123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395 |
- // SPDX-License-Identifier: GPL-2.0+
- /*
- * Restartable sequences system call
- *
- * Copyright (C) 2015, Google, Inc.,
- * Paul Turner <[email protected]> and Andrew Hunter <[email protected]>
- * Copyright (C) 2015-2018, EfficiOS Inc.,
- * Mathieu Desnoyers <[email protected]>
- */
- #include <linux/sched.h>
- #include <linux/uaccess.h>
- #include <linux/syscalls.h>
- #include <linux/rseq.h>
- #include <linux/types.h>
- #include <asm/ptrace.h>
- #define CREATE_TRACE_POINTS
- #include <trace/events/rseq.h>
- #define RSEQ_CS_NO_RESTART_FLAGS (RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT | \
- RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL | \
- RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE)
- /*
- *
- * Restartable sequences are a lightweight interface that allows
- * user-level code to be executed atomically relative to scheduler
- * preemption and signal delivery. Typically used for implementing
- * per-cpu operations.
- *
- * It allows user-space to perform update operations on per-cpu data
- * without requiring heavy-weight atomic operations.
- *
- * Detailed algorithm of rseq user-space assembly sequences:
- *
- * init(rseq_cs)
- * cpu = TLS->rseq::cpu_id_start
- * [1] TLS->rseq::rseq_cs = rseq_cs
- * [start_ip] ----------------------------
- * [2] if (cpu != TLS->rseq::cpu_id)
- * goto abort_ip;
- * [3] <last_instruction_in_cs>
- * [post_commit_ip] ----------------------------
- *
- * The address of jump target abort_ip must be outside the critical
- * region, i.e.:
- *
- * [abort_ip] < [start_ip] || [abort_ip] >= [post_commit_ip]
- *
- * Steps [2]-[3] (inclusive) need to be a sequence of instructions in
- * userspace that can handle being interrupted between any of those
- * instructions, and then resumed to the abort_ip.
- *
- * 1. Userspace stores the address of the struct rseq_cs assembly
- * block descriptor into the rseq_cs field of the registered
- * struct rseq TLS area. This update is performed through a single
- * store within the inline assembly instruction sequence.
- * [start_ip]
- *
- * 2. Userspace tests to check whether the current cpu_id field match
- * the cpu number loaded before start_ip, branching to abort_ip
- * in case of a mismatch.
- *
- * If the sequence is preempted or interrupted by a signal
- * at or after start_ip and before post_commit_ip, then the kernel
- * clears TLS->__rseq_abi::rseq_cs, and sets the user-space return
- * ip to abort_ip before returning to user-space, so the preempted
- * execution resumes at abort_ip.
- *
- * 3. Userspace critical section final instruction before
- * post_commit_ip is the commit. The critical section is
- * self-terminating.
- * [post_commit_ip]
- *
- * 4. <success>
- *
- * On failure at [2], or if interrupted by preempt or signal delivery
- * between [1] and [3]:
- *
- * [abort_ip]
- * F1. <failure>
- */
- static int rseq_update_cpu_id(struct task_struct *t)
- {
- u32 cpu_id = raw_smp_processor_id();
- struct rseq __user *rseq = t->rseq;
- if (!user_write_access_begin(rseq, sizeof(*rseq)))
- goto efault;
- unsafe_put_user(cpu_id, &rseq->cpu_id_start, efault_end);
- unsafe_put_user(cpu_id, &rseq->cpu_id, efault_end);
- user_write_access_end();
- trace_rseq_update(t);
- return 0;
- efault_end:
- user_write_access_end();
- efault:
- return -EFAULT;
- }
- static int rseq_reset_rseq_cpu_id(struct task_struct *t)
- {
- u32 cpu_id_start = 0, cpu_id = RSEQ_CPU_ID_UNINITIALIZED;
- /*
- * Reset cpu_id_start to its initial state (0).
- */
- if (put_user(cpu_id_start, &t->rseq->cpu_id_start))
- return -EFAULT;
- /*
- * Reset cpu_id to RSEQ_CPU_ID_UNINITIALIZED, so any user coming
- * in after unregistration can figure out that rseq needs to be
- * registered again.
