inline.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * fs/f2fs/inline.c
  4. * Copyright (c) 2013, Intel Corporation
  5. * Authors: Huajun Li <[email protected]>
  6. * Haicheng Li <[email protected]>
  7. */
  8. #include <linux/fs.h>
  9. #include <linux/f2fs_fs.h>
  10. #include <linux/fiemap.h>
  11. #include "f2fs.h"
  12. #include "node.h"
  13. #include <trace/events/f2fs.h>
  14. static bool support_inline_data(struct inode *inode)
  15. {
  16. if (f2fs_is_atomic_file(inode))
  17. return false;
  18. if (!S_ISREG(inode->i_mode) && !S_ISLNK(inode->i_mode))
  19. return false;
  20. if (i_size_read(inode) > MAX_INLINE_DATA(inode))
  21. return false;
  22. return true;
  23. }
  24. bool f2fs_may_inline_data(struct inode *inode)
  25. {
  26. if (!support_inline_data(inode))
  27. return false;
  28. return !f2fs_post_read_required(inode);
  29. }
  30. bool f2fs_sanity_check_inline_data(struct inode *inode)
  31. {
  32. if (!f2fs_has_inline_data(inode))
  33. return false;
  34. if (!support_inline_data(inode))
  35. return true;
  36. /*
  37. * used by sanity_check_inode(), when disk layout fields has not
  38. * been synchronized to inmem fields.
  39. */
  40. return (S_ISREG(inode->i_mode) &&
  41. (file_is_encrypt(inode) || file_is_verity(inode) ||
  42. (F2FS_I(inode)->i_flags & F2FS_COMPR_FL)));
  43. }
  44. bool f2fs_may_inline_dentry(struct inode *inode)
  45. {
  46. if (!test_opt(F2FS_I_SB(inode), INLINE_DENTRY))
  47. return false;
  48. if (!S_ISDIR(inode->i_mode))
  49. return false;
  50. return true;
  51. }
  52. void f2fs_do_read_inline_data(struct page *page, struct page *ipage)
  53. {
  54. struct inode *inode = page->mapping->host;
  55. if (PageUptodate(page))
  56. return;
  57. f2fs_bug_on(F2FS_P_SB(page), page->index);
  58. zero_user_segment(page, MAX_INLINE_DATA(inode), PAGE_SIZE);
  59. /* Copy the whole inline data block */
  60. memcpy_to_page(page, 0, inline_data_addr(inode, ipage),
  61. MAX_INLINE_DATA(inode));
  62. if (!PageUptodate(page))
  63. SetPageUptodate(page);
  64. }
  65. void f2fs_truncate_inline_inode(struct inode *inode,
  66. struct page *ipage, u64 from)
  67. {
  68. void *addr;
  69. if (from >= MAX_INLINE_DATA(inode))
  70. return;
  71. addr = inline_data_addr(inode, ipage);
  72. f2fs_wait_on_page_writeback(ipage, NODE, true, true);
  73. memset(addr + from, 0, MAX_INLINE_DATA(inode) - from);
  74. set_page_dirty(ipage);
  75. if (from == 0)
  76. clear_inode_flag(inode, FI_DATA_EXIST);
  77. }
  78. int f2fs_read_inline_data(struct inode *inode, struct page *page)
  79. {
  80. struct page *ipage;
  81. ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
  82. if (IS_ERR(ipage)) {
  83. unlock_page(page);
  84. return PTR_ERR(ipage);
  85. }
  86. if (!f2fs_has_inline_data(inode)) {
  87. f2fs_put_page(ipage, 1);
  88. return -EAGAIN;
  89. }
  90. if (page->index)
  91. zero_user_segment(page, 0, PAGE_SIZE);
  92. else
  93. f2fs_do_read_inline_data(page, ipage);
  94. if (!PageUptodate(page))
  95. SetPageUptodate(page);
  96. f2fs_put_page(ipage, 1);
  97. unlock_page(page);
  98. return 0;
  99. }
  100. int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page)
  101. {
  102. struct f2fs_io_info fio = {
  103. .sbi = F2FS_I_SB(dn->inode),
  104. .ino = dn->inode->i_ino,
  105. .type = DATA,
  106. .op = REQ_OP_WRITE,
  107. .op_flags = REQ_SYNC | REQ_PRIO,
  108. .page = page,
  109. .encrypted_page = NULL,
  110. .io_type = FS_DATA_IO,
  111. };
  112. struct node_info ni;
