init(timer, &timer_debug_descr);
- }
- static inline void debug_timer_activate(struct timer_list *timer)
- {
- debug_object_activate(timer, &timer_debug_descr);
- }
- static inline void debug_timer_deactivate(struct timer_list *timer)
- {
- debug_object_deactivate(timer, &timer_debug_descr);
- }
- static inline void debug_timer_assert_init(struct timer_list *timer)
- {
- debug_object_assert_init(timer, &timer_debug_descr);
- }
- static void do_init_timer(struct timer_list *timer,
- void (*func)(struct timer_list *),
- unsigned int flags,
- const char *name, struct lock_class_key *key);
- void init_timer_on_stack_key(struct timer_list *timer,
- void (*func)(struct timer_list *),
- unsigned int flags,
- const char *name, struct lock_class_key *key)
- {
- debug_object_init_on_stack(timer, &timer_debug_descr);
- do_init_timer(timer, func, flags, name, key);
- }
- EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
- void destroy_timer_on_stack(struct timer_list *timer)
- {
- debug_object_free(timer, &timer_debug_descr);
- }
- EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
- #else
- static inline void debug_timer_init(struct timer_list *timer) { }
- static inline void debug_timer_activate(struct timer_list *timer) { }
- static inline void debug_timer_deactivate(struct timer_list *timer) { }
- static inline void debug_timer_assert_init(struct timer_list *timer) { }
- #endif
- static inline void debug_init(struct timer_list *timer)
- {
- debug_timer_init(timer);
- trace_timer_init(timer);
- }
- static inline void debug_deactivate(struct timer_list *timer)
- {
- debug_timer_deactivate(timer);
- trace_timer_cancel(timer);
- }
- static inline void debug_assert_init(struct timer_list *timer)
- {
- debug_timer_assert_init(timer);
- }
- static void do_init_timer(struct timer_list *timer,
- void (*func)(struct timer_list *),
- unsigned int flags,
- const char *name, struct lock_class_key *key)
- {
- timer->entry.pprev = NULL;
- timer->function = func;
- if (WARN_ON_ONCE(flags & ~TIMER_INIT_FLAGS))
- flags &= TIMER_INIT_FLAGS;
- timer->flags = flags | raw_smp_processor_id();
- lockdep_init_map(&timer->lockdep_map, name, key, 0);
- }
- /**
- * init_timer_key - initialize a timer
- * @timer: the timer to be initialized
- * @func: timer callback function
- * @flags: timer flags
- * @name: name of the timer
- * @key: lockdep class key of the fake lock used for tracking timer
- * sync lock dependencies
- *
- * init_timer_key() must be done to a timer prior calling *any* of the
- * other timer functions.
- */
- void init_timer_key(struct timer_list *timer,
- void (*func)(struct timer_list *), unsigned int flags,
- const char *name, struct lock_class_key *key)
- {
- debug_init(timer);
- do_init_timer(timer, func, flags, name, key);
- }
- EXPORT_SYMBOL(init_timer_key);
- static inline void detach_timer(struct timer_list *timer, bool clear_pending)
- {
- struct hlist_node *entry = &timer->entry;
- debug_deactivate(timer);
- __hlist_del(entry);
- if (clear_pending)
- entry->pprev = NULL;
- entry->next = LIST_POISON2;
- }
- static int detach_if_pending(struct timer_list *timer, struct timer_base *base,
- bool clear_pending)
- {
- unsigned idx = timer_get_idx(timer);
- if (!timer_pending(timer))
- return 0;
- if (hlist_is_singular_node(&timer->entry, base->vectors + idx)) {
- __clear_bit(idx, base->pending_map);
- base->next_expiry_recalc = true;
- }
- detach_timer(timer, clear_pending);
- return 1;
- }
- static inline struct timer_base *get_timer_cpu_base(u32 tflags, u32 cpu)
- {
- struct timer_base *base = per_cpu_ptr(&timer_bases[BASE_STD], cpu);
- /*
- * If the timer is deferrable and NO_HZ_COMMON is set then we need
- * to use the deferrable base.
- */
- if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE))
- base = per_cpu_ptr(&timer_bases[BASE_DEF], cpu);
- return base;
- }
- static inline struct timer_base *get_timer_this_cpu_base(u32 tflags)
- {
- struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
- /*
- * If the timer is deferrable and NO_HZ_COMMON is set then we need
- * to use the deferrable base.
- */
- if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE))
- base = this_cpu_ptr(&timer_bases[BASE_DEF]);
- return base;
- }
- static inline struct timer_base *get_timer_base(u32 tflags)
- {
- return get_timer_cpu_base(tflags, tflags & TIMER_CPUMASK);
- }
- static inline struct timer_base *
- get_target_base(struct timer_base *base, unsigned tflags)
- {
- #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
- if (static_branch_likely(&timers_migration_enabled) &&
- !(tflags & TIMER_PINNED))
- return get_timer_cpu_base(tflags, get_nohz_timer_target());
- #endif
- return get_timer_this_cpu_base(tflags);
- }
- static inline void forward_timer_base(struct timer_base *base)
- {
- unsigned long jnow = READ_ONCE(jiffies);
- /*
- * No need to forward if we are close enough below jiffies.
- * Also while executing timers, base->clk is 1 offset ahead
- * of jiffies to avoid endless requeuing to current jiffies.
