delayed-inode.c 61 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * Copyright (C) 2011 Fujitsu. All rights reserved.
  4. * Written by Miao Xie <[email protected]>
  5. */
  6. #include <linux/slab.h>
  7. #include <linux/iversion.h>
  8. #include "misc.h"
  9. #include "delayed-inode.h"
  10. #include "disk-io.h"
  11. #include "transaction.h"
  12. #include "ctree.h"
  13. #include "qgroup.h"
  14. #include "locking.h"
  15. #include "inode-item.h"
  16. #define BTRFS_DELAYED_WRITEBACK 512
  17. #define BTRFS_DELAYED_BACKGROUND 128
  18. #define BTRFS_DELAYED_BATCH 16
  19. static struct kmem_cache *delayed_node_cache;
  20. int __init btrfs_delayed_inode_init(void)
  21. {
  22. delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
  23. sizeof(struct btrfs_delayed_node),
  24. 0,
  25. SLAB_MEM_SPREAD,
  26. NULL);
  27. if (!delayed_node_cache)
  28. return -ENOMEM;
  29. return 0;
  30. }
  31. void __cold btrfs_delayed_inode_exit(void)
  32. {
  33. kmem_cache_destroy(delayed_node_cache);
  34. }
  35. static inline void btrfs_init_delayed_node(
  36. struct btrfs_delayed_node *delayed_node,
  37. struct btrfs_root *root, u64 inode_id)
  38. {
  39. delayed_node->root = root;
  40. delayed_node->inode_id = inode_id;
  41. refcount_set(&delayed_node->refs, 0);
  42. delayed_node->ins_root = RB_ROOT_CACHED;
  43. delayed_node->del_root = RB_ROOT_CACHED;
  44. mutex_init(&delayed_node->mutex);
  45. INIT_LIST_HEAD(&delayed_node->n_list);
  46. INIT_LIST_HEAD(&delayed_node->p_list);
  47. }
  48. static struct btrfs_delayed_node *btrfs_get_delayed_node(
  49. struct btrfs_inode *btrfs_inode)
  50. {
  51. struct btrfs_root *root = btrfs_inode->root;
  52. u64 ino = btrfs_ino(btrfs_inode);
  53. struct btrfs_delayed_node *node;
  54. node = READ_ONCE(btrfs_inode->delayed_node);
  55. if (node) {
  56. refcount_inc(&node->refs);
  57. return node;
  58. }
  59. spin_lock(&root->inode_lock);
  60. node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
  61. if (node) {
  62. if (btrfs_inode->delayed_node) {
  63. refcount_inc(&node->refs); /* can be accessed */
  64. BUG_ON(btrfs_inode->delayed_node != node);
  65. spin_unlock(&root->inode_lock);
  66. return node;
  67. }
  68. /*
  69. * It's possible that we're racing into the middle of removing
  70. * this node from the radix tree. In this case, the refcount
  71. * was zero and it should never go back to one. Just return
  72. * NULL like it was never in the radix at all; our release
  73. * function is in the process of removing it.
  74. *
  75. * Some implementations of refcount_inc refuse to bump the
  76. * refcount once it has hit zero. If we don't do this dance
  77. * here, refcount_inc() may decide to just WARN_ONCE() instead
  78. * of actually bumping the refcount.
  79. *
  80. * If this node is properly in the radix, we want to bump the
  81. * refcount twice, once for the inode and once for this get
  82. * operation.
  83. */
  84. if (refcount_inc_not_zero(&node->refs)) {
  85. refcount_inc(&node->refs);
  86. btrfs_inode->delayed_node = node;
  87. } else {
  88. node = NULL;
  89. }
  90. spin_unlock(&root->inode_lock);
  91. return node;
  92. }
  93. spin_unlock(&root->inode_lock);
  94. return NULL;
  95. }
  96. /* Will return either the node or PTR_ERR(-ENOMEM) */
  97. static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
  98. struct btrfs_inode *btrfs_inode)
  99. {
  100. struct btrfs_delayed_node *node;
  101. struct btrfs_root *root = btrfs_inode->root;
  102. u64 ino = btrfs_ino(btrfs_inode);
  103. int ret;
  104. again:
  105. node = btrfs_get_delayed_node(btrfs_inode);
  106. if (node)
  107. return node;
  108. node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
  109. if (!node)
  110. return ERR_PTR(-ENOMEM);
  111. btrfs_init_delayed_node(node, root, ino);
  112. /* cached in the btrfs inode and can be accessed */
  113. refcount_set(&node->refs, 2);
  114. ret = radix_tree_preload(GFP_NOFS);
  115. if (ret) {
  116. kmem_cache_free(delayed_node_cache, node);
  117. return ERR_PTR(ret);
  118. }
  119. spin_lock(&root->inode_lock);
  120. ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
  121. if (ret == -EEXIST) {
  122. spin_unlock(&root->inode_lock);
  123. kmem_cache_free(delayed_node_cache, node);
  124. radix_tree_preload_end();
  125. goto again;
  126. }
  127. btrfs_inode->delayed_node = node;
  128. spin_unlock(&root->inode_lock);
  129. radix_tree_preload_end();
  130. return node;
  131. }
  132. /*
  133. * Call it when holding delayed_node->mutex
  134. *
  135. * If mod = 1, add this node into the prepared list.