  113. int dirty, err;
  114. if (!f2fs_exist_data(dn->inode))
  115. goto clear_out;
  116. err = f2fs_reserve_block(dn, 0);
  117. if (err)
  118. return err;
  119. err = f2fs_get_node_info(fio.sbi, dn->nid, &ni, false);
  120. if (err) {
  121. f2fs_truncate_data_blocks_range(dn, 1);
  122. f2fs_put_dnode(dn);
  123. return err;
  124. }
  125. fio.version = ni.version;
  126. if (unlikely(dn->data_blkaddr != NEW_ADDR)) {
  127. f2fs_put_dnode(dn);
  128. set_sbi_flag(fio.sbi, SBI_NEED_FSCK);
  129. f2fs_warn(fio.sbi, "%s: corrupted inline inode ino=%lx, i_addr[0]:0x%x, run fsck to fix.",
  130. __func__, dn->inode->i_ino, dn->data_blkaddr);
  131. f2fs_handle_error(fio.sbi, ERROR_INVALID_BLKADDR);
  132. return -EFSCORRUPTED;
  133. }
  134. f2fs_bug_on(F2FS_P_SB(page), PageWriteback(page));
  135. f2fs_do_read_inline_data(page, dn->inode_page);
  136. set_page_dirty(page);
  137. /* clear dirty state */
  138. dirty = clear_page_dirty_for_io(page);
  139. /* write data page to try to make data consistent */
  140. set_page_writeback(page);
  141. fio.old_blkaddr = dn->data_blkaddr;
  142. set_inode_flag(dn->inode, FI_HOT_DATA);
  143. f2fs_outplace_write_data(dn, &fio);
  144. f2fs_wait_on_page_writeback(page, DATA, true, true);
  145. if (dirty) {
  146. inode_dec_dirty_pages(dn->inode);
  147. f2fs_remove_dirty_inode(dn->inode);
  148. }
  149. /* this converted inline_data should be recovered. */
  150. set_inode_flag(dn->inode, FI_APPEND_WRITE);
  151. /* clear inline data and flag after data writeback */
  152. f2fs_truncate_inline_inode(dn->inode, dn->inode_page, 0);
  153. clear_page_private_inline(dn->inode_page);
  154. clear_out:
  155. stat_dec_inline_inode(dn->inode);
  156. clear_inode_flag(dn->inode, FI_INLINE_DATA);
  157. f2fs_put_dnode(dn);
  158. return 0;
  159. }
  160. int f2fs_convert_inline_inode(struct inode *inode)
  161. {
  162. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  163. struct dnode_of_data dn;
  164. struct page *ipage, *page;
  165. int err = 0;
  166. if (!f2fs_has_inline_data(inode) ||
  167. f2fs_hw_is_readonly(sbi) || f2fs_readonly(sbi->sb))
  168. return 0;
  169. err = f2fs_dquot_initialize(inode);
  170. if (err)
  171. return err;
  172. page = f2fs_grab_cache_page(inode->i_mapping, 0, false);
  173. if (!page)
  174. return -ENOMEM;
  175. f2fs_lock_op(sbi);
  176. ipage = f2fs_get_node_page(sbi, inode->i_ino);
  177. if (IS_ERR(ipage)) {
  178. err = PTR_ERR(ipage);
  179. goto out;
  180. }
  181. set_new_dnode(&dn, inode, ipage, ipage, 0);
  182. if (f2fs_has_inline_data(inode))
  183. err = f2fs_convert_inline_page(&dn, page);
  184. f2fs_put_dnode(&dn);
  185. out:
  186. f2fs_unlock_op(sbi);
  187. f2fs_put_page(page, 1);
  188. if (!err)
  189. f2fs_balance_fs(sbi, dn.node_changed);
  190. return err;
  191. }
  192. int f2fs_write_inline_data(struct inode *inode, struct page *page)
  193. {
  194. struct dnode_of_data dn;
  195. int err;
  196. set_new_dnode(&dn, inode, NULL, NULL, 0);
  197. err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
  198. if (err)
  199. return err;
  200. if (!f2fs_has_inline_data(inode)) {
  201. f2fs_put_dnode(&dn);
  202. return -EAGAIN;
  203. }
  204. f2fs_bug_on(F2FS_I_SB(inode), page->index);
  205. f2fs_wait_on_page_writeback(dn.inode_page, NODE, true, true);
  206. memcpy_from_page(inline_data_addr(inode, dn.inode_page),
  207. page, 0, MAX_INLINE_DATA(inode));
  208. set_page_dirty(dn.inode_page);
  209. f2fs_clear_page_cache_dirty_tag(page);
