pool.c 7.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * Copyright (C) 2012 ARM Ltd.
  4. * Copyright (C) 2020 Google LLC
  5. */
  6. #include <linux/cma.h>
  7. #include <linux/debugfs.h>
  8. #include <linux/dma-map-ops.h>
  9. #include <linux/dma-direct.h>
  10. #include <linux/init.h>
  11. #include <linux/genalloc.h>
  12. #include <linux/set_memory.h>
  13. #include <linux/slab.h>
  14. #include <linux/workqueue.h>
  15. static struct gen_pool *atomic_pool_dma __ro_after_init;
  16. static unsigned long pool_size_dma;
  17. static struct gen_pool *atomic_pool_dma32 __ro_after_init;
  18. static unsigned long pool_size_dma32;
  19. static struct gen_pool *atomic_pool_kernel __ro_after_init;
  20. static unsigned long pool_size_kernel;
  21. /* Size can be defined by the coherent_pool command line */
  22. static size_t atomic_pool_size;
  23. /* Dynamic background expansion when the atomic pool is near capacity */
  24. static struct work_struct atomic_pool_work;
  25. static int __init early_coherent_pool(char *p)
  26. {
  27. atomic_pool_size = memparse(p, &p);
  28. return 0;
  29. }
  30. early_param("coherent_pool", early_coherent_pool);
  31. static void __init dma_atomic_pool_debugfs_init(void)
  32. {
  33. struct dentry *root;
  34. root = debugfs_create_dir("dma_pools", NULL);
  35. debugfs_create_ulong("pool_size_dma", 0400, root, &pool_size_dma);
  36. debugfs_create_ulong("pool_size_dma32", 0400, root, &pool_size_dma32);
  37. debugfs_create_ulong("pool_size_kernel", 0400, root, &pool_size_kernel);
  38. }
  39. static void dma_atomic_pool_size_add(gfp_t gfp, size_t size)
  40. {
  41. if (gfp & __GFP_DMA)
  42. pool_size_dma += size;
  43. else if (gfp & __GFP_DMA32)
  44. pool_size_dma32 += size;
  45. else
  46. pool_size_kernel += size;
  47. }
  48. static bool cma_in_zone(gfp_t gfp)
  49. {
  50. unsigned long size;
  51. phys_addr_t end;
  52. struct cma *cma;
  53. cma = dev_get_cma_area(NULL);
  54. if (!cma)
  55. return false;
  56. size = cma_get_size(cma);
  57. if (!size)
  58. return false;
  59. /* CMA can't cross zone boundaries, see cma_activate_area() */
  60. end = cma_get_base(cma) + size - 1;
  61. if (IS_ENABLED(CONFIG_ZONE_DMA) && (gfp & GFP_DMA))
  62. return end <= DMA_BIT_MASK(zone_dma_bits);
  63. if (IS_ENABLED(CONFIG_ZONE_DMA32) && (gfp & GFP_DMA32) && !zone_dma32_are_empty())
  64. return end <= DMA_BIT_MASK(32);
  65. return true;
  66. }
  67. static int atomic_pool_expand(struct gen_pool *pool, size_t pool_size,
  68. gfp_t gfp)
  69. {
  70. unsigned int order;
  71. struct page *page = NULL;
  72. void *addr;
  73. int ret = -ENOMEM;
  74. /* Cannot allocate larger than MAX_ORDER-1 */
  75. order = min(get_order(pool_size), MAX_ORDER-1);
  76. do {
  77. pool_size = 1 << (PAGE_SHIFT + order);
  78. if (cma_in_zone(gfp))
  79. page = dma_alloc_from_contiguous(NULL, 1 << order,
  80. order, false);
  81. if (!page)
  82. page = alloc_pages(gfp, order);
  83. } while (!page && order-- > 0);
  84. if (!page)
  85. goto out;
  86. arch_dma_prep_coherent(page, pool_size);
  87. #ifdef CONFIG_DMA_DIRECT_REMAP
  88. addr = dma_common_contiguous_remap(page, pool_size,
  89. pgprot_dmacoherent(PAGE_KERNEL),
  90. __builtin_return_address(0));
  91. if (!addr)
  92. goto free_page;
  93. #else
  94. addr = page_to_virt(page);
  95. #endif
  96. /*
  97. * Memory in the atomic DMA pools must be unencrypted, the pools do not
  98. * shrink so no re-encryption occurs in dma_direct_free().