- */
- if (put_user(cpu_id, &t->rseq->cpu_id))
- return -EFAULT;
- return 0;
- }
- static int rseq_get_rseq_cs(struct task_struct *t, struct rseq_cs *rseq_cs)
- {
- struct rseq_cs __user *urseq_cs;
- u64 ptr;
- u32 __user *usig;
- u32 sig;
- int ret;
- #ifdef CONFIG_64BIT
- if (get_user(ptr, &t->rseq->rseq_cs))
- return -EFAULT;
- #else
- if (copy_from_user(&ptr, &t->rseq->rseq_cs, sizeof(ptr)))
- return -EFAULT;
- #endif
- if (!ptr) {
- memset(rseq_cs, 0, sizeof(*rseq_cs));
- return 0;
- }
- if (ptr >= TASK_SIZE)
- return -EINVAL;
- urseq_cs = (struct rseq_cs __user *)(unsigned long)ptr;
- if (copy_from_user(rseq_cs, urseq_cs, sizeof(*rseq_cs)))
- return -EFAULT;
- if (rseq_cs->start_ip >= TASK_SIZE ||
- rseq_cs->start_ip + rseq_cs->post_commit_offset >= TASK_SIZE ||
- rseq_cs->abort_ip >= TASK_SIZE ||
- rseq_cs->version > 0)
- return -EINVAL;
- /* Check for overflow. */
- if (rseq_cs->start_ip + rseq_cs->post_commit_offset < rseq_cs->start_ip)
- return -EINVAL;
- /* Ensure that abort_ip is not in the critical section. */
- if (rseq_cs->abort_ip - rseq_cs->start_ip < rseq_cs->post_commit_offset)
- return -EINVAL;
- usig = (u32 __user *)(unsigned long)(rseq_cs->abort_ip - sizeof(u32));
- ret = get_user(sig, usig);
- if (ret)
- return ret;
- if (current->rseq_sig != sig) {
- printk_ratelimited(KERN_WARNING
- "Possible attack attempt. Unexpected rseq signature 0x%x, expecting 0x%x (pid=%d, addr=%p).\n",
- sig, current->rseq_sig, current->pid, usig);
- return -EINVAL;
- }
- return 0;
- }
- static bool rseq_warn_flags(const char *str, u32 flags)
- {
- u32 test_flags;
- if (!flags)
- return false;
- test_flags = flags & RSEQ_CS_NO_RESTART_FLAGS;
- if (test_flags)
- pr_warn_once("Deprecated flags (%u) in %s ABI structure", test_flags, str);
- test_flags = flags & ~RSEQ_CS_NO_RESTART_FLAGS;
- if (test_flags)
- pr_warn_once("Unknown flags (%u) in %s ABI structure", test_flags, str);
- return true;
- }
- static int rseq_need_restart(struct task_struct *t, u32 cs_flags)
- {
- u32 flags, event_mask;
- int ret;
- if (rseq_warn_flags("rseq_cs", cs_flags))
- return -EINVAL;
- /* Get thread flags. */
- ret = get_user(flags, &t->rseq->flags);
- if (ret)
- return ret;
- if (rseq_warn_flags("rseq", flags))
- return -EINVAL;
- /*
- * Load and clear event mask atomically with respect to
- * scheduler preemption.
- */
- preempt_disable();
- event_mask = t->rseq_event_mask;
- t->rseq_event_mask = 0;
- preempt_enable();
- return !!event_mask;
- }
- static int clear_rseq_cs(struct task_struct *t)
- {
- /*
- * The rseq_cs field is set to NULL on preemption or signal
- * delivery on top of rseq assembly block, as well as on top
- * of code outside of the rseq assembly block. This performs
- * a lazy clear of the rseq_cs field.
- *
- * Set rseq_cs to NULL.
- */
- #ifdef CONFIG_64BIT
- return put_user(0UL, &t->rseq->rseq_cs);
- #else
- if (clear_user(&t->rseq->rseq_cs, sizeof(t->rseq->rseq_cs)))
- return -EFAULT;
- return 0;
- #endif
- }
- /*
- * Unsigned comparison will be true when ip >= start_ip, and when
- * ip < start_ip + post_commit_offset.
- */
- static bool in_rseq_cs(unsigned long ip, struct rseq_cs *rseq_cs)
- {
- return ip - rseq_cs->start_ip < rseq_cs->post_commit_offset;
- }
- static int rseq_ip_fixup(struct pt_regs *regs)
- {
- unsigned long ip = instruction_pointer(regs);
- struct task_struct *t = current;
- struct rseq_cs rseq_cs;
- int ret;
- ret = rseq_get_rseq_cs(t, &rseq_cs);
- if (ret)
- return ret;
- /*
- * Handle potentially not being within a critical section.