  210. set_inode_flag(inode, FI_APPEND_WRITE);
  211. set_inode_flag(inode, FI_DATA_EXIST);
  212. clear_page_private_inline(dn.inode_page);
  213. f2fs_put_dnode(&dn);
  214. return 0;
  215. }
  216. int f2fs_recover_inline_data(struct inode *inode, struct page *npage)
  217. {
  218. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  219. struct f2fs_inode *ri = NULL;
  220. void *src_addr, *dst_addr;
  221. struct page *ipage;
  222. /*
  223. * The inline_data recovery policy is as follows.
  224. * [prev.] [next] of inline_data flag
  225. * o o -> recover inline_data
  226. * o x -> remove inline_data, and then recover data blocks
  227. * x o -> remove data blocks, and then recover inline_data
  228. * x x -> recover data blocks
  229. */
  230. if (IS_INODE(npage))
  231. ri = F2FS_INODE(npage);
  232. if (f2fs_has_inline_data(inode) &&
  233. ri && (ri->i_inline & F2FS_INLINE_DATA)) {
  234. process_inline:
  235. ipage = f2fs_get_node_page(sbi, inode->i_ino);
  236. if (IS_ERR(ipage))
  237. return PTR_ERR(ipage);
  238. f2fs_wait_on_page_writeback(ipage, NODE, true, true);
  239. src_addr = inline_data_addr(inode, npage);
  240. dst_addr = inline_data_addr(inode, ipage);
  241. memcpy(dst_addr, src_addr, MAX_INLINE_DATA(inode));
  242. set_inode_flag(inode, FI_INLINE_DATA);
  243. set_inode_flag(inode, FI_DATA_EXIST);
  244. set_page_dirty(ipage);
  245. f2fs_put_page(ipage, 1);
  246. return 1;
  247. }
  248. if (f2fs_has_inline_data(inode)) {
  249. ipage = f2fs_get_node_page(sbi, inode->i_ino);
  250. if (IS_ERR(ipage))
  251. return PTR_ERR(ipage);
  252. f2fs_truncate_inline_inode(inode, ipage, 0);
  253. stat_dec_inline_inode(inode);
  254. clear_inode_flag(inode, FI_INLINE_DATA);
  255. f2fs_put_page(ipage, 1);
  256. } else if (ri && (ri->i_inline & F2FS_INLINE_DATA)) {
  257. int ret;
  258. ret = f2fs_truncate_blocks(inode, 0, false);
  259. if (ret)
  260. return ret;
  261. stat_inc_inline_inode(inode);
  262. goto process_inline;
  263. }
  264. return 0;
  265. }
  266. struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
  267. const struct f2fs_filename *fname,
  268. struct page **res_page)
  269. {
  270. struct f2fs_sb_info *sbi = F2FS_SB(dir->i_sb);
  271. struct f2fs_dir_entry *de;
  272. struct f2fs_dentry_ptr d;
  273. struct page *ipage;
  274. void *inline_dentry;
  275. ipage = f2fs_get_node_page(sbi, dir->i_ino);
  276. if (IS_ERR(ipage)) {
  277. *res_page = ipage;
  278. return NULL;
  279. }
  280. inline_dentry = inline_data_addr(dir, ipage);
  281. make_dentry_ptr_inline(dir, &d, inline_dentry);
  282. de = f2fs_find_target_dentry(&d, fname, NULL);
  283. unlock_page(ipage);
  284. if (IS_ERR(de)) {
  285. *res_page = ERR_CAST(de);
  286. de = NULL;
  287. }
  288. if (de)
  289. *res_page = ipage;
  290. else
  291. f2fs_put_page(ipage, 0);
  292. return de;
  293. }
  294. int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
  295. struct page *ipage)
  296. {
  297. struct f2fs_dentry_ptr d;
  298. void *inline_dentry;
  299. inline_dentry = inline_data_addr(inode, ipage);
  300. make_dentry_ptr_inline(inode, &d, inline_dentry);
  301. f2fs_do_make_empty_dir(inode, parent, &d);
  302. set_page_dirty(ipage);
  303. /* update i_size to MAX_INLINE_DATA */
  304. if (i_size_read(inode) < MAX_INLINE_DATA(inode))
  305. f2fs_i_size_write(inode, MAX_INLINE_DATA(inode));
  306. return 0;
  307. }
  308. /*
  309. * NOTE: ipage is grabbed by caller, but if any error occurs, we should
  310. * release ipage in this function.