  136. */
  137. static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
  138. struct btrfs_delayed_node *node,
  139. int mod)
  140. {
  141. spin_lock(&root->lock);
  142. if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
  143. if (!list_empty(&node->p_list))
  144. list_move_tail(&node->p_list, &root->prepare_list);
  145. else if (mod)
  146. list_add_tail(&node->p_list, &root->prepare_list);
  147. } else {
  148. list_add_tail(&node->n_list, &root->node_list);
  149. list_add_tail(&node->p_list, &root->prepare_list);
  150. refcount_inc(&node->refs); /* inserted into list */
  151. root->nodes++;
  152. set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
  153. }
  154. spin_unlock(&root->lock);
  155. }
  156. /* Call it when holding delayed_node->mutex */
  157. static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
  158. struct btrfs_delayed_node *node)
  159. {
  160. spin_lock(&root->lock);
  161. if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
  162. root->nodes--;
  163. refcount_dec(&node->refs); /* not in the list */
  164. list_del_init(&node->n_list);
  165. if (!list_empty(&node->p_list))
  166. list_del_init(&node->p_list);
  167. clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
  168. }
  169. spin_unlock(&root->lock);
  170. }
  171. static struct btrfs_delayed_node *btrfs_first_delayed_node(
  172. struct btrfs_delayed_root *delayed_root)
  173. {
  174. struct list_head *p;
  175. struct btrfs_delayed_node *node = NULL;
  176. spin_lock(&delayed_root->lock);
  177. if (list_empty(&delayed_root->node_list))
  178. goto out;
  179. p = delayed_root->node_list.next;
  180. node = list_entry(p, struct btrfs_delayed_node, n_list);
  181. refcount_inc(&node->refs);
  182. out:
  183. spin_unlock(&delayed_root->lock);
  184. return node;
  185. }
  186. static struct btrfs_delayed_node *btrfs_next_delayed_node(
  187. struct btrfs_delayed_node *node)
  188. {
  189. struct btrfs_delayed_root *delayed_root;
  190. struct list_head *p;
  191. struct btrfs_delayed_node *next = NULL;
  192. delayed_root = node->root->fs_info->delayed_root;
  193. spin_lock(&delayed_root->lock);
  194. if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
  195. /* not in the list */
  196. if (list_empty(&delayed_root->node_list))
  197. goto out;
  198. p = delayed_root->node_list.next;
  199. } else if (list_is_last(&node->n_list, &delayed_root->node_list))
  200. goto out;
  201. else
  202. p = node->n_list.next;
  203. next = list_entry(p, struct btrfs_delayed_node, n_list);
  204. refcount_inc(&next->refs);
  205. out:
  206. spin_unlock(&delayed_root->lock);
  207. return next;
  208. }
  209. static void __btrfs_release_delayed_node(
  210. struct btrfs_delayed_node *delayed_node,
  211. int mod)
  212. {
  213. struct btrfs_delayed_root *delayed_root;
  214. if (!delayed_node)
  215. return;
  216. delayed_root = delayed_node->root->fs_info->delayed_root;
  217. mutex_lock(&delayed_node->mutex);
  218. if (delayed_node->count)
  219. btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
  220. else
  221. btrfs_dequeue_delayed_node(delayed_root, delayed_node);
  222. mutex_unlock(&delayed_node->mutex);
  223. if (refcount_dec_and_test(&delayed_node->refs)) {
  224. struct btrfs_root *root = delayed_node->root;
  225. spin_lock(&root->inode_lock);
  226. /*
  227. * Once our refcount goes to zero, nobody is allowed to bump it
  228. * back up. We can delete it now.
  229. */
  230. ASSERT(refcount_read(&delayed_node->refs) == 0);
  231. radix_tree_delete(&root->delayed_nodes_tree,
  232. delayed_node->inode_id);
  233. spin_unlock(&root->inode_lock);
  234. kmem_cache_free(delayed_node_cache, delayed_node);
  235. }
  236. }
  237. static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
  238. {
  239. __btrfs_release_delayed_node(node, 0);
  240. }
  241. static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
  242. struct btrfs_delayed_root *delayed_root)
  243. {
  244. struct list_head *p;
  245. struct btrfs_delayed_node *node = NULL;
  246. spin_lock(&delayed_root->lock);
  247. if (list_empty(&delayed_root->prepare_list))
  248. goto out;
  249. p = delayed_root->prepare_list.next;
  250. list_del_init(p);
  251. node = list_entry(p, struct btrfs_delayed_node, p_list);
  252. refcount_inc(&node->refs);
  253. out:
  254. spin_unlock(&delayed_root->lock);
  255. return node;
  256. }
  257. static inline void btrfs_release_prepared_delayed_node(
  258. struct btrfs_delayed_node *node)
  259. {
  260. __btrfs_release_delayed_node(node, 1);
  261. }
  262. static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u16 data_len,
  263. struct btrfs_delayed_node *node,
  264. enum btrfs_delayed_item_type type)
  265. {
  266. struct btrfs_delayed_item *item;
  267. item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
  268. if (item) {
  269. item->data_len = data_len;
  270. item->type = type;
  271. item->bytes_reserved = 0;
  272. item->delayed_node = node;
  273. RB_CLEAR_NODE(&item->rb_node);
  274. INIT_LIST_HEAD(&item->log_list);
  275. item->logged = false;
  276. refcount_set(&item->refs, 1);
  277. }
  278. return item;
  279. }
  280. /*
  281. * __btrfs_lookup_delayed_item - look up the delayed item by key
  282. * @delayed_node: pointer to the delayed node
  283. * @index: the dir index value to lookup (offset of a dir index key)
  284. *
  285. * Note: if we don't find the right item, we will return the prev item and
  286. * the next item.
  287. */
  288. static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
  289. struct rb_root *root,
  290. u64 index)
  291. {
  292. struct rb_node *node = root->rb_node;
  293. struct btrfs_delayed_item *delayed_item = NULL;
  294. while (node) {
  295. delayed_item = rb_entry(node, struct btrfs_delayed_item,
  296. rb_node);
  297. if (delayed_item->index < index)
  298. node = node->rb_right;
  299. else if (delayed_item->index > index)
  300. node = node->rb_left;
  301. else
  302. return delayed_item;
  303. }
  304. return NULL;
  305. }
  306. static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
  307. struct btrfs_delayed_item *ins)
  308. {
  309. struct rb_node **p, *node;
  310. struct rb_node *parent_node = NULL;
  311. struct rb_root_cached *root;
  312. struct btrfs_delayed_item *item;
  313. bool leftmost = true;
  314. if (ins->type == BTRFS_DELAYED_INSERTION_ITEM)
  315. root = &delayed_node->ins_root;
  316. else
  317. root = &delayed_node->del_root;
  318. p = &root->rb_root.rb_node;
  319. node = &ins->rb_node;