  99. */
  100. ret = set_memory_decrypted((unsigned long)page_to_virt(page),
  101. 1 << order);
  102. if (ret)
  103. goto remove_mapping;
  104. ret = gen_pool_add_virt(pool, (unsigned long)addr, page_to_phys(page),
  105. pool_size, NUMA_NO_NODE);
  106. if (ret)
  107. goto encrypt_mapping;
  108. dma_atomic_pool_size_add(gfp, pool_size);
  109. return 0;
  110. encrypt_mapping:
  111. ret = set_memory_encrypted((unsigned long)page_to_virt(page),
  112. 1 << order);
  113. if (WARN_ON_ONCE(ret)) {
  114. /* Decrypt succeeded but encrypt failed, purposely leak */
  115. goto out;
  116. }
  117. remove_mapping:
  118. #ifdef CONFIG_DMA_DIRECT_REMAP
  119. dma_common_free_remap(addr, pool_size);
  120. #endif
  121. free_page: __maybe_unused
  122. __free_pages(page, order);
  123. out:
  124. return ret;
  125. }
  126. static void atomic_pool_resize(struct gen_pool *pool, gfp_t gfp)
  127. {
  128. if (pool && gen_pool_avail(pool) < atomic_pool_size)
  129. atomic_pool_expand(pool, gen_pool_size(pool), gfp);
  130. }
  131. static void atomic_pool_work_fn(struct work_struct *work)
  132. {
  133. if (IS_ENABLED(CONFIG_ZONE_DMA))
  134. atomic_pool_resize(atomic_pool_dma,
  135. GFP_KERNEL | GFP_DMA);
  136. if (IS_ENABLED(CONFIG_ZONE_DMA32) && !zone_dma32_are_empty())
  137. atomic_pool_resize(atomic_pool_dma32,
  138. GFP_KERNEL | GFP_DMA32);
  139. atomic_pool_resize(atomic_pool_kernel, GFP_KERNEL);
  140. }
  141. static __init struct gen_pool *__dma_atomic_pool_init(size_t pool_size,
  142. gfp_t gfp)
  143. {
  144. struct gen_pool *pool;
  145. int ret;
  146. pool = gen_pool_create(PAGE_SHIFT, NUMA_NO_NODE);
  147. if (!pool)
  148. return NULL;
  149. gen_pool_set_algo(pool, gen_pool_first_fit_order_align, NULL);
  150. ret = atomic_pool_expand(pool, pool_size, gfp);
  151. if (ret) {
  152. gen_pool_destroy(pool);
  153. pr_err("DMA: failed to allocate %zu KiB %pGg pool for atomic allocation\n",
  154. pool_size >> 10, &gfp);
  155. return NULL;
  156. }
  157. pr_info("DMA: preallocated %zu KiB %pGg pool for atomic allocations\n",
  158. gen_pool_size(pool) >> 10, &gfp);
  159. return pool;
  160. }
  161. static int __init dma_atomic_pool_init(void)
  162. {
  163. int ret = 0;
  164. /*
  165. * If coherent_pool was not used on the command line, default the pool
  166. * sizes to 128KB per 1GB of memory, min 128KB, max MAX_ORDER-1.