  311. */
  312. static int f2fs_move_inline_dirents(struct inode *dir, struct page *ipage,
  313. void *inline_dentry)
  314. {
  315. struct page *page;
  316. struct dnode_of_data dn;
  317. struct f2fs_dentry_block *dentry_blk;
  318. struct f2fs_dentry_ptr src, dst;
  319. int err;
  320. page = f2fs_grab_cache_page(dir->i_mapping, 0, true);
  321. if (!page) {
  322. f2fs_put_page(ipage, 1);
  323. return -ENOMEM;
  324. }
  325. set_new_dnode(&dn, dir, ipage, NULL, 0);
  326. err = f2fs_reserve_block(&dn, 0);
  327. if (err)
  328. goto out;
  329. if (unlikely(dn.data_blkaddr != NEW_ADDR)) {
  330. f2fs_put_dnode(&dn);
  331. set_sbi_flag(F2FS_P_SB(page), SBI_NEED_FSCK);
  332. f2fs_warn(F2FS_P_SB(page), "%s: corrupted inline inode ino=%lx, i_addr[0]:0x%x, run fsck to fix.",
  333. __func__, dir->i_ino, dn.data_blkaddr);
  334. f2fs_handle_error(F2FS_P_SB(page), ERROR_INVALID_BLKADDR);
  335. err = -EFSCORRUPTED;
  336. goto out;
  337. }
  338. f2fs_wait_on_page_writeback(page, DATA, true, true);
  339. dentry_blk = page_address(page);
  340. /*
  341. * Start by zeroing the full block, to ensure that all unused space is
  342. * zeroed and no uninitialized memory is leaked to disk.
  343. */
  344. memset(dentry_blk, 0, F2FS_BLKSIZE);
  345. make_dentry_ptr_inline(dir, &src, inline_dentry);
  346. make_dentry_ptr_block(dir, &dst, dentry_blk);
  347. /* copy data from inline dentry block to new dentry block */
  348. memcpy(dst.bitmap, src.bitmap, src.nr_bitmap);
  349. memcpy(dst.dentry, src.dentry, SIZE_OF_DIR_ENTRY * src.max);
  350. memcpy(dst.filename, src.filename, src.max * F2FS_SLOT_LEN);
  351. if (!PageUptodate(page))
  352. SetPageUptodate(page);
  353. set_page_dirty(page);
  354. /* clear inline dir and flag after data writeback */
  355. f2fs_truncate_inline_inode(dir, ipage, 0);
  356. stat_dec_inline_dir(dir);
  357. clear_inode_flag(dir, FI_INLINE_DENTRY);
  358. /*
  359. * should retrieve reserved space which was used to keep
  360. * inline_dentry's structure for backward compatibility.