  320. while (*p) {
  321. parent_node = *p;
  322. item = rb_entry(parent_node, struct btrfs_delayed_item,
  323. rb_node);
  324. if (item->index < ins->index) {
  325. p = &(*p)->rb_right;
  326. leftmost = false;
  327. } else if (item->index > ins->index) {
  328. p = &(*p)->rb_left;
  329. } else {
  330. return -EEXIST;
  331. }
  332. }
  333. rb_link_node(node, parent_node, p);
  334. rb_insert_color_cached(node, root, leftmost);
  335. if (ins->type == BTRFS_DELAYED_INSERTION_ITEM &&
  336. ins->index >= delayed_node->index_cnt)
  337. delayed_node->index_cnt = ins->index + 1;
  338. delayed_node->count++;
  339. atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
  340. return 0;
  341. }
  342. static void finish_one_item(struct btrfs_delayed_root *delayed_root)
  343. {
  344. int seq = atomic_inc_return(&delayed_root->items_seq);
  345. /* atomic_dec_return implies a barrier */
  346. if ((atomic_dec_return(&delayed_root->items) <
  347. BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0))
  348. cond_wake_up_nomb(&delayed_root->wait);
  349. }
  350. static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
  351. {
  352. struct btrfs_delayed_node *delayed_node = delayed_item->delayed_node;
  353. struct rb_root_cached *root;
  354. struct btrfs_delayed_root *delayed_root;
  355. /* Not inserted, ignore it. */
  356. if (RB_EMPTY_NODE(&delayed_item->rb_node))
  357. return;
  358. /* If it's in a rbtree, then we need to have delayed node locked. */
  359. lockdep_assert_held(&delayed_node->mutex);
  360. delayed_root = delayed_node->root->fs_info->delayed_root;
  361. BUG_ON(!delayed_root);
  362. if (delayed_item->type == BTRFS_DELAYED_INSERTION_ITEM)
  363. root = &delayed_node->ins_root;
  364. else
  365. root = &delayed_node->del_root;
  366. rb_erase_cached(&delayed_item->rb_node, root);
  367. RB_CLEAR_NODE(&delayed_item->rb_node);
  368. delayed_node->count--;
  369. finish_one_item(delayed_root);
  370. }
  371. static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
  372. {
  373. if (item) {
  374. __btrfs_remove_delayed_item(item);
  375. if (refcount_dec_and_test(&item->refs))
  376. kfree(item);
  377. }
  378. }
  379. static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
  380. struct btrfs_delayed_node *delayed_node)
  381. {
  382. struct rb_node *p;
  383. struct btrfs_delayed_item *item = NULL;
  384. p = rb_first_cached(&delayed_node->ins_root);
  385. if (p)
  386. item = rb_entry(p, struct btrfs_delayed_item, rb_node);
  387. return item;
  388. }
  389. static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
  390. struct btrfs_delayed_node *delayed_node)
  391. {
  392. struct rb_node *p;
  393. struct btrfs_delayed_item *item = NULL;
  394. p = rb_first_cached(&delayed_node->del_root);
  395. if (p)
  396. item = rb_entry(p, struct btrfs_delayed_item, rb_node);
  397. return item;
  398. }
  399. static struct btrfs_delayed_item *__btrfs_next_delayed_item(
  400. struct btrfs_delayed_item *item)
  401. {
  402. struct rb_node *p;
  403. struct btrfs_delayed_item *next = NULL;
  404. p = rb_next(&item->rb_node);
  405. if (p)
  406. next = rb_entry(p, struct btrfs_delayed_item, rb_node);
  407. return next;
  408. }
  409. static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
  410. struct btrfs_delayed_item *item)
  411. {
  412. struct btrfs_block_rsv *src_rsv;
  413. struct btrfs_block_rsv *dst_rsv;
  414. struct btrfs_fs_info *fs_info = trans->fs_info;
  415. u64 num_bytes;
  416. int ret;
  417. if (!trans->bytes_reserved)
  418. return 0;
  419. src_rsv = trans->block_rsv;
  420. dst_rsv = &fs_info->delayed_block_rsv;
  421. num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
  422. /*
  423. * Here we migrate space rsv from transaction rsv, since have already
  424. * reserved space when starting a transaction. So no need to reserve
  425. * qgroup space here.
  426. */
  427. ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
  428. if (!ret) {
  429. trace_btrfs_space_reservation(fs_info, "delayed_item",
  430. item->delayed_node->inode_id,
  431. num_bytes, 1);
  432. /*
  433. * For insertions we track reserved metadata space by accounting
  434. * for the number of leaves that will be used, based on the delayed
  435. * node's index_items_size field.
  436. */
  437. if (item->type == BTRFS_DELAYED_DELETION_ITEM)
  438. item->bytes_reserved = num_bytes;
  439. }
  440. return ret;
  441. }
  442. static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
  443. struct btrfs_delayed_item *item)
  444. {
  445. struct btrfs_block_rsv *rsv;
  446. struct btrfs_fs_info *fs_info = root->fs_info;
  447. if (!item->bytes_reserved)
  448. return;
  449. rsv = &fs_info->delayed_block_rsv;
  450. /*
  451. * Check btrfs_delayed_item_reserve_metadata() to see why we don't need
  452. * to release/reserve qgroup space.
  453. */
  454. trace_btrfs_space_reservation(fs_info, "delayed_item",
  455. item->delayed_node->inode_id,
  456. item->bytes_reserved, 0);
  457. btrfs_block_rsv_release(fs_info, rsv, item->bytes_reserved, NULL);
  458. }
  459. static void btrfs_delayed_item_release_leaves(struct btrfs_delayed_node *node,
  460. unsigned int num_leaves)
  461. {
  462. struct btrfs_fs_info *fs_info = node->root->fs_info;
  463. const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, num_leaves);
  464. /* There are no space reservations during log replay, bail out. */
  465. if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
  466. return;
  467. trace_btrfs_space_reservation(fs_info, "delayed_item", node->inode_id,
  468. bytes, 0);
  469. btrfs_block_rsv_release(fs_info, &fs_info->delayed_block_rsv, bytes, NULL);
  470. }
  471. static int btrfs_delayed_inode_reserve_metadata(
  472. struct btrfs_trans_handle *trans,
  473. struct btrfs_root *root,
  474. struct btrfs_delayed_node *node)
  475. {
  476. struct btrfs_fs_info *fs_info = root->fs_info;
  477. struct btrfs_block_rsv *src_rsv;
  478. struct btrfs_block_rsv *dst_rsv;
  479. u64 num_bytes;
  480. int ret;
  481. src_rsv = trans->block_rsv;
  482. dst_rsv = &fs_info->delayed_block_rsv;
  483. num_bytes = btrfs_calc_metadata_size(fs_info, 1);
  484. /*
  485. * btrfs_dirty_inode will update the inode under btrfs_join_transaction
  486. * which doesn't reserve space for speed. This is a problem since we
  487. * still need to reserve space for this update, so try to reserve the
  488. * space.
  489. *
  490. * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
  491. * we always reserve enough to update the inode item.
