123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677 |
- // SPDX-License-Identifier: GPL-2.0
- /*
- * fs/mpage.c
- *
- * Copyright (C) 2002, Linus Torvalds.
- *
- * Contains functions related to preparing and submitting BIOs which contain
- * multiple pagecache pages.
- *
- * 15May2002 Andrew Morton
- * Initial version
- * 27Jun2002 [email protected]
- * use bio_add_page() to build bio's just the right size
- */
- #include <linux/kernel.h>
- #include <linux/export.h>
- #include <linux/mm.h>
- #include <linux/kdev_t.h>
- #include <linux/gfp.h>
- #include <linux/bio.h>
- #include <linux/fs.h>
- #include <linux/buffer_head.h>
- #include <linux/blkdev.h>
- #include <linux/highmem.h>
- #include <linux/prefetch.h>
- #include <linux/mpage.h>
- #include <linux/mm_inline.h>
- #include <linux/writeback.h>
- #include <linux/backing-dev.h>
- #include <linux/pagevec.h>
- #include <linux/cleancache.h>
- #include "internal.h"
- /*
- * I/O completion handler for multipage BIOs.
- *
- * The mpage code never puts partial pages into a BIO (except for end-of-file).
- * If a page does not map to a contiguous run of blocks then it simply falls
- * back to block_read_full_folio().
- *
- * Why is this? If a page's completion depends on a number of different BIOs
- * which can complete in any order (or at the same time) then determining the
- * status of that page is hard. See end_buffer_async_read() for the details.
- * There is no point in duplicating all that complexity.
- */
- static void mpage_end_io(struct bio *bio)
- {
- struct bio_vec *bv;
- struct bvec_iter_all iter_all;
- bio_for_each_segment_all(bv, bio, iter_all) {
- struct page *page = bv->bv_page;
- page_endio(page, bio_op(bio),
- blk_status_to_errno(bio->bi_status));
- }
- bio_put(bio);
- }
- static struct bio *mpage_bio_submit(struct bio *bio)
- {
- bio->bi_end_io = mpage_end_io;
- guard_bio_eod(bio);
- submit_bio(bio);
- return NULL;
- }
- /*
- * support function for mpage_readahead. The fs supplied get_block might
- * return an up to date buffer. This is used to map that buffer into
- * the page, which allows read_folio to avoid triggering a duplicate call
- * to get_block.
- *
- * The idea is to avoid adding buffers to pages that don't already have
- * them. So when the buffer is up to date and the page size == block size,
- * this marks the page up to date instead of adding new buffers.
- */
- static void map_buffer_to_folio(struct folio *folio, struct buffer_head *bh,
- int page_block)
- {
- struct inode *inode = folio->mapping->host;
- struct buffer_head *page_bh, *head;
- int block = 0;
- head = folio_buffers(folio);
- if (!head) {
- /*
- * don't make any buffers if there is only one buffer on
- * the folio and the folio just needs to be set up to date
- */
- if (inode->i_blkbits == PAGE_SHIFT &&
- buffer_uptodate(bh)) {
- folio_mark_uptodate(folio);
- return;
- }
- create_empty_buffers(&folio->page, i_blocksize(inode), 0);
- head = folio_buffers(folio);
- }
- page_bh = head;
- do {
- if (block == page_block) {
- page_bh->b_state = bh->b_state;
- page_bh->b_bdev = bh->b_bdev;
- page_bh->b_blocknr = bh->b_blocknr;
- break;
- }
- page_bh = page_bh->b_this_page;
- block++;
- } while (page_bh != head);
- }
- struct mpage_readpage_args {
- struct bio *bio;
- struct folio *folio;
- unsigned int nr_pages;
- bool is_readahead;
- sector_t last_block_in_bio;
- struct buffer_head map_bh;
- unsigned long first_logical_block;
- get_block_t *get_block;
- };
- /*
- * This is the worker routine which does all the work of mapping the disk
- * blocks and constructs largest possible bios, submits them for IO if the
- * blocks are not contiguous on the disk.
- *
- * We pass a buffer_head back and forth and use its buffer_mapped() flag to
- * represent the validity of its disk mapping and to decide when to do the next
- * get_block() call.