- */
- if ((long)(jnow - base->clk) < 1)
- return;
- /*
- * If the next expiry value is > jiffies, then we fast forward to
- * jiffies otherwise we forward to the next expiry value.
- */
- if (time_after(base->next_expiry, jnow)) {
- base->clk = jnow;
- } else {
- if (WARN_ON_ONCE(time_before(base->next_expiry, base->clk)))
- return;
- base->clk = base->next_expiry;
- }
- }
- /*
- * We are using hashed locking: Holding per_cpu(timer_bases[x]).lock means
- * that all timers which are tied to this base are locked, and the base itself
- * is locked too.
- *
- * So __run_timers/migrate_timers can safely modify all timers which could
- * be found in the base->vectors array.
- *
- * When a timer is migrating then the TIMER_MIGRATING flag is set and we need
- * to wait until the migration is done.
- */
- static struct timer_base *lock_timer_base(struct timer_list *timer,
- unsigned long *flags)
- __acquires(timer->base->lock)
- {
- for (;;) {
- struct timer_base *base;
- u32 tf;
- /*
- * We need to use READ_ONCE() here, otherwise the compiler
- * might re-read @tf between the check for TIMER_MIGRATING
- * and spin_lock().
- */
- tf = READ_ONCE(timer->flags);
- if (!(tf & TIMER_MIGRATING)) {
- base = get_timer_base(tf);
- raw_spin_lock_irqsave(&base->lock, *flags);
- if (timer->flags == tf)
- return base;
- raw_spin_unlock_irqrestore(&base->lock, *flags);
- }
- cpu_relax();
- }
- }
- #define MOD_TIMER_PENDING_ONLY 0x01
- #define MOD_TIMER_REDUCE 0x02
- #define MOD_TIMER_NOTPENDING 0x04
- static inline int
- __mod_timer(struct timer_list *timer, unsigned long expires, unsigned int options)
- {
- unsigned long clk = 0, flags, bucket_expiry;
- struct timer_base *base, *new_base;
- unsigned int idx = UINT_MAX;
- int ret = 0;
- BUG_ON(!timer->function);
- /*
- * This is a common optimization triggered by the networking code - if
- * the timer is re-modified to have the same timeout or ends up in the
- * same array bucket then just return:
- */
- if (!(options & MOD_TIMER_NOTPENDING) && timer_pending(timer)) {
- /*
- * The downside of this optimization is that it can result in
- * larger granularity than you would get from adding a new
- * timer with this expiry.
- */
- long diff = timer->expires - expires;
- if (!diff)
- return 1;
- if (options & MOD_TIMER_REDUCE && diff <= 0)
- return 1;
- /*
- * We lock timer base and calculate the bucket index right
- * here. If the timer ends up in the same bucket, then we
- * just update the expiry time and avoid the whole
- * dequeue/enqueue dance.
- */
- base = lock_timer_base(timer, &flags);
- forward_timer_base(base);
- if (timer_pending(timer) && (options & MOD_TIMER_REDUCE) &&
- time_before_eq(timer->expires, expires)) {
- ret = 1;
- goto out_unlock;
- }
- clk = base->clk;
- idx = calc_wheel_index(expires, clk, &bucket_expiry);
- /*
- * Retrieve and compare the array index of the pending
- * timer. If it matches set the expiry to the new value so a
- * subsequent call will exit in the expires check above.
- */
- if (idx == timer_get_idx(timer)) {
- if (!(options & MOD_TIMER_REDUCE))
- timer->expires = expires;
- else if (time_after(timer->expires, expires))
- timer->expires = expires;
- ret = 1;
- goto out_unlock;
- }
- } else {
- base = lock_timer_base(timer, &flags);
- forward_timer_base(base);
- }
- ret = detach_if_pending(timer, base, false);
- if (!ret && (options & MOD_TIMER_PENDING_ONLY))
- goto out_unlock;
- new_base = get_target_base(base, timer->flags);
- if (base != new_base) {
- /*
- * We are trying to schedule the timer on the new base.
- * However we can't change timer's base while it is running,
- * otherwise del_timer_sync() can't detect that the timer's
- * handler yet has not finished. This also guarantees that the
- * timer is serialized wrt itself.
- */
- if (likely(base->running_timer != timer)) {
- /* See the comment in lock_timer_base() */
- timer->flags |= TIMER_MIGRATING;
- raw_spin_unlock(&base->lock);
- base = new_base;
- raw_spin_lock(&base->lock);
- WRITE_ONCE(timer->flags,
- (timer->flags & ~TIMER_BASEMASK) | base->cpu);
- forward_timer_base(base);
- }
- }
- debug_timer_activate(timer);
- timer->expires = expires;
- /*
- * If 'idx' was calculated above and the base time did not advance
- * between calculating 'idx' and possibly switching the base, only
- * enqueue_timer() is required. Otherwise we need to (re)calculate
- * the wheel index via internal_add_timer().
- */
- if (idx != UINT_MAX && clk == base->clk)
- enqueue_timer(base, timer, idx, bucket_expiry);
- else
- internal_add_timer(base, timer);
- out_unlock:
- raw_spin_unlock_irqrestore(&base->lock, flags);
- return ret;
- }
- /**
- * mod_timer_pending - modify a pending timer's timeout
- * @timer: the pending timer to be modified
- * @expires: new timeout in jiffies
- *
- * mod_timer_pending() is the same for pending timers as mod_timer(),
- * but will not re-activate and modify already deleted timers.