  492. */
  493. if (!src_rsv || (!trans->bytes_reserved &&
  494. src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
  495. ret = btrfs_qgroup_reserve_meta(root, num_bytes,
  496. BTRFS_QGROUP_RSV_META_PREALLOC, true);
  497. if (ret < 0)
  498. return ret;
  499. ret = btrfs_block_rsv_add(fs_info, dst_rsv, num_bytes,
  500. BTRFS_RESERVE_NO_FLUSH);
  501. /* NO_FLUSH could only fail with -ENOSPC */
  502. ASSERT(ret == 0 || ret == -ENOSPC);
  503. if (ret)
  504. btrfs_qgroup_free_meta_prealloc(root, num_bytes);
  505. } else {
  506. ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
  507. }
  508. if (!ret) {
  509. trace_btrfs_space_reservation(fs_info, "delayed_inode",
  510. node->inode_id, num_bytes, 1);
  511. node->bytes_reserved = num_bytes;
  512. }
  513. return ret;
  514. }
  515. static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
  516. struct btrfs_delayed_node *node,
  517. bool qgroup_free)
  518. {
  519. struct btrfs_block_rsv *rsv;
  520. if (!node->bytes_reserved)
  521. return;
  522. rsv = &fs_info->delayed_block_rsv;
  523. trace_btrfs_space_reservation(fs_info, "delayed_inode",
  524. node->inode_id, node->bytes_reserved, 0);
  525. btrfs_block_rsv_release(fs_info, rsv, node->bytes_reserved, NULL);
  526. if (qgroup_free)
  527. btrfs_qgroup_free_meta_prealloc(node->root,
  528. node->bytes_reserved);
  529. else
  530. btrfs_qgroup_convert_reserved_meta(node->root,
  531. node->bytes_reserved);
  532. node->bytes_reserved = 0;
  533. }
  534. /*
  535. * Insert a single delayed item or a batch of delayed items, as many as possible
  536. * that fit in a leaf. The delayed items (dir index keys) are sorted by their key
  537. * in the rbtree, and if there's a gap between two consecutive dir index items,
  538. * then it means at some point we had delayed dir indexes to add but they got
  539. * removed (by btrfs_delete_delayed_dir_index()) before we attempted to flush them
  540. * into the subvolume tree. Dir index keys also have their offsets coming from a
  541. * monotonically increasing counter, so we can't get new keys with an offset that
  542. * fits within a gap between delayed dir index items.
  543. */
  544. static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
  545. struct btrfs_root *root,
  546. struct btrfs_path *path,
  547. struct btrfs_delayed_item *first_item)
  548. {
  549. struct btrfs_fs_info *fs_info = root->fs_info;
  550. struct btrfs_delayed_node *node = first_item->delayed_node;
  551. LIST_HEAD(item_list);
  552. struct btrfs_delayed_item *curr;
  553. struct btrfs_delayed_item *next;
  554. const int max_size = BTRFS_LEAF_DATA_SIZE(fs_info);
  555. struct btrfs_item_batch batch;
  556. struct btrfs_key first_key;
  557. const u32 first_data_size = first_item->data_len;
  558. int total_size;
  559. char *ins_data = NULL;
  560. int ret;
  561. bool continuous_keys_only = false;
  562. lockdep_assert_held(&node->mutex);
  563. /*
  564. * During normal operation the delayed index offset is continuously
  565. * increasing, so we can batch insert all items as there will not be any
  566. * overlapping keys in the tree.
  567. *
  568. * The exception to this is log replay, where we may have interleaved
  569. * offsets in the tree, so our batch needs to be continuous keys only in
  570. * order to ensure we do not end up with out of order items in our leaf.
  571. */
  572. if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
  573. continuous_keys_only = true;
  574. /*
  575. * For delayed items to insert, we track reserved metadata bytes based
  576. * on the number of leaves that we will use.
  577. * See btrfs_insert_delayed_dir_index() and
  578. * btrfs_delayed_item_reserve_metadata()).
  579. */
  580. ASSERT(first_item->bytes_reserved == 0);
  581. list_add_tail(&first_item->tree_list, &item_list);
  582. batch.total_data_size = first_data_size;
  583. batch.nr = 1;
  584. total_size = first_data_size + sizeof(struct btrfs_item);
  585. curr = first_item;
  586. while (true) {
  587. int next_size;
  588. next = __btrfs_next_delayed_item(curr);
  589. if (!next)
  590. break;
  591. /*
  592. * We cannot allow gaps in the key space if we're doing log
  593. * replay.
  594. */
  595. if (continuous_keys_only && (next->index != curr->index + 1))
  596. break;
  597. ASSERT(next->bytes_reserved == 0);
  598. next_size = next->data_len + sizeof(struct btrfs_item);
  599. if (total_size + next_size > max_size)
  600. break;
  601. list_add_tail(&next->tree_list, &item_list);
  602. batch.nr++;
  603. total_size += next_size;
  604. batch.total_data_size += next->data_len;
  605. curr = next;
  606. }
  607. if (batch.nr == 1) {
  608. first_key.objectid = node->inode_id;
  609. first_key.type = BTRFS_DIR_INDEX_KEY;
  610. first_key.offset = first_item->index;
  611. batch.keys = &first_key;
  612. batch.data_sizes = &first_data_size;
  613. } else {
  614. struct btrfs_key *ins_keys;
  615. u32 *ins_sizes;
  616. int i = 0;
  617. ins_data = kmalloc(batch.nr * sizeof(u32) +
  618. batch.nr * sizeof(struct btrfs_key), GFP_NOFS);
  619. if (!ins_data) {
  620. ret = -ENOMEM;
  621. goto out;
  622. }
  623. ins_sizes = (u32 *)ins_data;
  624. ins_keys = (struct btrfs_key *)(ins_data + batch.nr * sizeof(u32));
  625. batch.keys = ins_keys;
  626. batch.data_sizes = ins_sizes;
  627. list_for_each_entry(curr, &item_list, tree_list) {
  628. ins_keys[i].objectid = node->inode_id;
  629. ins_keys[i].type = BTRFS_DIR_INDEX_KEY;
  630. ins_keys[i].offset = curr->index;
  631. ins_sizes[i] = curr->data_len;
  632. i++;
  633. }
  634. }
  635. ret = btrfs_insert_empty_items(trans, root, path, &batch);
  636. if (ret)
  637. goto out;
  638. list_for_each_entry(curr, &item_list, tree_list) {
  639. char *data_ptr;
  640. data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char);
  641. write_extent_buffer(path->nodes[0], &curr->data,
  642. (unsigned long)data_ptr, curr->data_len);
  643. path->slots[0]++;
  644. }
  645. /*
  646. * Now release our path before releasing the delayed items and their
  647. * metadata reservations, so that we don't block other tasks for more
  648. * time than needed.
  649. */
  650. btrfs_release_path(path);
  651. ASSERT(node->index_item_leaves > 0);
  652. /*
  653. * For normal operations we will batch an entire leaf's worth of delayed
  654. * items, so if there are more items to process we can decrement
  655. * index_item_leaves by 1 as we inserted 1 leaf's worth of items.