  361. */
  362. if (!f2fs_sb_has_flexible_inline_xattr(F2FS_I_SB(dir)) &&
  363. !f2fs_has_inline_xattr(dir))
  364. F2FS_I(dir)->i_inline_xattr_size = 0;
  365. f2fs_i_depth_write(dir, 1);
  366. if (i_size_read(dir) < PAGE_SIZE)
  367. f2fs_i_size_write(dir, PAGE_SIZE);
  368. out:
  369. f2fs_put_page(page, 1);
  370. return err;
  371. }
  372. static int f2fs_add_inline_entries(struct inode *dir, void *inline_dentry)
  373. {
  374. struct f2fs_dentry_ptr d;
  375. unsigned long bit_pos = 0;
  376. int err = 0;
  377. make_dentry_ptr_inline(dir, &d, inline_dentry);
  378. while (bit_pos < d.max) {
  379. struct f2fs_dir_entry *de;
  380. struct f2fs_filename fname;
  381. nid_t ino;
  382. umode_t fake_mode;
  383. if (!test_bit_le(bit_pos, d.bitmap)) {
  384. bit_pos++;
  385. continue;
  386. }
  387. de = &d.dentry[bit_pos];
  388. if (unlikely(!de->name_len)) {
  389. bit_pos++;
  390. continue;
  391. }
  392. /*
  393. * We only need the disk_name and hash to move the dentry.
  394. * We don't need the original or casefolded filenames.
  395. */
  396. memset(&fname, 0, sizeof(fname));
  397. fname.disk_name.name = d.filename[bit_pos];
  398. fname.disk_name.len = le16_to_cpu(de->name_len);
  399. fname.hash = de->hash_code;
  400. ino = le32_to_cpu(de->ino);
  401. fake_mode = fs_ftype_to_dtype(de->file_type) << S_DT_SHIFT;
  402. err = f2fs_add_regular_entry(dir, &fname, NULL, ino, fake_mode);
  403. if (err)
  404. goto punch_dentry_pages;
  405. bit_pos += GET_DENTRY_SLOTS(le16_to_cpu(de->name_len));
  406. }
  407. return 0;
  408. punch_dentry_pages:
  409. truncate_inode_pages(&dir->i_data, 0);
  410. f2fs_truncate_blocks(dir, 0, false);
  411. f2fs_remove_dirty_inode(dir);
  412. return err;
  413. }
  414. static int f2fs_move_rehashed_dirents(struct inode *dir, struct page *ipage,
  415. void *inline_dentry)
  416. {
  417. void *backup_dentry;
  418. int err;
  419. backup_dentry = f2fs_kmalloc(F2FS_I_SB(dir),
  420. MAX_INLINE_DATA(dir), GFP_F2FS_ZERO);
  421. if (!backup_dentry) {
  422. f2fs_put_page(ipage, 1);
  423. return -ENOMEM;
  424. }
  425. memcpy(backup_dentry, inline_dentry, MAX_INLINE_DATA(dir));
  426. f2fs_truncate_inline_inode(dir, ipage, 0);
  427. unlock_page(ipage);
  428. err = f2fs_add_inline_entries(dir, backup_dentry);
  429. if (err)
  430. goto recover;
  431. lock_page(ipage);
  432. stat_dec_inline_dir(dir);
  433. clear_inode_flag(dir, FI_INLINE_DENTRY);
  434. /*
  435. * should retrieve reserved space which was used to keep
  436. * inline_dentry's structure for backward compatibility.