- *
- * It is useful for unserialized use of timers.
- */
- int mod_timer_pending(struct timer_list *timer, unsigned long expires)
- {
- return __mod_timer(timer, expires, MOD_TIMER_PENDING_ONLY);
- }
- EXPORT_SYMBOL(mod_timer_pending);
- /**
- * mod_timer - modify a timer's timeout
- * @timer: the timer to be modified
- * @expires: new timeout in jiffies
- *
- * mod_timer() is a more efficient way to update the expire field of an
- * active timer (if the timer is inactive it will be activated)
- *
- * mod_timer(timer, expires) is equivalent to:
- *
- * del_timer(timer); timer->expires = expires; add_timer(timer);
- *
- * Note that if there are multiple unserialized concurrent users of the
- * same timer, then mod_timer() is the only safe way to modify the timeout,
- * since add_timer() cannot modify an already running timer.
- *
- * The function returns whether it has modified a pending timer or not.
- * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
- * active timer returns 1.)
- */
- int mod_timer(struct timer_list *timer, unsigned long expires)
- {
- return __mod_timer(timer, expires, 0);
- }
- EXPORT_SYMBOL(mod_timer);
- /**
- * timer_reduce - Modify a timer's timeout if it would reduce the timeout
- * @timer: The timer to be modified
- * @expires: New timeout in jiffies
- *
- * timer_reduce() is very similar to mod_timer(), except that it will only
- * modify a running timer if that would reduce the expiration time (it will
- * start a timer that isn't running).
- */
- int timer_reduce(struct timer_list *timer, unsigned long expires)
- {
- return __mod_timer(timer, expires, MOD_TIMER_REDUCE);
- }
- EXPORT_SYMBOL(timer_reduce);
- /**
- * add_timer - start a timer
- * @timer: the timer to be added
- *
- * The kernel will do a ->function(@timer) callback from the
- * timer interrupt at the ->expires point in the future. The
- * current time is 'jiffies'.
- *
- * The timer's ->expires, ->function fields must be set prior calling this
- * function.
- *
- * Timers with an ->expires field in the past will be executed in the next
- * timer tick.
- */
- void add_timer(struct timer_list *timer)
- {
- BUG_ON(timer_pending(timer));
- __mod_timer(timer, timer->expires, MOD_TIMER_NOTPENDING);
- }
- EXPORT_SYMBOL(add_timer);
- /**
- * add_timer_on - start a timer on a particular CPU
- * @timer: the timer to be added
- * @cpu: the CPU to start it on
- *
- * This is not very scalable on SMP. Double adds are not possible.
- */
- void add_timer_on(struct timer_list *timer, int cpu)
- {
- struct timer_base *new_base, *base;
- unsigned long flags;
- BUG_ON(timer_pending(timer) || !timer->function);
- new_base = get_timer_cpu_base(timer->flags, cpu);
- /*
- * If @timer was on a different CPU, it should be migrated with the
- * old base locked to prevent other operations proceeding with the
- * wrong base locked. See lock_timer_base().
- */
- base = lock_timer_base(timer, &flags);
- if (base != new_base) {
- timer->flags |= TIMER_MIGRATING;
- raw_spin_unlock(&base->lock);
- base = new_base;
- raw_spin_lock(&base->lock);
- WRITE_ONCE(timer->flags,
- (timer->flags & ~TIMER_BASEMASK) | cpu);
- }
- forward_timer_base(base);
- debug_timer_activate(timer);
- internal_add_timer(base, timer);
- raw_spin_unlock_irqrestore(&base->lock, flags);
- }
- EXPORT_SYMBOL_GPL(add_timer_on);
- /**
- * del_timer - deactivate a timer.
- * @timer: the timer to be deactivated
- *
- * del_timer() deactivates a timer - this works on both active and inactive
- * timers.
- *
- * The function returns whether it has deactivated a pending timer or not.
- * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
- * active timer returns 1.)
- */
- int del_timer(struct timer_list *timer)
- {
- struct timer_base *base;
- unsigned long flags;
- int ret = 0;
- debug_assert_init(timer);
- if (timer_pending(timer)) {
- base = lock_timer_base(timer, &flags);
- ret = detach_if_pending(timer, base, true);
- raw_spin_unlock_irqrestore(&base->lock, flags);
- }
- return ret;
- }
- EXPORT_SYMBOL(del_timer);
- /**
- * try_to_del_timer_sync - Try to deactivate a timer
- * @timer: timer to delete
- *
- * This function tries to deactivate a timer. Upon successful (ret >= 0)
- * exit the timer is not queued and the handler is not running on any CPU.
- */
- int try_to_del_timer_sync(struct timer_list *timer)
- {
- struct timer_base *base;
- unsigned long flags;
- int ret = -1;
- debug_assert_init(timer);
- base = lock_timer_base(timer, &flags);
- if (base->running_timer != timer)
- ret = detach_if_pending(timer, base, true);
- raw_spin_unlock_irqrestore(&base->lock, flags);
- return ret;
- }
- EXPORT_SYMBOL(try_to_del_timer_sync);
- #ifdef CONFIG_PREEMPT_RT
- static __init void timer_base_init_expiry_lock(struct timer_base *base)
- {
- spin_lock_init(&base->expiry_lock);
- }
- static inline void timer_base_lock_expiry(struct timer_base *base)
- {
- spin_lock(&base->expiry_lock);
- }
- static inline void timer_base_unlock_expiry(struct timer_base *base)
- {
- spin_unlock(&base->expiry_lock);
- }
- /*
- * The counterpart to del_timer_wait_running().