  656. *
  657. * However for log replay we may not have inserted an entire leaf's
  658. * worth of items, we may have not had continuous items, so decrementing
  659. * here would mess up the index_item_leaves accounting. For this case
  660. * only clean up the accounting when there are no items left.
  661. */
  662. if (next && !continuous_keys_only) {
  663. /*
  664. * We inserted one batch of items into a leaf a there are more
  665. * items to flush in a future batch, now release one unit of
  666. * metadata space from the delayed block reserve, corresponding
  667. * the leaf we just flushed to.
  668. */
  669. btrfs_delayed_item_release_leaves(node, 1);
  670. node->index_item_leaves--;
  671. } else if (!next) {
  672. /*
  673. * There are no more items to insert. We can have a number of
  674. * reserved leaves > 1 here - this happens when many dir index
  675. * items are added and then removed before they are flushed (file
  676. * names with a very short life, never span a transaction). So
  677. * release all remaining leaves.
  678. */
  679. btrfs_delayed_item_release_leaves(node, node->index_item_leaves);
  680. node->index_item_leaves = 0;
  681. }
  682. list_for_each_entry_safe(curr, next, &item_list, tree_list) {
  683. list_del(&curr->tree_list);
  684. btrfs_release_delayed_item(curr);
  685. }
  686. out:
  687. kfree(ins_data);
  688. return ret;
  689. }
  690. static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
  691. struct btrfs_path *path,
  692. struct btrfs_root *root,
  693. struct btrfs_delayed_node *node)
  694. {
  695. int ret = 0;
  696. while (ret == 0) {
  697. struct btrfs_delayed_item *curr;
  698. mutex_lock(&node->mutex);
  699. curr = __btrfs_first_delayed_insertion_item(node);
  700. if (!curr) {
  701. mutex_unlock(&node->mutex);
  702. break;
  703. }
  704. ret = btrfs_insert_delayed_item(trans, root, path, curr);
  705. mutex_unlock(&node->mutex);
  706. }
  707. return ret;
  708. }
  709. static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
  710. struct btrfs_root *root,
  711. struct btrfs_path *path,
  712. struct btrfs_delayed_item *item)
  713. {
  714. const u64 ino = item->delayed_node->inode_id;
  715. struct btrfs_fs_info *fs_info = root->fs_info;
  716. struct btrfs_delayed_item *curr, *next;
  717. struct extent_buffer *leaf = path->nodes[0];
  718. LIST_HEAD(batch_list);
  719. int nitems, slot, last_slot;
  720. int ret;
  721. u64 total_reserved_size = item->bytes_reserved;
  722. ASSERT(leaf != NULL);
  723. slot = path->slots[0];
  724. last_slot = btrfs_header_nritems(leaf) - 1;
  725. /*
  726. * Our caller always gives us a path pointing to an existing item, so
  727. * this can not happen.
  728. */
  729. ASSERT(slot <= last_slot);
  730. if (WARN_ON(slot > last_slot))
  731. return -ENOENT;
  732. nitems = 1;
  733. curr = item;
  734. list_add_tail(&curr->tree_list, &batch_list);
  735. /*
  736. * Keep checking if the next delayed item matches the next item in the
  737. * leaf - if so, we can add it to the batch of items to delete from the
  738. * leaf.
  739. */
  740. while (slot < last_slot) {
  741. struct btrfs_key key;
  742. next = __btrfs_next_delayed_item(curr);
  743. if (!next)
  744. break;
  745. slot++;
  746. btrfs_item_key_to_cpu(leaf, &key, slot);
  747. if (key.objectid != ino ||
  748. key.type != BTRFS_DIR_INDEX_KEY ||
  749. key.offset != next->index)
  750. break;
  751. nitems++;
  752. curr = next;
  753. list_add_tail(&curr->tree_list, &batch_list);
  754. total_reserved_size += curr->bytes_reserved;
  755. }
  756. ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
  757. if (ret)
  758. return ret;
  759. /* In case of BTRFS_FS_LOG_RECOVERING items won't have reserved space */
  760. if (total_reserved_size > 0) {
  761. /*
  762. * Check btrfs_delayed_item_reserve_metadata() to see why we
  763. * don't need to release/reserve qgroup space.
  764. */
  765. trace_btrfs_space_reservation(fs_info, "delayed_item", ino,
  766. total_reserved_size, 0);
  767. btrfs_block_rsv_release(fs_info, &fs_info->delayed_block_rsv,
  768. total_reserved_size, NULL);
  769. }
  770. list_for_each_entry_safe(curr, next, &batch_list, tree_list) {
  771. list_del(&curr->tree_list);
  772. btrfs_release_delayed_item(curr);
  773. }
  774. return 0;
  775. }
  776. static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
  777. struct btrfs_path *path,
  778. struct btrfs_root *root,
  779. struct btrfs_delayed_node *node)
  780. {
  781. struct btrfs_key key;
  782. int ret = 0;
  783. key.objectid = node->inode_id;
  784. key.type = BTRFS_DIR_INDEX_KEY;
  785. while (ret == 0) {
  786. struct btrfs_delayed_item *item;
  787. mutex_lock(&node->mutex);
  788. item = __btrfs_first_delayed_deletion_item(node);
  789. if (!item) {
  790. mutex_unlock(&node->mutex);
  791. break;
  792. }
  793. key.offset = item->index;
  794. ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
  795. if (ret > 0) {
  796. /*
  797. * There's no matching item in the leaf. This means we
  798. * have already deleted this item in a past run of the
  799. * delayed items. We ignore errors when running delayed
  800. * items from an async context, through a work queue job
  801. * running btrfs_async_run_delayed_root(), and don't
  802. * release delayed items that failed to complete. This
  803. * is because we will retry later, and at transaction
  804. * commit time we always run delayed items and will
  805. * then deal with errors if they fail to run again.
  806. *
  807. * So just release delayed items for which we can't find
  808. * an item in the tree, and move to the next item.
  809. */
  810. btrfs_release_path(path);
  811. btrfs_release_delayed_item(item);
  812. ret = 0;
  813. } else if (ret == 0) {
  814. ret = btrfs_batch_delete_items(trans, root, path, item);
  815. btrfs_release_path(path);
  816. }
  817. /*
  818. * We unlock and relock on each iteration, this is to prevent
  819. * blocking other tasks for too long while we are being run from
  820. * the async context (work queue job). Those tasks are typically
  821. * running system calls like creat/mkdir/rename/unlink/etc which
  822. * need to add delayed items to this delayed node.