  167. */
  168. if (!atomic_pool_size) {
  169. unsigned long pages = totalram_pages() / (SZ_1G / SZ_128K);
  170. pages = min_t(unsigned long, pages, MAX_ORDER_NR_PAGES);
  171. atomic_pool_size = max_t(size_t, pages << PAGE_SHIFT, SZ_128K);
  172. }
  173. INIT_WORK(&atomic_pool_work, atomic_pool_work_fn);
  174. atomic_pool_kernel = __dma_atomic_pool_init(atomic_pool_size,
  175. GFP_KERNEL);
  176. if (!atomic_pool_kernel)
  177. ret = -ENOMEM;
  178. if (has_managed_dma()) {
  179. atomic_pool_dma = __dma_atomic_pool_init(atomic_pool_size,
  180. GFP_KERNEL | GFP_DMA);
  181. if (!atomic_pool_dma)
  182. ret = -ENOMEM;
  183. }
  184. if (IS_ENABLED(CONFIG_ZONE_DMA32) && !zone_dma32_are_empty()) {
  185. atomic_pool_dma32 = __dma_atomic_pool_init(atomic_pool_size,
  186. GFP_KERNEL | GFP_DMA32);
  187. if (!atomic_pool_dma32)
  188. ret = -ENOMEM;
  189. }
  190. dma_atomic_pool_debugfs_init();
  191. return ret;
  192. }
  193. postcore_initcall(dma_atomic_pool_init);
  194. static inline struct gen_pool *dma_guess_pool(struct gen_pool *prev, gfp_t gfp)
  195. {
  196. if (prev == NULL) {
  197. if (IS_ENABLED(CONFIG_ZONE_DMA32) && (gfp & GFP_DMA32) && !zone_dma32_are_empty())
  198. return atomic_pool_dma32;
  199. if (atomic_pool_dma && (gfp & GFP_DMA))
  200. return atomic_pool_dma;
  201. return atomic_pool_kernel;
  202. }
  203. if (prev == atomic_pool_kernel)
  204. return atomic_pool_dma32 ? atomic_pool_dma32 : atomic_pool_dma;
  205. if (prev == atomic_pool_dma32)
  206. return atomic_pool_dma;
  207. return NULL;
  208. }
  209. static struct page *__dma_alloc_from_pool(struct device *dev, size_t size,
  210. struct gen_pool *pool, void **cpu_addr,
  211. bool (*phys_addr_ok)(struct device *, phys_addr_t, size_t))
  212. {
  213. unsigned long addr;
  214. phys_addr_t phys;
  215. addr = gen_pool_alloc(pool, size);
  216. if (!addr)
  217. return NULL;
  218. phys = gen_pool_virt_to_phys(pool, addr);
  219. if (phys_addr_ok && !phys_addr_ok(dev, phys, size)) {
  220. gen_pool_free(pool, addr, size);
  221. return NULL;
  222. }
  223. if (gen_pool_avail(pool) < atomic_pool_size)
  224. schedule_work(&atomic_pool_work);
  225. *cpu_addr = (void *)addr;
  226. memset(*cpu_addr, 0, size);
  227. return pfn_to_page(__phys_to_pfn(phys));
  228. }
  229. struct page *dma_alloc_from_pool(struct device *dev, size_t size,
  230. void **cpu_addr, gfp_t gfp,
  231. bool (*phys_addr_ok)(struct device *, phys_addr_t, size_t))
  232. {
  233. struct gen_pool *pool = NULL;
  234. struct page *page;
  235. while ((pool = dma_guess_pool(pool, gfp))) {
  236. page = __dma_alloc_from_pool(dev, size, pool, cpu_addr,
  237. phys_addr_ok);
  238. if (page)
  239. return page;
  240. }
  241. WARN(1, "Failed to get suitable pool for %s\n", dev_name(dev));
  242. return NULL;
  243. }
  244. bool dma_free_from_pool(struct device *dev, void *start, size_t size)
  245. {
  246. struct gen_pool *pool = NULL;
  247. while ((pool = dma_guess_pool(pool, 0))) {
  248. if (!gen_pool_has_addr(pool, (unsigned long)start, size))
  249. continue;
  250. gen_pool_free(pool, (unsigned long)start, size);
  251. return true;
  252. }
  253. return false;
  254. }