- * If not nested over a rseq critical section, restart is useless.
- * Clear the rseq_cs pointer and return.
- */
- if (!in_rseq_cs(ip, &rseq_cs))
- return clear_rseq_cs(t);
- ret = rseq_need_restart(t, rseq_cs.flags);
- if (ret <= 0)
- return ret;
- ret = clear_rseq_cs(t);
- if (ret)
- return ret;
- trace_rseq_ip_fixup(ip, rseq_cs.start_ip, rseq_cs.post_commit_offset,
- rseq_cs.abort_ip);
- instruction_pointer_set(regs, (unsigned long)rseq_cs.abort_ip);
- return 0;
- }
- /*
- * This resume handler must always be executed between any of:
- * - preemption,
- * - signal delivery,
- * and return to user-space.
- *
- * This is how we can ensure that the entire rseq critical section
- * will issue the commit instruction only if executed atomically with
- * respect to other threads scheduled on the same CPU, and with respect
- * to signal handlers.
- */
- void __rseq_handle_notify_resume(struct ksignal *ksig, struct pt_regs *regs)
- {
- struct task_struct *t = current;
- int ret, sig;
- if (unlikely(t->flags & PF_EXITING))
- return;
- /*
- * regs is NULL if and only if the caller is in a syscall path. Skip
- * fixup and leave rseq_cs as is so that rseq_sycall() will detect and
- * kill a misbehaving userspace on debug kernels.
- */
- if (regs) {
- ret = rseq_ip_fixup(regs);
- if (unlikely(ret < 0))
- goto error;
- }
- if (unlikely(rseq_update_cpu_id(t)))
- goto error;
- return;
- error:
- sig = ksig ? ksig->sig : 0;
- force_sigsegv(sig);
- }
- #ifdef CONFIG_DEBUG_RSEQ
- /*
- * Terminate the process if a syscall is issued within a restartable
- * sequence.
- */
- void rseq_syscall(struct pt_regs *regs)
- {
- unsigned long ip = instruction_pointer(regs);
- struct task_struct *t = current;
- struct rseq_cs rseq_cs;
- if (!t->rseq)
- return;
- if (rseq_get_rseq_cs(t, &rseq_cs) || in_rseq_cs(ip, &rseq_cs))
- force_sig(SIGSEGV);
- }
- #endif
- /*
- * sys_rseq - setup restartable sequences for caller thread.
- */
- SYSCALL_DEFINE4(rseq, struct rseq __user *, rseq, u32, rseq_len,
- int, flags, u32, sig)
- {
- int ret;
- if (flags & RSEQ_FLAG_UNREGISTER) {
- if (flags & ~RSEQ_FLAG_UNREGISTER)
- return -EINVAL;
- /* Unregister rseq for current thread. */
- if (current->rseq != rseq || !current->rseq)
- return -EINVAL;
- if (rseq_len != sizeof(*rseq))
- return -EINVAL;
- if (current->rseq_sig != sig)
- return -EPERM;
- ret = rseq_reset_rseq_cpu_id(current);
- if (ret)
- return ret;
- current->rseq = NULL;
- current->rseq_sig = 0;
- return 0;
- }
- if (unlikely(flags))
- return -EINVAL;
- if (current->rseq) {
- /*
- * If rseq is already registered, check whether
- * the provided address differs from the prior
- * one.
- */
- if (current->rseq != rseq || rseq_len != sizeof(*rseq))
- return -EINVAL;
- if (current->rseq_sig != sig)
- return -EPERM;
- /* Already registered. */
- return -EBUSY;
- }
- /*
- * If there was no rseq previously registered,
- * ensure the provided rseq is properly aligned and valid.
- */
- if (!IS_ALIGNED((unsigned long)rseq, __alignof__(*rseq)) ||
- rseq_len != sizeof(*rseq))
- return -EINVAL;
- if (!access_ok(rseq, rseq_len))
- return -EFAULT;
- current->rseq = rseq;
- current->rseq_sig = sig;
- /*
- * If rseq was previously inactive, and has just been
- * registered, ensure the cpu_id_start and cpu_id fields
- * are updated before returning to user-space.
- */
- rseq_set_notify_resume(current);
- return 0;
- }
|