- *
- * If there is a waiter for base->expiry_lock, then it was waiting for the
- * timer callback to finish. Drop expiry_lock and reacquire it. That allows
- * the waiter to acquire the lock and make progress.
- */
- static void timer_sync_wait_running(struct timer_base *base)
- {
- if (atomic_read(&base->timer_waiters)) {
- raw_spin_unlock_irq(&base->lock);
- spin_unlock(&base->expiry_lock);
- spin_lock(&base->expiry_lock);
- raw_spin_lock_irq(&base->lock);
- }
- }
- /*
- * This function is called on PREEMPT_RT kernels when the fast path
- * deletion of a timer failed because the timer callback function was
- * running.
- *
- * This prevents priority inversion, if the softirq thread on a remote CPU
- * got preempted, and it prevents a life lock when the task which tries to
- * delete a timer preempted the softirq thread running the timer callback
- * function.
- */
- static void del_timer_wait_running(struct timer_list *timer)
- {
- u32 tf;
- tf = READ_ONCE(timer->flags);
- if (!(tf & (TIMER_MIGRATING | TIMER_IRQSAFE))) {
- struct timer_base *base = get_timer_base(tf);
- /*
- * Mark the base as contended and grab the expiry lock,
- * which is held by the softirq across the timer
- * callback. Drop the lock immediately so the softirq can
- * expire the next timer. In theory the timer could already
- * be running again, but that's more than unlikely and just
- * causes another wait loop.
- */
- atomic_inc(&base->timer_waiters);
- spin_lock_bh(&base->expiry_lock);
- atomic_dec(&base->timer_waiters);
- spin_unlock_bh(&base->expiry_lock);
- }
- }
- #else
- static inline void timer_base_init_expiry_lock(struct timer_base *base) { }
- static inline void timer_base_lock_expiry(struct timer_base *base) { }
- static inline void timer_base_unlock_expiry(struct timer_base *base) { }
- static inline void timer_sync_wait_running(struct timer_base *base) { }
- static inline void del_timer_wait_running(struct timer_list *timer) { }
- #endif
- #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
- /**
- * del_timer_sync - deactivate a timer and wait for the handler to finish.
- * @timer: the timer to be deactivated
- *
- * This function only differs from del_timer() on SMP: besides deactivating
- * the timer it also makes sure the handler has finished executing on other
- * CPUs.
- *
- * Synchronization rules: Callers must prevent restarting of the timer,
- * otherwise this function is meaningless. It must not be called from
- * interrupt contexts unless the timer is an irqsafe one. The caller must
- * not hold locks which would prevent completion of the timer's
- * handler. The timer's handler must not call add_timer_on(). Upon exit the
- * timer is not queued and the handler is not running on any CPU.
- *
- * Note: For !irqsafe timers, you must not hold locks that are held in
- * interrupt context while calling this function. Even if the lock has
- * nothing to do with the timer in question. Here's why::
- *
- * CPU0 CPU1
- * ---- ----
- * <SOFTIRQ>
- * call_timer_fn();
- * base->running_timer = mytimer;
- * spin_lock_irq(somelock);
- * <IRQ>
- * spin_lock(somelock);
- * del_timer_sync(mytimer);
- * while (base->running_timer == mytimer);
- *
- * Now del_timer_sync() will never return and never release somelock.
- * The interrupt on the other CPU is waiting to grab somelock but
- * it has interrupted the softirq that CPU0 is waiting to finish.
- *
- * The function returns whether it has deactivated a pending timer or not.
- */
- int del_timer_sync(struct timer_list *timer)
- {
- int ret;
- #ifdef CONFIG_LOCKDEP
- unsigned long flags;
- /*
- * If lockdep gives a backtrace here, please reference
- * the synchronization rules above.
- */
- local_irq_save(flags);
- lock_map_acquire(&timer->lockdep_map);
- lock_map_release(&timer->lockdep_map);
- local_irq_restore(flags);
- #endif
- /*
- * don't use it in hardirq context, because it
- * could lead to deadlock.
- */
- WARN_ON(in_irq() && !(timer->flags & TIMER_IRQSAFE));
- /*
- * Must be able to sleep on PREEMPT_RT because of the slowpath in
- * del_timer_wait_running().
- */
- if (IS_ENABLED(CONFIG_PREEMPT_RT) && !(timer->flags & TIMER_IRQSAFE))
- lockdep_assert_preemption_enabled();
- do {
- ret = try_to_del_timer_sync(timer);
- if (unlikely(ret < 0)) {
- del_timer_wait_running(timer);
- cpu_relax();
- }
- } while (ret < 0);
- return ret;
- }
- EXPORT_SYMBOL(del_timer_sync);
- #endif
- static void call_timer_fn(struct timer_list *timer,
- void (*fn)(struct timer_list *),
- unsigned long baseclk)
- {
- int count = preempt_count();
- #ifdef CONFIG_LOCKDEP
- /*
- * It is permissible to free the timer from inside the
- * function that is called from it, this we need to take into
- * account for lockdep too. To avoid bogus "held lock freed"
- * warnings as well as problems when looking into
- * timer->lockdep_map, make a copy and use that here.