- */
- static struct bio *do_mpage_readpage(struct mpage_readpage_args *args)
- {
- struct folio *folio = args->folio;
- struct inode *inode = folio->mapping->host;
- const unsigned blkbits = inode->i_blkbits;
- const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
- const unsigned blocksize = 1 << blkbits;
- struct buffer_head *map_bh = &args->map_bh;
- sector_t block_in_file;
- sector_t last_block;
- sector_t last_block_in_file;
- sector_t blocks[MAX_BUF_PER_PAGE];
- unsigned page_block;
- unsigned first_hole = blocks_per_page;
- struct block_device *bdev = NULL;
- int length;
- int fully_mapped = 1;
- blk_opf_t opf = REQ_OP_READ;
- unsigned nblocks;
- unsigned relative_block;
- gfp_t gfp = mapping_gfp_constraint(folio->mapping, GFP_KERNEL);
- /* MAX_BUF_PER_PAGE, for example */
- VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
- if (args->is_readahead) {
- opf |= REQ_RAHEAD;
- gfp |= __GFP_NORETRY | __GFP_NOWARN;
- }
- if (folio_buffers(folio))
- goto confused;
- block_in_file = (sector_t)folio->index << (PAGE_SHIFT - blkbits);
- last_block = block_in_file + args->nr_pages * blocks_per_page;
- last_block_in_file = (i_size_read(inode) + blocksize - 1) >> blkbits;
- if (last_block > last_block_in_file)
- last_block = last_block_in_file;
- page_block = 0;
- /*
- * Map blocks using the result from the previous get_blocks call first.
- */
- nblocks = map_bh->b_size >> blkbits;
- if (buffer_mapped(map_bh) &&
- block_in_file > args->first_logical_block &&
- block_in_file < (args->first_logical_block + nblocks)) {
- unsigned map_offset = block_in_file - args->first_logical_block;
- unsigned last = nblocks - map_offset;
- for (relative_block = 0; ; relative_block++) {
- if (relative_block == last) {
- clear_buffer_mapped(map_bh);
- break;
- }
- if (page_block == blocks_per_page)
- break;
- blocks[page_block] = map_bh->b_blocknr + map_offset +
- relative_block;
- page_block++;
- block_in_file++;
- }
- bdev = map_bh->b_bdev;
- }
- /*
- * Then do more get_blocks calls until we are done with this folio.
- */
- map_bh->b_page = &folio->page;
- while (page_block < blocks_per_page) {
- map_bh->b_state = 0;
- map_bh->b_size = 0;
- if (block_in_file < last_block) {
- map_bh->b_size = (last_block-block_in_file) << blkbits;
- if (args->get_block(inode, block_in_file, map_bh, 0))
- goto confused;
- args->first_logical_block = block_in_file;
- }
- if (!buffer_mapped(map_bh)) {
- fully_mapped = 0;
- if (first_hole == blocks_per_page)
- first_hole = page_block;
- page_block++;
- block_in_file++;
- continue;
- }
- /* some filesystems will copy data into the page during
- * the get_block call, in which case we don't want to
- * read it again. map_buffer_to_folio copies the data
- * we just collected from get_block into the folio's buffers
- * so read_folio doesn't have to repeat the get_block call
- */
- if (buffer_uptodate(map_bh)) {
- map_buffer_to_folio(folio, map_bh, page_block);
- goto confused;
- }
-
- if (first_hole != blocks_per_page)
- goto confused; /* hole -> non-hole */
- /* Contiguous blocks? */
- if (page_block && blocks[page_block-1] != map_bh->b_blocknr-1)
- goto confused;
- nblocks = map_bh->b_size >> blkbits;
- for (relative_block = 0; ; relative_block++) {
- if (relative_block == nblocks) {
- clear_buffer_mapped(map_bh);
- break;
- } else if (page_block == blocks_per_page)
- break;
- blocks[page_block] = map_bh->b_blocknr+relative_block;
- page_block++;
- block_in_file++;
- }
- bdev = map_bh->b_bdev;
- }
- if (first_hole != blocks_per_page) {
- folio_zero_segment(folio, first_hole << blkbits, PAGE_SIZE);
- if (first_hole == 0) {
- folio_mark_uptodate(folio);
- folio_unlock(folio);
- goto out;
- }
- } else if (fully_mapped) {
- folio_set_mappedtodisk(folio);
- }
- if (fully_mapped && blocks_per_page == 1 && !folio_test_uptodate(folio) &&
- cleancache_get_page(&folio->page) == 0) {
- folio_mark_uptodate(folio);
- goto confused;
- }
- /*
- * This folio will go to BIO. Do we need to send this BIO off first?
