123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332 |
- // SPDX-License-Identifier: GPL-2.0
- /*
- * fs-verity hash algorithms
- *
- * Copyright 2019 Google LLC
- */
- #include "fsverity_private.h"
- #include <crypto/hash.h>
- #include <linux/scatterlist.h>
- /* The hash algorithms supported by fs-verity */
- struct fsverity_hash_alg fsverity_hash_algs[] = {
- [FS_VERITY_HASH_ALG_SHA256] = {
- .name = "sha256",
- .digest_size = SHA256_DIGEST_SIZE,
- .block_size = SHA256_BLOCK_SIZE,
- .algo_id = HASH_ALGO_SHA256,
- },
- [FS_VERITY_HASH_ALG_SHA512] = {
- .name = "sha512",
- .digest_size = SHA512_DIGEST_SIZE,
- .block_size = SHA512_BLOCK_SIZE,
- .algo_id = HASH_ALGO_SHA512,
- },
- };
- static DEFINE_MUTEX(fsverity_hash_alg_init_mutex);
- /**
- * fsverity_get_hash_alg() - validate and prepare a hash algorithm
- * @inode: optional inode for logging purposes
- * @num: the hash algorithm number
- *
- * Get the struct fsverity_hash_alg for the given hash algorithm number, and
- * ensure it has a hash transform ready to go. The hash transforms are
- * allocated on-demand so that we don't waste resources unnecessarily, and
- * because the crypto modules may be initialized later than fs/verity/.
- *
- * Return: pointer to the hash alg on success, else an ERR_PTR()
- */
- struct fsverity_hash_alg *fsverity_get_hash_alg(const struct inode *inode,
- unsigned int num)
- {
- struct fsverity_hash_alg *alg;
- struct crypto_ahash *tfm;
- int err;
- if (num >= ARRAY_SIZE(fsverity_hash_algs) ||
- !fsverity_hash_algs[num].name) {
- fsverity_warn(inode, "Unknown hash algorithm number: %u", num);
- return ERR_PTR(-EINVAL);
- }
- alg = &fsverity_hash_algs[num];
- /* pairs with smp_store_release() below */
- if (likely(smp_load_acquire(&alg->tfm) != NULL))
- return alg;
- mutex_lock(&fsverity_hash_alg_init_mutex);
- if (alg->tfm != NULL)
- goto out_unlock;
- /*
- * Using the shash API would make things a bit simpler, but the ahash
- * API is preferable as it allows the use of crypto accelerators.
- */
- tfm = crypto_alloc_ahash(alg->name, 0, 0);
- if (IS_ERR(tfm)) {
- if (PTR_ERR(tfm) == -ENOENT) {
- fsverity_warn(inode,
- "Missing crypto API support for hash algorithm \"%s\"",
- alg->name);
- alg = ERR_PTR(-ENOPKG);
- goto out_unlock;
- }
- fsverity_err(inode,
- "Error allocating hash algorithm \"%s\": %ld",
- alg->name, PTR_ERR(tfm));
- alg = ERR_CAST(tfm);
- goto out_unlock;
- }
- err = -EINVAL;
- if (WARN_ON(alg->digest_size != crypto_ahash_digestsize(tfm)))
- goto err_free_tfm;
- if (WARN_ON(alg->block_size != crypto_ahash_blocksize(tfm)))
- goto err_free_tfm;
- err = mempool_init_kmalloc_pool(&alg->req_pool, 1,
- sizeof(struct ahash_request) +
- crypto_ahash_reqsize(tfm));
- if (err)
- goto err_free_tfm;
- pr_info("%s using implementation \"%s\"\n",
- alg->name, crypto_ahash_driver_name(tfm));
- /* pairs with smp_load_acquire() above */
- smp_store_release(&alg->tfm, tfm);
- goto out_unlock;
- err_free_tfm:
- crypto_free_ahash(tfm);
- alg = ERR_PTR(err);
- out_unlock:
- mutex_unlock(&fsverity_hash_alg_init_mutex);
- return alg;
- }
- /**
- * fsverity_alloc_hash_request() - allocate a hash request object
- * @alg: the hash algorithm for which to allocate the request
- * @gfp_flags: memory allocation flags
- *
- * This is mempool-backed, so this never fails if __GFP_DIRECT_RECLAIM is set in
- * @gfp_flags. However, in that case this might need to wait for all
- * previously-allocated requests to be freed. So to avoid deadlocks, callers
- * must never need multiple requests at a time to make forward progress.
- *
- * Return: the request object on success; NULL on failure (but see above)
- */
- struct ahash_request *fsverity_alloc_hash_request(struct fsverity_hash_alg *alg,
- gfp_t gfp_flags)
- {
- struct ahash_request *req = mempool_alloc(&alg->req_pool, gfp_flags);
- if (req)
- ahash_request_set_tfm(req, alg->tfm);
- return req;
- }
- /**
- * fsverity_free_hash_request() - free a hash request object
- * @alg: the hash algorithm
- * @req: the hash request object to free
- */
- void fsverity_free_hash_request(struct fsverity_hash_alg *alg,
- struct ahash_request *req)
- {
- if (req) {
- ahash_request_zero(req);
- mempool_free(req, &alg->req_pool);
- }
- }
- /**
- * fsverity_prepare_hash_state() - precompute the initial hash state
- * @alg: hash algorithm
- * @salt: a salt which is to be prepended to all data to be hashed
- * @salt_size: salt size in bytes, possibly 0
- *
- * Return: NULL if the salt is empty, otherwise the kmalloc()'ed precomputed
- * initial hash state on success or an ERR_PTR() on failure.