- */
- struct lockdep_map lockdep_map;
- lockdep_copy_map(&lockdep_map, &timer->lockdep_map);
- #endif
- /*
- * Couple the lock chain with the lock chain at
- * del_timer_sync() by acquiring the lock_map around the fn()
- * call here and in del_timer_sync().
- */
- lock_map_acquire(&lockdep_map);
- trace_timer_expire_entry(timer, baseclk);
- fn(timer);
- trace_timer_expire_exit(timer);
- lock_map_release(&lockdep_map);
- if (count != preempt_count()) {
- WARN_ONCE(1, "timer: %pS preempt leak: %08x -> %08x\n",
- fn, count, preempt_count());
- /*
- * Restore the preempt count. That gives us a decent
- * chance to survive and extract information. If the
- * callback kept a lock held, bad luck, but not worse
- * than the BUG() we had.
- */
- preempt_count_set(count);
- }
- }
- static void expire_timers(struct timer_base *base, struct hlist_head *head)
- {
- /*
- * This value is required only for tracing. base->clk was
- * incremented directly before expire_timers was called. But expiry
- * is related to the old base->clk value.
- */
- unsigned long baseclk = base->clk - 1;
- while (!hlist_empty(head)) {
- struct timer_list *timer;
- void (*fn)(struct timer_list *);
- timer = hlist_entry(head->first, struct timer_list, entry);
- base->running_timer = timer;
- detach_timer(timer, true);
- fn = timer->function;
- if (timer->flags & TIMER_IRQSAFE) {
- raw_spin_unlock(&base->lock);
- call_timer_fn(timer, fn, baseclk);
- raw_spin_lock(&base->lock);
- base->running_timer = NULL;
- } else {
- raw_spin_unlock_irq(&base->lock);
- call_timer_fn(timer, fn, baseclk);
- raw_spin_lock_irq(&base->lock);
- base->running_timer = NULL;
- timer_sync_wait_running(base);
- }
- }
- }
- static int collect_expired_timers(struct timer_base *base,
- struct hlist_head *heads)
- {
- unsigned long clk = base->clk = base->next_expiry;
- struct hlist_head *vec;
- int i, levels = 0;
- unsigned int idx;
- for (i = 0; i < LVL_DEPTH; i++) {
- idx = (clk & LVL_MASK) + i * LVL_SIZE;
- if (__test_and_clear_bit(idx, base->pending_map)) {
- vec = base->vectors + idx;
- hlist_move_list(vec, heads++);
- levels++;
- }
- /* Is it time to look at the next level? */
- if (clk & LVL_CLK_MASK)
- break;
- /* Shift clock for the next level granularity */
- clk >>= LVL_CLK_SHIFT;
- }
- return levels;
- }
- /*
- * Find the next pending bucket of a level. Search from level start (@offset)
- * + @clk upwards and if nothing there, search from start of the level
- * (@offset) up to @offset + clk.
- */
- static int next_pending_bucket(struct timer_base *base, unsigned offset,
- unsigned clk)
- {
- unsigned pos, start = offset + clk;
- unsigned end = offset + LVL_SIZE;
- pos = find_next_bit(base->pending_map, end, start);
- if (pos < end)
- return pos - start;
- pos = find_next_bit(base->pending_map, start, offset);
- return pos < start ? pos + LVL_SIZE - start : -1;
- }
- /*
- * Search the first expiring timer in the various clock levels. Caller must
- * hold base->lock.
- */
- static unsigned long __next_timer_interrupt(struct timer_base *base)
- {
- unsigned long clk, next, adj;
- unsigned lvl, offset = 0;
- next = base->clk + NEXT_TIMER_MAX_DELTA;
- clk = base->clk;
- for (lvl = 0; lvl < LVL_DEPTH; lvl++, offset += LVL_SIZE) {
- int pos = next_pending_bucket(base, offset, clk & LVL_MASK);
- unsigned long lvl_clk = clk & LVL_CLK_MASK;
- if (pos >= 0) {
- unsigned long tmp = clk + (unsigned long) pos;
- tmp <<= LVL_SHIFT(lvl);
- if (time_before(tmp, next))
- next = tmp;
- /*
- * If the next expiration happens before we reach
- * the next level, no need to check further.
- */
- if (pos <= ((LVL_CLK_DIV - lvl_clk) & LVL_CLK_MASK))
- break;
- }
- /*
- * Clock for the next level. If the current level clock lower
- * bits are zero, we look at the next level as is. If not we
- * need to advance it by one because that's going to be the
- * next expiring bucket in that level. base->clk is the next
- * expiring jiffie. So in case of:
- *
- * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
- * 0 0 0 0 0 0
- *
- * we have to look at all levels @index 0. With
- *
- * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
- * 0 0 0 0 0 2
- *
- * LVL0 has the next expiring bucket @index 2. The upper
- * levels have the next expiring bucket @index 1.