- */
- if (args->bio && (args->last_block_in_bio != blocks[0] - 1))
- args->bio = mpage_bio_submit(args->bio);
- alloc_new:
- if (args->bio == NULL) {
- if (first_hole == blocks_per_page) {
- if (!bdev_read_page(bdev, blocks[0] << (blkbits - 9),
- &folio->page))
- goto out;
- }
- args->bio = bio_alloc(bdev, bio_max_segs(args->nr_pages), opf,
- gfp);
- if (args->bio == NULL)
- goto confused;
- args->bio->bi_iter.bi_sector = blocks[0] << (blkbits - 9);
- }
- length = first_hole << blkbits;
- if (!bio_add_folio(args->bio, folio, length, 0)) {
- args->bio = mpage_bio_submit(args->bio);
- goto alloc_new;
- }
- relative_block = block_in_file - args->first_logical_block;
- nblocks = map_bh->b_size >> blkbits;
- if ((buffer_boundary(map_bh) && relative_block == nblocks) ||
- (first_hole != blocks_per_page))
- args->bio = mpage_bio_submit(args->bio);
- else
- args->last_block_in_bio = blocks[blocks_per_page - 1];
- out:
- return args->bio;
- confused:
- if (args->bio)
- args->bio = mpage_bio_submit(args->bio);
- if (!folio_test_uptodate(folio))
- block_read_full_folio(folio, args->get_block);
- else
- folio_unlock(folio);
- goto out;
- }
- /**
- * mpage_readahead - start reads against pages
- * @rac: Describes which pages to read.
- * @get_block: The filesystem's block mapper function.
- *
- * This function walks the pages and the blocks within each page, building and
- * emitting large BIOs.
- *
- * If anything unusual happens, such as:
- *
- * - encountering a page which has buffers
- * - encountering a page which has a non-hole after a hole
- * - encountering a page with non-contiguous blocks
- *
- * then this code just gives up and calls the buffer_head-based read function.
- * It does handle a page which has holes at the end - that is a common case:
- * the end-of-file on blocksize < PAGE_SIZE setups.
- *
- * BH_Boundary explanation:
- *
- * There is a problem. The mpage read code assembles several pages, gets all
- * their disk mappings, and then submits them all. That's fine, but obtaining
- * the disk mappings may require I/O. Reads of indirect blocks, for example.
- *
- * So an mpage read of the first 16 blocks of an ext2 file will cause I/O to be
- * submitted in the following order:
- *
- * 12 0 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16
- *
- * because the indirect block has to be read to get the mappings of blocks
- * 13,14,15,16. Obviously, this impacts performance.
- *
- * So what we do it to allow the filesystem's get_block() function to set
- * BH_Boundary when it maps block 11. BH_Boundary says: mapping of the block
- * after this one will require I/O against a block which is probably close to
- * this one. So you should push what I/O you have currently accumulated.
- *
- * This all causes the disk requests to be issued in the correct order.
- */
- void mpage_readahead(struct readahead_control *rac, get_block_t get_block)
- {
- struct folio *folio;
- struct mpage_readpage_args args = {
- .get_block = get_block,
- .is_readahead = true,
- };
- while ((folio = readahead_folio(rac))) {
- prefetchw(&folio->flags);
- args.folio = folio;
- args.nr_pages = readahead_count(rac);
- args.bio = do_mpage_readpage(&args);
- }
- if (args.bio)
- mpage_bio_submit(args.bio);
- }
- EXPORT_SYMBOL(mpage_readahead);
- /*
- * This isn't called much at all
- */
- int mpage_read_folio(struct folio *folio, get_block_t get_block)
- {
- struct mpage_readpage_args args = {
- .folio = folio,
- .nr_pages = 1,
- .get_block = get_block,
- };
- args.bio = do_mpage_readpage(&args);
- if (args.bio)
- mpage_bio_submit(args.bio);
- return 0;
- }
- EXPORT_SYMBOL(mpage_read_folio);
- /*
- * Writing is not so simple.
- *
- * If the page has buffers then they will be used for obtaining the disk
- * mapping. We only support pages which are fully mapped-and-dirty, with a
- * special case for pages which are unmapped at the end: end-of-file.
- *
- * If the page has no buffers (preferred) then the page is mapped here.
- *
- * If all blocks are found to be contiguous then the page can go into the
- * BIO. Otherwise fall back to the mapping's writepage().