- */
- const u8 *fsverity_prepare_hash_state(struct fsverity_hash_alg *alg,
- const u8 *salt, size_t salt_size)
- {
- u8 *hashstate = NULL;
- struct ahash_request *req = NULL;
- u8 *padded_salt = NULL;
- size_t padded_salt_size;
- struct scatterlist sg;
- DECLARE_CRYPTO_WAIT(wait);
- int err;
- if (salt_size == 0)
- return NULL;
- hashstate = kmalloc(crypto_ahash_statesize(alg->tfm), GFP_KERNEL);
- if (!hashstate)
- return ERR_PTR(-ENOMEM);
- /* This allocation never fails, since it's mempool-backed. */
- req = fsverity_alloc_hash_request(alg, GFP_KERNEL);
- /*
- * Zero-pad the salt to the next multiple of the input size of the hash
- * algorithm's compression function, e.g. 64 bytes for SHA-256 or 128
- * bytes for SHA-512. This ensures that the hash algorithm won't have
- * any bytes buffered internally after processing the salt, thus making
- * salted hashing just as fast as unsalted hashing.
- */
- padded_salt_size = round_up(salt_size, alg->block_size);
- padded_salt = kzalloc(padded_salt_size, GFP_KERNEL);
- if (!padded_salt) {
- err = -ENOMEM;
- goto err_free;
- }
- memcpy(padded_salt, salt, salt_size);
- sg_init_one(&sg, padded_salt, padded_salt_size);
- ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP |
- CRYPTO_TFM_REQ_MAY_BACKLOG,
- crypto_req_done, &wait);
- ahash_request_set_crypt(req, &sg, NULL, padded_salt_size);
- err = crypto_wait_req(crypto_ahash_init(req), &wait);
- if (err)
- goto err_free;
- err = crypto_wait_req(crypto_ahash_update(req), &wait);
- if (err)
- goto err_free;
- err = crypto_ahash_export(req, hashstate);
- if (err)
- goto err_free;
- out:
- fsverity_free_hash_request(alg, req);
- kfree(padded_salt);
- return hashstate;
- err_free:
- kfree(hashstate);
- hashstate = ERR_PTR(err);
- goto out;
- }
- /**
- * fsverity_hash_block() - hash a single data or hash block
- * @params: the Merkle tree's parameters
- * @inode: inode for which the hashing is being done
- * @req: preallocated hash request
- * @page: the page containing the block to hash
- * @offset: the offset of the block within @page
- * @out: output digest, size 'params->digest_size' bytes
- *
- * Hash a single data or hash block. The hash is salted if a salt is specified
- * in the Merkle tree parameters.
- *
- * Return: 0 on success, -errno on failure
- */
- int fsverity_hash_block(const struct merkle_tree_params *params,
- const struct inode *inode, struct ahash_request *req,
- struct page *page, unsigned int offset, u8 *out)
- {
- struct scatterlist sg;
- DECLARE_CRYPTO_WAIT(wait);
- int err;
- sg_init_table(&sg, 1);
- sg_set_page(&sg, page, params->block_size, offset);
- ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP |
- CRYPTO_TFM_REQ_MAY_BACKLOG,
- crypto_req_done, &wait);
- ahash_request_set_crypt(req, &sg, out, params->block_size);
- if (params->hashstate) {
- err = crypto_ahash_import(req, params->hashstate);
- if (err) {
- fsverity_err(inode,
- "Error %d importing hash state", err);
- return err;
- }
- err = crypto_ahash_finup(req);
- } else {
- err = crypto_ahash_digest(req);
- }
- err = crypto_wait_req(err, &wait);
- if (err)
- fsverity_err(inode, "Error %d computing block hash", err);
- return err;
- }
- /**
- * fsverity_hash_buffer() - hash some data
- * @alg: the hash algorithm to use
- * @data: the data to hash
- * @size: size of data to hash, in bytes
- * @out: output digest, size 'alg->digest_size' bytes
- *
- * Hash some data which is located in physically contiguous memory (i.e. memory
- * allocated by kmalloc(), not by vmalloc()). No salt is used.
- *
- * Return: 0 on success, -errno on failure
- */
- int fsverity_hash_buffer(struct fsverity_hash_alg *alg,
- const void *data, size_t size, u8 *out)
- {
- struct ahash_request *req;
- struct scatterlist sg;
- DECLARE_CRYPTO_WAIT(wait);
- int err;
- /* This allocation never fails, since it's mempool-backed. */
- req = fsverity_alloc_hash_request(alg, GFP_KERNEL);
- sg_init_one(&sg, data, size);
- ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP |
- CRYPTO_TFM_REQ_MAY_BACKLOG,
- crypto_req_done, &wait);
- ahash_request_set_crypt(req, &sg, out, size);
- err = crypto_wait_req(crypto_ahash_digest(req), &wait);
- fsverity_free_hash_request(alg, req);
- return err;
- }
- void __init fsverity_check_hash_algs(void)
- {
- size_t i;
- /*
- * Sanity check the hash algorithms (could be a build-time check, but
- * they're in an array)
- */
- for (i = 0; i < ARRAY_SIZE(fsverity_hash_algs); i++) {
- const struct fsverity_hash_alg *alg = &fsverity_hash_algs[i];
- if (!alg->name)
- continue;
- BUG_ON(alg->digest_size > FS_VERITY_MAX_DIGEST_SIZE);
- /*
- * For efficiency, the implementation currently assumes the
- * digest and block sizes are powers of 2. This limitation can
- * be lifted if the code is updated to handle other values.
- */
- BUG_ON(!is_power_of_2(alg->digest_size));
- BUG_ON(!is_power_of_2(alg->block_size));
- /* Verify that there is a valid mapping to HASH_ALGO_*. */
- BUG_ON(alg->algo_id == 0);
- BUG_ON(alg->digest_size != hash_digest_size[alg->algo_id]);
- }
- }
|