- *
- * In case that the propagation wraps the next level the same
- * rules apply:
- *
- * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
- * 0 0 0 0 F 2
- *
- * So after looking at LVL0 we get:
- *
- * LVL5 LVL4 LVL3 LVL2 LVL1
- * 0 0 0 1 0
- *
- * So no propagation from LVL1 to LVL2 because that happened
- * with the add already, but then we need to propagate further
- * from LVL2 to LVL3.
- *
- * So the simple check whether the lower bits of the current
- * level are 0 or not is sufficient for all cases.
- */
- adj = lvl_clk ? 1 : 0;
- clk >>= LVL_CLK_SHIFT;
- clk += adj;
- }
- base->next_expiry_recalc = false;
- base->timers_pending = !(next == base->clk + NEXT_TIMER_MAX_DELTA);
- return next;
- }
- #ifdef CONFIG_NO_HZ_COMMON
- /*
- * Check, if the next hrtimer event is before the next timer wheel
- * event:
- */
- static u64 cmp_next_hrtimer_event(u64 basem, u64 expires)
- {
- u64 nextevt = hrtimer_get_next_event();
- /*
- * If high resolution timers are enabled
- * hrtimer_get_next_event() returns KTIME_MAX.
- */
- if (expires <= nextevt)
- return expires;
- /*
- * If the next timer is already expired, return the tick base
- * time so the tick is fired immediately.
- */
- if (nextevt <= basem)
- return basem;
- /*
- * Round up to the next jiffie. High resolution timers are
- * off, so the hrtimers are expired in the tick and we need to
- * make sure that this tick really expires the timer to avoid
- * a ping pong of the nohz stop code.
- *
- * Use DIV_ROUND_UP_ULL to prevent gcc calling __divdi3
- */
- return DIV_ROUND_UP_ULL(nextevt, TICK_NSEC) * TICK_NSEC;
- }
- /**
- * get_next_timer_interrupt - return the time (clock mono) of the next timer
- * @basej: base time jiffies
- * @basem: base time clock monotonic
- *
- * Returns the tick aligned clock monotonic time of the next pending
- * timer or KTIME_MAX if no timer is pending.
- */
- u64 get_next_timer_interrupt(unsigned long basej, u64 basem)
- {
- struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
- u64 expires = KTIME_MAX;
- unsigned long nextevt;
- /*
- * Pretend that there is no timer pending if the cpu is offline.
- * Possible pending timers will be migrated later to an active cpu.
- */
- if (cpu_is_offline(smp_processor_id()))
- return expires;
- raw_spin_lock(&base->lock);
- if (base->next_expiry_recalc)
- base->next_expiry = __next_timer_interrupt(base);
- nextevt = base->next_expiry;
- /*
- * We have a fresh next event. Check whether we can forward the
- * base. We can only do that when @basej is past base->clk
- * otherwise we might rewind base->clk.
- */
- if (time_after(basej, base->clk)) {
- if (time_after(nextevt, basej))
- base->clk = basej;
- else if (time_after(nextevt, base->clk))
- base->clk = nextevt;
- }
- if (time_before_eq(nextevt, basej)) {
- expires = basem;
- base->is_idle = false;
- } else {
- if (base->timers_pending)
- expires = basem + (u64)(nextevt - basej) * TICK_NSEC;
- /*
- * If we expect to sleep more than a tick, mark the base idle.
- * Also the tick is stopped so any added timer must forward
- * the base clk itself to keep granularity small. This idle
- * logic is only maintained for the BASE_STD base, deferrable
- * timers may still see large granularity skew (by design).
- */
- if ((expires - basem) > TICK_NSEC)
- base->is_idle = true;
- }
- raw_spin_unlock(&base->lock);
- return cmp_next_hrtimer_event(basem, expires);
- }
- /**
- * timer_clear_idle - Clear the idle state of the timer base
- *
- * Called with interrupts disabled
- */
- void timer_clear_idle(void)
- {
- struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
- /*
- * We do this unlocked. The worst outcome is a remote enqueue sending
- * a pointless IPI, but taking the lock would just make the window for
- * sending the IPI a few instructions smaller for the cost of taking
- * the lock in the exit from idle path.
- */
- base->is_idle = false;
- }
- #endif
- /**
- * __run_timers - run all expired timers (if any) on this CPU.
- * @base: the timer vector to be processed.
- */
- static inline void __run_timers(struct timer_base *base)
- {
- struct hlist_head heads[LVL_DEPTH];
- int levels;
- if (time_before(jiffies, base->next_expiry))
- return;
- timer_base_lock_expiry(base);
- raw_spin_lock_irq(&base->lock);
- while (time_after_eq(jiffies, base->clk) &&
- time_after_eq(jiffies, base->next_expiry)) {
- levels = collect_expired_timers(base, heads);
- /*
- * The two possible reasons for not finding any expired
- * timer at this clk are that all matching timers have been
- * dequeued or no timer has been queued since
- * base::next_expiry was set to base::clk +
- * NEXT_TIMER_MAX_DELTA.
- */
- WARN_ON_ONCE(!levels && !base->next_expiry_recalc
- && base->timers_pending);
- base->clk++;
- base->next_expiry = __next_timer_interrupt(base);
- while (levels--)
- expire_timers(base, heads + levels);
- }
- raw_spin_unlock_irq(&base->lock);
- timer_base_unlock_expiry(base);
- }
- /*
- * This function runs timers and the timer-tq in bottom half context.