  437. */
  438. if (!f2fs_sb_has_flexible_inline_xattr(F2FS_I_SB(dir)) &&
  439. !f2fs_has_inline_xattr(dir))
  440. F2FS_I(dir)->i_inline_xattr_size = 0;
  441. kfree(backup_dentry);
  442. return 0;
  443. recover:
  444. lock_page(ipage);
  445. f2fs_wait_on_page_writeback(ipage, NODE, true, true);
  446. memcpy(inline_dentry, backup_dentry, MAX_INLINE_DATA(dir));
  447. f2fs_i_depth_write(dir, 0);
  448. f2fs_i_size_write(dir, MAX_INLINE_DATA(dir));
  449. set_page_dirty(ipage);
  450. f2fs_put_page(ipage, 1);
  451. kfree(backup_dentry);
  452. return err;
  453. }
  454. static int do_convert_inline_dir(struct inode *dir, struct page *ipage,
  455. void *inline_dentry)
  456. {
  457. if (!F2FS_I(dir)->i_dir_level)
  458. return f2fs_move_inline_dirents(dir, ipage, inline_dentry);
  459. else
  460. return f2fs_move_rehashed_dirents(dir, ipage, inline_dentry);
  461. }
  462. int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry)
  463. {
  464. struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
  465. struct page *ipage;
  466. struct f2fs_filename fname;
  467. void *inline_dentry = NULL;
  468. int err = 0;
  469. if (!f2fs_has_inline_dentry(dir))
  470. return 0;
  471. f2fs_lock_op(sbi);
  472. err = f2fs_setup_filename(dir, &dentry->d_name, 0, &fname);
  473. if (err)
  474. goto out;
  475. ipage = f2fs_get_node_page(sbi, dir->i_ino);
  476. if (IS_ERR(ipage)) {
  477. err = PTR_ERR(ipage);
  478. goto out_fname;
  479. }
  480. if (f2fs_has_enough_room(dir, ipage, &fname)) {
  481. f2fs_put_page(ipage, 1);
  482. goto out_fname;
  483. }
  484. inline_dentry = inline_data_addr(dir, ipage);
  485. err = do_convert_inline_dir(dir, ipage, inline_dentry);
  486. if (!err)
  487. f2fs_put_page(ipage, 1);
  488. out_fname:
  489. f2fs_free_filename(&fname);
  490. out:
  491. f2fs_unlock_op(sbi);
  492. return err;
  493. }
  494. int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname,
  495. struct inode *inode, nid_t ino, umode_t mode)
  496. {
  497. struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
  498. struct page *ipage;
  499. unsigned int bit_pos;
  500. void *inline_dentry = NULL;
  501. struct f2fs_dentry_ptr d;
  502. int slots = GET_DENTRY_SLOTS(fname->disk_name.len);
  503. struct page *page = NULL;
  504. int err = 0;
  505. ipage = f2fs_get_node_page(sbi, dir->i_ino);
  506. if (IS_ERR(ipage))
  507. return PTR_ERR(ipage);
  508. inline_dentry = inline_data_addr(dir, ipage);
  509. make_dentry_ptr_inline(dir, &d, inline_dentry);
  510. bit_pos = f2fs_room_for_filename(d.bitmap, slots, d.max);
  511. if (bit_pos >= d.max) {
  512. err = do_convert_inline_dir(dir, ipage, inline_dentry);
  513. if (err)
  514. return err;
  515. err = -EAGAIN;
  516. goto out;
  517. }
  518. if (inode) {
  519. f2fs_down_write_nested(&F2FS_I(inode)->i_sem,
  520. SINGLE_DEPTH_NESTING);
  521. page = f2fs_init_inode_metadata(inode, dir, fname, ipage);
  522. if (IS_ERR(page)) {
  523. err = PTR_ERR(page);
  524. goto fail;
  525. }
  526. }
  527. f2fs_wait_on_page_writeback(ipage, NODE, true, true);
  528. f2fs_update_dentry(ino, mode, &d, &fname->disk_name, fname->hash,
  529. bit_pos);
  530. set_page_dirty(ipage);
  531. /* we don't need to mark_inode_dirty now */
  532. if (inode) {
  533. f2fs_i_pino_write(inode, dir->i_ino);
  534. /* synchronize inode page's data from inode cache */
  535. if (is_inode_flag_set(inode, FI_NEW_INODE))
  536. f2fs_update_inode(inode, page);
  537. f2fs_put_page(page, 1);
  538. }
  539. f2fs_update_parent_metadata(dir, inode, 0);
  540. fail:
  541. if (inode)
  542. f2fs_up_write(&F2FS_I(inode)->i_sem);
  543. out:
  544. f2fs_put_page(ipage, 1);
  545. return err;
  546. }
  547. void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, struct page *page,