  823. */
  824. mutex_unlock(&node->mutex);
  825. }
  826. return ret;
  827. }
  828. static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
  829. {
  830. struct btrfs_delayed_root *delayed_root;
  831. if (delayed_node &&
  832. test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
  833. BUG_ON(!delayed_node->root);
  834. clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
  835. delayed_node->count--;
  836. delayed_root = delayed_node->root->fs_info->delayed_root;
  837. finish_one_item(delayed_root);
  838. }
  839. }
  840. static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
  841. {
  842. if (test_and_clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) {
  843. struct btrfs_delayed_root *delayed_root;
  844. ASSERT(delayed_node->root);
  845. delayed_node->count--;
  846. delayed_root = delayed_node->root->fs_info->delayed_root;
  847. finish_one_item(delayed_root);
  848. }
  849. }
  850. static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
  851. struct btrfs_root *root,
  852. struct btrfs_path *path,
  853. struct btrfs_delayed_node *node)
  854. {
  855. struct btrfs_fs_info *fs_info = root->fs_info;
  856. struct btrfs_key key;
  857. struct btrfs_inode_item *inode_item;
  858. struct extent_buffer *leaf;
  859. int mod;
  860. int ret;
  861. key.objectid = node->inode_id;
  862. key.type = BTRFS_INODE_ITEM_KEY;
  863. key.offset = 0;
  864. if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
  865. mod = -1;
  866. else
  867. mod = 1;
  868. ret = btrfs_lookup_inode(trans, root, path, &key, mod);
  869. if (ret > 0)
  870. ret = -ENOENT;
  871. if (ret < 0)
  872. goto out;
  873. leaf = path->nodes[0];
  874. inode_item = btrfs_item_ptr(leaf, path->slots[0],
  875. struct btrfs_inode_item);
  876. write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
  877. sizeof(struct btrfs_inode_item));
  878. btrfs_mark_buffer_dirty(leaf);
  879. if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
  880. goto out;
  881. path->slots[0]++;
  882. if (path->slots[0] >= btrfs_header_nritems(leaf))
  883. goto search;
  884. again:
  885. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  886. if (key.objectid != node->inode_id)
  887. goto out;
  888. if (key.type != BTRFS_INODE_REF_KEY &&
  889. key.type != BTRFS_INODE_EXTREF_KEY)
  890. goto out;
  891. /*
  892. * Delayed iref deletion is for the inode who has only one link,
  893. * so there is only one iref. The case that several irefs are
  894. * in the same item doesn't exist.
  895. */
  896. btrfs_del_item(trans, root, path);
  897. out:
  898. btrfs_release_delayed_iref(node);
  899. btrfs_release_path(path);
  900. err_out:
  901. btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0));
  902. btrfs_release_delayed_inode(node);
  903. /*
  904. * If we fail to update the delayed inode we need to abort the
  905. * transaction, because we could leave the inode with the improper
  906. * counts behind.
  907. */
  908. if (ret && ret != -ENOENT)
  909. btrfs_abort_transaction(trans, ret);
  910. return ret;
  911. search:
  912. btrfs_release_path(path);
  913. key.type = BTRFS_INODE_EXTREF_KEY;
  914. key.offset = -1;
  915. ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
  916. if (ret < 0)
  917. goto err_out;
  918. ASSERT(ret);
  919. ret = 0;
  920. leaf = path->nodes[0];
  921. path->slots[0]--;
  922. goto again;
  923. }
  924. static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
  925. struct btrfs_root *root,
  926. struct btrfs_path *path,
  927. struct btrfs_delayed_node *node)
  928. {
  929. int ret;
  930. mutex_lock(&node->mutex);
  931. if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
  932. mutex_unlock(&node->mutex);
  933. return 0;
  934. }
  935. ret = __btrfs_update_delayed_inode(trans, root, path, node);
  936. mutex_unlock(&node->mutex);
  937. return ret;
  938. }
  939. static inline int
  940. __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
  941. struct btrfs_path *path,
  942. struct btrfs_delayed_node *node)
  943. {
  944. int ret;
  945. ret = btrfs_insert_delayed_items(trans, path, node->root, node);
  946. if (ret)
  947. return ret;
  948. ret = btrfs_delete_delayed_items(trans, path, node->root, node);
  949. if (ret)
  950. return ret;
  951. ret = btrfs_update_delayed_inode(trans, node->root, path, node);
  952. return ret;
  953. }
  954. /*
  955. * Called when committing the transaction.
  956. * Returns 0 on success.
  957. * Returns < 0 on error and returns with an aborted transaction with any
  958. * outstanding delayed items cleaned up.
  959. */
  960. static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr)
  961. {
  962. struct btrfs_fs_info *fs_info = trans->fs_info;
  963. struct btrfs_delayed_root *delayed_root;
  964. struct btrfs_delayed_node *curr_node, *prev_node;
  965. struct btrfs_path *path;
  966. struct btrfs_block_rsv *block_rsv;
  967. int ret = 0;
  968. bool count = (nr > 0);
  969. if (TRANS_ABORTED(trans))
  970. return -EIO;
  971. path = btrfs_alloc_path();
  972. if (!path)
  973. return -ENOMEM;
  974. block_rsv = trans->block_rsv;
  975. trans->block_rsv = &fs_info->delayed_block_rsv;
  976. delayed_root = fs_info->delayed_root;
  977. curr_node = btrfs_first_delayed_node(delayed_root);
  978. while (curr_node && (!count || nr--)) {
  979. ret = __btrfs_commit_inode_delayed_items(trans, path,
  980. curr_node);
  981. if (ret) {
  982. btrfs_abort_transaction(trans, ret);
  983. break;
  984. }
  985. prev_node = curr_node;
  986. curr_node = btrfs_next_delayed_node(curr_node);
  987. /*
  988. * See the comment below about releasing path before releasing
  989. * node. If the commit of delayed items was successful the path
  990. * should always be released, but in case of an error, it may
  991. * point to locked extent buffers (a leaf at the very least).
  992. */
  993. ASSERT(path->nodes[0] == NULL);
  994. btrfs_release_delayed_node(prev_node);
  995. }
  996. /*
  997. * Release the path to avoid a potential deadlock and lockdep splat when
  998. * releasing the delayed node, as that requires taking the delayed node's
  999. * mutex. If another task starts running delayed items before we take
  1000. * the mutex, it will first lock the mutex and then it may try to lock
  1001. * the same btree path (leaf).