- *
- * FIXME: This code wants an estimate of how many pages are still to be
- * written, so it can intelligently allocate a suitably-sized BIO. For now,
- * just allocate full-size (16-page) BIOs.
- */
- struct mpage_data {
- struct bio *bio;
- sector_t last_block_in_bio;
- get_block_t *get_block;
- };
- /*
- * We have our BIO, so we can now mark the buffers clean. Make
- * sure to only clean buffers which we know we'll be writing.
- */
- static void clean_buffers(struct page *page, unsigned first_unmapped)
- {
- unsigned buffer_counter = 0;
- struct buffer_head *bh, *head;
- if (!page_has_buffers(page))
- return;
- head = page_buffers(page);
- bh = head;
- do {
- if (buffer_counter++ == first_unmapped)
- break;
- clear_buffer_dirty(bh);
- bh = bh->b_this_page;
- } while (bh != head);
- /*
- * we cannot drop the bh if the page is not uptodate or a concurrent
- * read_folio would fail to serialize with the bh and it would read from
- * disk before we reach the platter.
- */
- if (buffer_heads_over_limit && PageUptodate(page))
- try_to_free_buffers(page_folio(page));
- }
- /*
- * For situations where we want to clean all buffers attached to a page.
- * We don't need to calculate how many buffers are attached to the page,
- * we just need to specify a number larger than the maximum number of buffers.
- */
- void clean_page_buffers(struct page *page)
- {
- clean_buffers(page, ~0U);
- }
- static int __mpage_writepage(struct page *page, struct writeback_control *wbc,
- void *data)
- {
- struct mpage_data *mpd = data;
- struct bio *bio = mpd->bio;
- struct address_space *mapping = page->mapping;
- struct inode *inode = page->mapping->host;
- const unsigned blkbits = inode->i_blkbits;
- unsigned long end_index;
- const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
- sector_t last_block;
- sector_t block_in_file;
- sector_t blocks[MAX_BUF_PER_PAGE];
- unsigned page_block;
- unsigned first_unmapped = blocks_per_page;
- struct block_device *bdev = NULL;
- int boundary = 0;
- sector_t boundary_block = 0;
- struct block_device *boundary_bdev = NULL;
- int length;
- struct buffer_head map_bh;
- loff_t i_size = i_size_read(inode);
- int ret = 0;
- if (page_has_buffers(page)) {
- struct buffer_head *head = page_buffers(page);
- struct buffer_head *bh = head;
- /* If they're all mapped and dirty, do it */
- page_block = 0;
- do {
- BUG_ON(buffer_locked(bh));
- if (!buffer_mapped(bh)) {
- /*
- * unmapped dirty buffers are created by
- * block_dirty_folio -> mmapped data
- */
- if (buffer_dirty(bh))
- goto confused;
- if (first_unmapped == blocks_per_page)
- first_unmapped = page_block;
- continue;
- }
- if (first_unmapped != blocks_per_page)
- goto confused; /* hole -> non-hole */
- if (!buffer_dirty(bh) || !buffer_uptodate(bh))
- goto confused;
- if (page_block) {
- if (bh->b_blocknr != blocks[page_block-1] + 1)
- goto confused;
- }
- blocks[page_block++] = bh->b_blocknr;
- boundary = buffer_boundary(bh);
- if (boundary) {
- boundary_block = bh->b_blocknr;
- boundary_bdev = bh->b_bdev;
- }
- bdev = bh->b_bdev;
- } while ((bh = bh->b_this_page) != head);
- if (first_unmapped)
- goto page_is_mapped;
- /*
- * Page has buffers, but they are all unmapped. The page was
- * created by pagein or read over a hole which was handled by
- * block_read_full_folio(). If this address_space is also
- * using mpage_readahead then this can rarely happen.