- */
- static __latent_entropy void run_timer_softirq(struct softirq_action *h)
- {
- struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
- __run_timers(base);
- if (IS_ENABLED(CONFIG_NO_HZ_COMMON))
- __run_timers(this_cpu_ptr(&timer_bases[BASE_DEF]));
- }
- /*
- * Called by the local, per-CPU timer interrupt on SMP.
- */
- static void run_local_timers(void)
- {
- struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
- hrtimer_run_queues();
- /* Raise the softirq only if required. */
- if (time_before(jiffies, base->next_expiry)) {
- if (!IS_ENABLED(CONFIG_NO_HZ_COMMON))
- return;
- /* CPU is awake, so check the deferrable base. */
- base++;
- if (time_before(jiffies, base->next_expiry))
- return;
- }
- raise_softirq(TIMER_SOFTIRQ);
- }
- /*
- * Called from the timer interrupt handler to charge one tick to the current
- * process. user_tick is 1 if the tick is user time, 0 for system.
- */
- void update_process_times(int user_tick)
- {
- struct task_struct *p = current;
- /* Note: this timer irq context must be accounted for as well. */
- account_process_tick(p, user_tick);
- run_local_timers();
- rcu_sched_clock_irq(user_tick);
- #ifdef CONFIG_IRQ_WORK
- if (in_irq())
- irq_work_tick();
- #endif
- scheduler_tick();
- if (IS_ENABLED(CONFIG_POSIX_TIMERS))
- run_posix_cpu_timers();
- }
- /*
- * Since schedule_timeout()'s timer is defined on the stack, it must store
- * the target task on the stack as well.
- */
- struct process_timer {
- struct timer_list timer;
- struct task_struct *task;
- };
- static void process_timeout(struct timer_list *t)
- {
- struct process_timer *timeout = from_timer(timeout, t, timer);
- wake_up_process(timeout->task);
- }
- /**
- * schedule_timeout - sleep until timeout
- * @timeout: timeout value in jiffies
- *
- * Make the current task sleep until @timeout jiffies have elapsed.
- * The function behavior depends on the current task state
- * (see also set_current_state() description):
- *
- * %TASK_RUNNING - the scheduler is called, but the task does not sleep
- * at all. That happens because sched_submit_work() does nothing for
- * tasks in %TASK_RUNNING state.
- *
- * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
- * pass before the routine returns unless the current task is explicitly
- * woken up, (e.g. by wake_up_process()).
- *
- * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
- * delivered to the current task or the current task is explicitly woken
- * up.
- *
- * The current task state is guaranteed to be %TASK_RUNNING when this
- * routine returns.
- *
- * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
- * the CPU away without a bound on the timeout. In this case the return
- * value will be %MAX_SCHEDULE_TIMEOUT.
- *
- * Returns 0 when the timer has expired otherwise the remaining time in
- * jiffies will be returned. In all cases the return value is guaranteed
- * to be non-negative.
- */
- signed long __sched schedule_timeout(signed long timeout)
- {
- struct process_timer timer;
- unsigned long expire;
- switch (timeout)
- {
- case MAX_SCHEDULE_TIMEOUT:
- /*
- * These two special cases are useful to be comfortable
- * in the caller. Nothing more. We could take
- * MAX_SCHEDULE_TIMEOUT from one of the negative value
- * but I' d like to return a valid offset (>=0) to allow
- * the caller to do everything it want with the retval.
- */
- schedule();
- goto out;
- default:
- /*
- * Another bit of PARANOID. Note that the retval will be
- * 0 since no piece of kernel is supposed to do a check
- * for a negative retval of schedule_timeout() (since it
- * should never happens anyway). You just have the printk()
- * that will tell you if something is gone wrong and where.
- */
- if (timeout < 0) {
- printk(KERN_ERR "schedule_timeout: wrong timeout "
- "value %lx\n", timeout);
- dump_stack();
- __set_current_state(TASK_RUNNING);
- goto out;
- }
- }
- expire = timeout + jiffies;
- timer.task = current;
- timer_setup_on_stack(&timer.timer, process_timeout, 0);
- __mod_timer(&timer.timer, expire, MOD_TIMER_NOTPENDING);
- schedule();
- del_singleshot_timer_sync(&timer.timer);
- /* Remove the timer from the object tracker */
- destroy_timer_on_stack(&timer.timer);
- timeout = expire - jiffies;
- out:
- return timeout < 0 ? 0 : timeout;
- }
- EXPORT_SYMBOL(schedule_timeout);
- /*
- * We can use __set_current_state() here because schedule_timeout() calls
- * schedule() unconditionally.
- */
- signed long __sched schedule_timeout_interruptible(signed long timeout)
- {
- __set_current_state(TASK_INTERRUPTIBLE);
- return schedule_timeout(timeout);
- }
- EXPORT_SYMBOL(schedule_timeout_interruptible);
- signed long __sched schedule_timeout_killable(signed long timeout)
- {
- __set_current_state(TASK_KILLABLE);
- return schedule_timeout(timeout);
- }
- EXPORT_SYMBOL(schedule_timeout_killable);
- signed long __sched schedule_timeout_uninterruptible(signed long timeout)
- {
- __set_current_state(TASK_UNINTERRUPTIBLE);
- return schedule_timeout(timeout);
- }
- EXPORT_SYMBOL(schedule_timeout_uninterruptible);
- /*
- * Like schedule_timeout_uninterruptible(), except this task will not contribute
- * to load average.