  1002. */
  1003. btrfs_free_path(path);
  1004. if (curr_node)
  1005. btrfs_release_delayed_node(curr_node);
  1006. trans->block_rsv = block_rsv;
  1007. return ret;
  1008. }
  1009. int btrfs_run_delayed_items(struct btrfs_trans_handle *trans)
  1010. {
  1011. return __btrfs_run_delayed_items(trans, -1);
  1012. }
  1013. int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr)
  1014. {
  1015. return __btrfs_run_delayed_items(trans, nr);
  1016. }
  1017. int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
  1018. struct btrfs_inode *inode)
  1019. {
  1020. struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
  1021. struct btrfs_path *path;
  1022. struct btrfs_block_rsv *block_rsv;
  1023. int ret;
  1024. if (!delayed_node)
  1025. return 0;
  1026. mutex_lock(&delayed_node->mutex);
  1027. if (!delayed_node->count) {
  1028. mutex_unlock(&delayed_node->mutex);
  1029. btrfs_release_delayed_node(delayed_node);
  1030. return 0;
  1031. }
  1032. mutex_unlock(&delayed_node->mutex);
  1033. path = btrfs_alloc_path();
  1034. if (!path) {
  1035. btrfs_release_delayed_node(delayed_node);
  1036. return -ENOMEM;
  1037. }
  1038. block_rsv = trans->block_rsv;
  1039. trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
  1040. ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
  1041. btrfs_release_delayed_node(delayed_node);
  1042. btrfs_free_path(path);
  1043. trans->block_rsv = block_rsv;
  1044. return ret;
  1045. }
  1046. int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode)
  1047. {
  1048. struct btrfs_fs_info *fs_info = inode->root->fs_info;
  1049. struct btrfs_trans_handle *trans;
  1050. struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
  1051. struct btrfs_path *path;
  1052. struct btrfs_block_rsv *block_rsv;
  1053. int ret;
  1054. if (!delayed_node)
  1055. return 0;
  1056. mutex_lock(&delayed_node->mutex);
  1057. if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
  1058. mutex_unlock(&delayed_node->mutex);
  1059. btrfs_release_delayed_node(delayed_node);
  1060. return 0;
  1061. }
  1062. mutex_unlock(&delayed_node->mutex);
  1063. trans = btrfs_join_transaction(delayed_node->root);
  1064. if (IS_ERR(trans)) {
  1065. ret = PTR_ERR(trans);
  1066. goto out;
  1067. }
  1068. path = btrfs_alloc_path();
  1069. if (!path) {
  1070. ret = -ENOMEM;
  1071. goto trans_out;
  1072. }
  1073. block_rsv = trans->block_rsv;
  1074. trans->block_rsv = &fs_info->delayed_block_rsv;
  1075. mutex_lock(&delayed_node->mutex);
  1076. if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
  1077. ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
  1078. path, delayed_node);
  1079. else
  1080. ret = 0;
  1081. mutex_unlock(&delayed_node->mutex);
  1082. btrfs_free_path(path);
  1083. trans->block_rsv = block_rsv;
  1084. trans_out:
  1085. btrfs_end_transaction(trans);
  1086. btrfs_btree_balance_dirty(fs_info);
  1087. out:
  1088. btrfs_release_delayed_node(delayed_node);
  1089. return ret;
  1090. }
  1091. void btrfs_remove_delayed_node(struct btrfs_inode *inode)
  1092. {
  1093. struct btrfs_delayed_node *delayed_node;
  1094. delayed_node = READ_ONCE(inode->delayed_node);
  1095. if (!delayed_node)
  1096. return;
  1097. inode->delayed_node = NULL;
  1098. btrfs_release_delayed_node(delayed_node);
  1099. }
  1100. struct btrfs_async_delayed_work {
  1101. struct btrfs_delayed_root *delayed_root;
  1102. int nr;
  1103. struct btrfs_work work;
  1104. };
  1105. static void btrfs_async_run_delayed_root(struct btrfs_work *work)
  1106. {
  1107. struct btrfs_async_delayed_work *async_work;
  1108. struct btrfs_delayed_root *delayed_root;
  1109. struct btrfs_trans_handle *trans;
  1110. struct btrfs_path *path;
  1111. struct btrfs_delayed_node *delayed_node = NULL;
  1112. struct btrfs_root *root;
  1113. struct btrfs_block_rsv *block_rsv;
  1114. int total_done = 0;
  1115. async_work = container_of(work, struct btrfs_async_delayed_work, work);
  1116. delayed_root = async_work->delayed_root;
  1117. path = btrfs_alloc_path();
  1118. if (!path)
  1119. goto out;
  1120. do {
  1121. if (atomic_read(&delayed_root->items) <
  1122. BTRFS_DELAYED_BACKGROUND / 2)
  1123. break;
  1124. delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
  1125. if (!delayed_node)
  1126. break;
  1127. root = delayed_node->root;
  1128. trans = btrfs_join_transaction(root);
  1129. if (IS_ERR(trans)) {
  1130. btrfs_release_path(path);
  1131. btrfs_release_prepared_delayed_node(delayed_node);
  1132. total_done++;
  1133. continue;
  1134. }
  1135. block_rsv = trans->block_rsv;
  1136. trans->block_rsv = &root->fs_info->delayed_block_rsv;
  1137. __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
  1138. trans->block_rsv = block_rsv;
  1139. btrfs_end_transaction(trans);
  1140. btrfs_btree_balance_dirty_nodelay(root->fs_info);
  1141. btrfs_release_path(path);
  1142. btrfs_release_prepared_delayed_node(delayed_node);
  1143. total_done++;
  1144. } while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK)
  1145. || total_done < async_work->nr);
  1146. btrfs_free_path(path);
  1147. out:
  1148. wake_up(&delayed_root->wait);
  1149. kfree(async_work);
  1150. }
  1151. static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
  1152. struct btrfs_fs_info *fs_info, int nr)
  1153. {
  1154. struct btrfs_async_delayed_work *async_work;
  1155. async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
  1156. if (!async_work)
  1157. return -ENOMEM;
  1158. async_work->delayed_root = delayed_root;
  1159. btrfs_init_work(&async_work->work, btrfs_async_run_delayed_root, NULL,
  1160. NULL);
  1161. async_work->nr = nr;
  1162. btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
  1163. return 0;
  1164. }
  1165. void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
  1166. {
  1167. WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root));
  1168. }
  1169. static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
  1170. {
  1171. int val = atomic_read(&delayed_root->items_seq);
  1172. if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
  1173. return 1;
  1174. if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
  1175. return 1;
  1176. return 0;
  1177. }
  1178. void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
  1179. {
  1180. struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
  1181. if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) ||
  1182. btrfs_workqueue_normal_congested(fs_info->delayed_workers))
  1183. return;
  1184. if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
  1185. int seq;
  1186. int ret;
  1187. seq = atomic_read(&delayed_root->items_seq);
  1188. ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
  1189. if (ret)
  1190. return;
  1191. wait_event_interruptible(delayed_root->wait,
  1192. could_end_wait(delayed_root, seq));
  1193. return;
  1194. }
  1195. btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
  1196. }
  1197. static void btrfs_release_dir_index_item_space(struct btrfs_trans_handle *trans)
  1198. {
  1199. struct btrfs_fs_info *fs_info = trans->fs_info;
  1200. const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
  1201. if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
  1202. return;
  1203. /*
  1204. * Adding the new dir index item does not require touching another
  1205. * leaf, so we can release 1 unit of metadata that was previously
  1206. * reserved when starting the transaction. This applies only to
  1207. * the case where we had a transaction start and excludes the
  1208. * transaction join case (when replaying log trees).