- */
- goto confused;
- }
- /*
- * The page has no buffers: map it to disk
- */
- BUG_ON(!PageUptodate(page));
- block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
- last_block = (i_size - 1) >> blkbits;
- map_bh.b_page = page;
- for (page_block = 0; page_block < blocks_per_page; ) {
- map_bh.b_state = 0;
- map_bh.b_size = 1 << blkbits;
- if (mpd->get_block(inode, block_in_file, &map_bh, 1))
- goto confused;
- if (buffer_new(&map_bh))
- clean_bdev_bh_alias(&map_bh);
- if (buffer_boundary(&map_bh)) {
- boundary_block = map_bh.b_blocknr;
- boundary_bdev = map_bh.b_bdev;
- }
- if (page_block) {
- if (map_bh.b_blocknr != blocks[page_block-1] + 1)
- goto confused;
- }
- blocks[page_block++] = map_bh.b_blocknr;
- boundary = buffer_boundary(&map_bh);
- bdev = map_bh.b_bdev;
- if (block_in_file == last_block)
- break;
- block_in_file++;
- }
- BUG_ON(page_block == 0);
- first_unmapped = page_block;
- page_is_mapped:
- end_index = i_size >> PAGE_SHIFT;
- if (page->index >= end_index) {
- /*
- * The page straddles i_size. It must be zeroed out on each
- * and every writepage invocation because it may be mmapped.
- * "A file is mapped in multiples of the page size. For a file
- * that is not a multiple of the page size, the remaining memory
- * is zeroed when mapped, and writes to that region are not
- * written out to the file."
- */
- unsigned offset = i_size & (PAGE_SIZE - 1);
- if (page->index > end_index || !offset)
- goto confused;
- zero_user_segment(page, offset, PAGE_SIZE);
- }
- /*
- * This page will go to BIO. Do we need to send this BIO off first?
- */
- if (bio && mpd->last_block_in_bio != blocks[0] - 1)
- bio = mpage_bio_submit(bio);
- alloc_new:
- if (bio == NULL) {
- if (first_unmapped == blocks_per_page) {
- if (!bdev_write_page(bdev, blocks[0] << (blkbits - 9),
- page, wbc))
- goto out;
- }
- bio = bio_alloc(bdev, BIO_MAX_VECS,
- REQ_OP_WRITE | wbc_to_write_flags(wbc),
- GFP_NOFS);
- bio->bi_iter.bi_sector = blocks[0] << (blkbits - 9);
- wbc_init_bio(wbc, bio);
- }
- /*
- * Must try to add the page before marking the buffer clean or
- * the confused fail path above (OOM) will be very confused when
- * it finds all bh marked clean (i.e. it will not write anything)
- */
- wbc_account_cgroup_owner(wbc, page, PAGE_SIZE);
- length = first_unmapped << blkbits;
- if (bio_add_page(bio, page, length, 0) < length) {
- bio = mpage_bio_submit(bio);
- goto alloc_new;
- }
- clean_buffers(page, first_unmapped);
- BUG_ON(PageWriteback(page));
- set_page_writeback(page);
- unlock_page(page);
- if (boundary || (first_unmapped != blocks_per_page)) {
- bio = mpage_bio_submit(bio);
- if (boundary_block) {
- write_boundary_block(boundary_bdev,
- boundary_block, 1 << blkbits);
- }
- } else {
- mpd->last_block_in_bio = blocks[blocks_per_page - 1];
- }
- goto out;
- confused:
- if (bio)
- bio = mpage_bio_submit(bio);
- /*
- * The caller has a ref on the inode, so *mapping is stable
- */
- ret = block_write_full_page(page, mpd->get_block, wbc);
- mapping_set_error(mapping, ret);
- out:
- mpd->bio = bio;
- return ret;
- }
- /**
- * mpage_writepages - walk the list of dirty pages of the given address space & writepage() all of them
- * @mapping: address space structure to write
- * @wbc: subtract the number of written pages from *@wbc->nr_to_write
- * @get_block: the filesystem's block mapper function.
- *
- * This is a library function, which implements the writepages()
- * address_space_operation.
- *
- * If a page is already under I/O, generic_writepages() skips it, even
- * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
- * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
- * and msync() need to guarantee that all the data which was dirty at the time
- * the call was made get new I/O started against them. If wbc->sync_mode is
- * WB_SYNC_ALL then we were called for data integrity and we must wait for
- * existing IO to complete.
- */
- int
- mpage_writepages(struct address_space *mapping,
- struct writeback_control *wbc, get_block_t get_block)
- {
- struct mpage_data mpd = {
- .get_block = get_block,
- };
- struct blk_plug plug;
- int ret;
- blk_start_plug(&plug);
- ret = write_cache_pages(mapping, wbc, __mpage_writepage, &mpd);
- if (mpd.bio)
- mpage_bio_submit(mpd.bio);
- blk_finish_plug(&plug);
- return ret;
- }
- EXPORT_SYMBOL(mpage_writepages);
|