- */
- signed long __sched schedule_timeout_idle(signed long timeout)
- {
- __set_current_state(TASK_IDLE);
- return schedule_timeout(timeout);
- }
- EXPORT_SYMBOL(schedule_timeout_idle);
- #ifdef CONFIG_HOTPLUG_CPU
- static void migrate_timer_list(struct timer_base *new_base, struct hlist_head *head)
- {
- struct timer_list *timer;
- int cpu = new_base->cpu;
- while (!hlist_empty(head)) {
- timer = hlist_entry(head->first, struct timer_list, entry);
- detach_timer(timer, false);
- timer->flags = (timer->flags & ~TIMER_BASEMASK) | cpu;
- internal_add_timer(new_base, timer);
- }
- }
- int timers_prepare_cpu(unsigned int cpu)
- {
- struct timer_base *base;
- int b;
- for (b = 0; b < NR_BASES; b++) {
- base = per_cpu_ptr(&timer_bases[b], cpu);
- base->clk = jiffies;
- base->next_expiry = base->clk + NEXT_TIMER_MAX_DELTA;
- base->next_expiry_recalc = false;
- base->timers_pending = false;
- base->is_idle = false;
- }
- return 0;
- }
- int timers_dead_cpu(unsigned int cpu)
- {
- struct timer_base *old_base;
- struct timer_base *new_base;
- int b, i;
- BUG_ON(cpu_online(cpu));
- for (b = 0; b < NR_BASES; b++) {
- old_base = per_cpu_ptr(&timer_bases[b], cpu);
- new_base = get_cpu_ptr(&timer_bases[b]);
- /*
- * The caller is globally serialized and nobody else
- * takes two locks at once, deadlock is not possible.
- */
- raw_spin_lock_irq(&new_base->lock);
- raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
- /*
- * The current CPUs base clock might be stale. Update it
- * before moving the timers over.
- */
- forward_timer_base(new_base);
- BUG_ON(old_base->running_timer);
- for (i = 0; i < WHEEL_SIZE; i++)
- migrate_timer_list(new_base, old_base->vectors + i);
- raw_spin_unlock(&old_base->lock);
- raw_spin_unlock_irq(&new_base->lock);
- put_cpu_ptr(&timer_bases);
- }
- return 0;
- }
- #endif /* CONFIG_HOTPLUG_CPU */
- static void __init init_timer_cpu(int cpu)
- {
- struct timer_base *base;
- int i;
- for (i = 0; i < NR_BASES; i++) {
- base = per_cpu_ptr(&timer_bases[i], cpu);
- base->cpu = cpu;
- raw_spin_lock_init(&base->lock);
- base->clk = jiffies;
- base->next_expiry = base->clk + NEXT_TIMER_MAX_DELTA;
- timer_base_init_expiry_lock(base);
- }
- }
- static void __init init_timer_cpus(void)
- {
- int cpu;
- for_each_possible_cpu(cpu)
- init_timer_cpu(cpu);
- }
- void __init init_timers(void)
- {
- init_timer_cpus();
- posix_cputimers_init_work();
- open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
- }
- /**
- * msleep - sleep safely even with waitqueue interruptions
- * @msecs: Time in milliseconds to sleep for
- */
- void msleep(unsigned int msecs)
- {
- unsigned long timeout = msecs_to_jiffies(msecs) + 1;
- while (timeout)
- timeout = schedule_timeout_uninterruptible(timeout);
- }
- EXPORT_SYMBOL(msleep);
- /**
- * msleep_interruptible - sleep waiting for signals
- * @msecs: Time in milliseconds to sleep for
- */
- unsigned long msleep_interruptible(unsigned int msecs)
- {
- unsigned long timeout = msecs_to_jiffies(msecs) + 1;
- while (timeout && !signal_pending(current))
- timeout = schedule_timeout_interruptible(timeout);
- return jiffies_to_msecs(timeout);
- }
- EXPORT_SYMBOL(msleep_interruptible);
- /**
- * usleep_range_state - Sleep for an approximate time in a given state
- * @min: Minimum time in usecs to sleep
- * @max: Maximum time in usecs to sleep
- * @state: State of the current task that will be while sleeping
- *
- * In non-atomic context where the exact wakeup time is flexible, use
- * usleep_range_state() instead of udelay(). The sleep improves responsiveness
- * by avoiding the CPU-hogging busy-wait of udelay(), and the range reduces
- * power usage by allowing hrtimers to take advantage of an already-
- * scheduled interrupt instead of scheduling a new one just for this sleep.
- */
- void __sched usleep_range_state(unsigned long min, unsigned long max,
- unsigned int state)
- {
- ktime_t exp = ktime_add_us(ktime_get(), min);
- u64 delta = (u64)(max - min) * NSEC_PER_USEC;
- for (;;) {
- __set_current_state(state);
- /* Do not return before the requested sleep time has elapsed */
- if (!schedule_hrtimeout_range(&exp, delta, HRTIMER_MODE_ABS))
- break;
- }
- }
- EXPORT_SYMBOL(usleep_range_state);
|