  548. struct inode *dir, struct inode *inode)
  549. {
  550. struct f2fs_dentry_ptr d;
  551. void *inline_dentry;
  552. int slots = GET_DENTRY_SLOTS(le16_to_cpu(dentry->name_len));
  553. unsigned int bit_pos;
  554. int i;
  555. lock_page(page);
  556. f2fs_wait_on_page_writeback(page, NODE, true, true);
  557. inline_dentry = inline_data_addr(dir, page);
  558. make_dentry_ptr_inline(dir, &d, inline_dentry);
  559. bit_pos = dentry - d.dentry;
  560. for (i = 0; i < slots; i++)
  561. __clear_bit_le(bit_pos + i, d.bitmap);
  562. set_page_dirty(page);
  563. f2fs_put_page(page, 1);
  564. dir->i_ctime = dir->i_mtime = current_time(dir);
  565. f2fs_mark_inode_dirty_sync(dir, false);
  566. if (inode)
  567. f2fs_drop_nlink(dir, inode);
  568. }
  569. bool f2fs_empty_inline_dir(struct inode *dir)
  570. {
  571. struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
  572. struct page *ipage;
  573. unsigned int bit_pos = 2;
  574. void *inline_dentry;
  575. struct f2fs_dentry_ptr d;
  576. ipage = f2fs_get_node_page(sbi, dir->i_ino);
  577. if (IS_ERR(ipage))
  578. return false;
  579. inline_dentry = inline_data_addr(dir, ipage);
  580. make_dentry_ptr_inline(dir, &d, inline_dentry);
  581. bit_pos = find_next_bit_le(d.bitmap, d.max, bit_pos);
  582. f2fs_put_page(ipage, 1);
  583. if (bit_pos < d.max)
  584. return false;
  585. return true;
  586. }
  587. int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
  588. struct fscrypt_str *fstr)
  589. {
  590. struct inode *inode = file_inode(file);
  591. struct page *ipage = NULL;
  592. struct f2fs_dentry_ptr d;
  593. void *inline_dentry = NULL;
  594. int err;
  595. make_dentry_ptr_inline(inode, &d, inline_dentry);
  596. if (ctx->pos == d.max)
  597. return 0;
  598. ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
  599. if (IS_ERR(ipage))
  600. return PTR_ERR(ipage);
  601. /*
  602. * f2fs_readdir was protected by inode.i_rwsem, it is safe to access
  603. * ipage without page's lock held.
  604. */
  605. unlock_page(ipage);
  606. inline_dentry = inline_data_addr(inode, ipage);
  607. make_dentry_ptr_inline(inode, &d, inline_dentry);
  608. err = f2fs_fill_dentries(ctx, &d, 0, fstr);
  609. if (!err)
  610. ctx->pos = d.max;
  611. f2fs_put_page(ipage, 0);
  612. return err < 0 ? err : 0;
  613. }
  614. int f2fs_inline_data_fiemap(struct inode *inode,
  615. struct fiemap_extent_info *fieinfo, __u64 start, __u64 len)
  616. {
  617. __u64 byteaddr, ilen;
  618. __u32 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED |
  619. FIEMAP_EXTENT_LAST;
  620. struct node_info ni;
  621. struct page *ipage;
  622. int err = 0;
  623. ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
  624. if (IS_ERR(ipage))
  625. return PTR_ERR(ipage);
  626. if ((S_ISREG(inode->i_mode) || S_ISLNK(inode->i_mode)) &&
  627. !f2fs_has_inline_data(inode)) {
  628. err = -EAGAIN;
  629. goto out;
  630. }
  631. if (S_ISDIR(inode->i_mode) && !f2fs_has_inline_dentry(inode)) {
  632. err = -EAGAIN;
  633. goto out;
  634. }
  635. ilen = min_t(size_t, MAX_INLINE_DATA(inode), i_size_read(inode));
  636. if (start >= ilen)
  637. goto out;
  638. if (start + len < ilen)
  639. ilen = start + len;
  640. ilen -= start;
  641. err = f2fs_get_node_info(F2FS_I_SB(inode), inode->i_ino, &ni, false);
  642. if (err)
  643. goto out;
  644. byteaddr = (__u64)ni.blk_addr << inode->i_sb->s_blocksize_bits;
  645. byteaddr += (char *)inline_data_addr(inode, ipage) -
  646. (char *)F2FS_INODE(ipage);
  647. err = fiemap_fill_next_extent(fieinfo, start, byteaddr, ilen, flags);
  648. trace_f2fs_fiemap(inode, start, byteaddr, ilen, flags, err);
  649. out:
  650. f2fs_put_page(ipage, 1);
  651. return err;
  652. }