  1209. */
  1210. trace_btrfs_space_reservation(fs_info, "transaction",
  1211. trans->transid, bytes, 0);
  1212. btrfs_block_rsv_release(fs_info, trans->block_rsv, bytes, NULL);
  1213. ASSERT(trans->bytes_reserved >= bytes);
  1214. trans->bytes_reserved -= bytes;
  1215. }
  1216. /* Will return 0, -ENOMEM or -EEXIST (index number collision, unexpected). */
  1217. int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
  1218. const char *name, int name_len,
  1219. struct btrfs_inode *dir,
  1220. struct btrfs_disk_key *disk_key, u8 type,
  1221. u64 index)
  1222. {
  1223. struct btrfs_fs_info *fs_info = trans->fs_info;
  1224. const unsigned int leaf_data_size = BTRFS_LEAF_DATA_SIZE(fs_info);
  1225. struct btrfs_delayed_node *delayed_node;
  1226. struct btrfs_delayed_item *delayed_item;
  1227. struct btrfs_dir_item *dir_item;
  1228. bool reserve_leaf_space;
  1229. u32 data_len;
  1230. int ret;
  1231. delayed_node = btrfs_get_or_create_delayed_node(dir);
  1232. if (IS_ERR(delayed_node))
  1233. return PTR_ERR(delayed_node);
  1234. delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len,
  1235. delayed_node,
  1236. BTRFS_DELAYED_INSERTION_ITEM);
  1237. if (!delayed_item) {
  1238. ret = -ENOMEM;
  1239. goto release_node;
  1240. }
  1241. delayed_item->index = index;
  1242. dir_item = (struct btrfs_dir_item *)delayed_item->data;
  1243. dir_item->location = *disk_key;
  1244. btrfs_set_stack_dir_transid(dir_item, trans->transid);
  1245. btrfs_set_stack_dir_data_len(dir_item, 0);
  1246. btrfs_set_stack_dir_name_len(dir_item, name_len);
  1247. btrfs_set_stack_dir_type(dir_item, type);
  1248. memcpy((char *)(dir_item + 1), name, name_len);
  1249. data_len = delayed_item->data_len + sizeof(struct btrfs_item);
  1250. mutex_lock(&delayed_node->mutex);
  1251. /*
  1252. * First attempt to insert the delayed item. This is to make the error
  1253. * handling path simpler in case we fail (-EEXIST). There's no risk of
  1254. * any other task coming in and running the delayed item before we do
  1255. * the metadata space reservation below, because we are holding the
  1256. * delayed node's mutex and that mutex must also be locked before the
  1257. * node's delayed items can be run.
  1258. */
  1259. ret = __btrfs_add_delayed_item(delayed_node, delayed_item);
  1260. if (unlikely(ret)) {
  1261. btrfs_err(trans->fs_info,
  1262. "error adding delayed dir index item, name: %.*s, index: %llu, root: %llu, dir: %llu, dir->index_cnt: %llu, delayed_node->index_cnt: %llu, error: %d",
  1263. name_len, name, index, btrfs_root_id(delayed_node->root),
  1264. delayed_node->inode_id, dir->index_cnt,
  1265. delayed_node->index_cnt, ret);
  1266. btrfs_release_delayed_item(delayed_item);
  1267. btrfs_release_dir_index_item_space(trans);
  1268. mutex_unlock(&delayed_node->mutex);
  1269. goto release_node;
  1270. }
  1271. if (delayed_node->index_item_leaves == 0 ||
  1272. delayed_node->curr_index_batch_size + data_len > leaf_data_size) {
  1273. delayed_node->curr_index_batch_size = data_len;
  1274. reserve_leaf_space = true;
  1275. } else {
  1276. delayed_node->curr_index_batch_size += data_len;
  1277. reserve_leaf_space = false;
  1278. }
  1279. if (reserve_leaf_space) {
  1280. ret = btrfs_delayed_item_reserve_metadata(trans, delayed_item);
  1281. /*
  1282. * Space was reserved for a dir index item insertion when we
  1283. * started the transaction, so getting a failure here should be
  1284. * impossible.
  1285. */
  1286. if (WARN_ON(ret)) {
  1287. btrfs_release_delayed_item(delayed_item);
  1288. mutex_unlock(&delayed_node->mutex);
  1289. goto release_node;
  1290. }
  1291. delayed_node->index_item_leaves++;
  1292. } else {
  1293. btrfs_release_dir_index_item_space(trans);
  1294. }
  1295. mutex_unlock(&delayed_node->mutex);
  1296. release_node:
  1297. btrfs_release_delayed_node(delayed_node);
  1298. return ret;
  1299. }
  1300. static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info,
  1301. struct btrfs_delayed_node *node,
  1302. u64 index)
  1303. {
  1304. struct btrfs_delayed_item *item;
  1305. mutex_lock(&node->mutex);
  1306. item = __btrfs_lookup_delayed_item(&node->ins_root.rb_root, index);
  1307. if (!item) {
  1308. mutex_unlock(&node->mutex);
  1309. return 1;
  1310. }
  1311. /*
  1312. * For delayed items to insert, we track reserved metadata bytes based
  1313. * on the number of leaves that we will use.
  1314. * See btrfs_insert_delayed_dir_index() and
  1315. * btrfs_delayed_item_reserve_metadata()).
  1316. */
  1317. ASSERT(item->bytes_reserved == 0);
  1318. ASSERT(node->index_item_leaves > 0);
  1319. /*
  1320. * If there's only one leaf reserved, we can decrement this item from the
  1321. * current batch, otherwise we can not because we don't know which leaf
  1322. * it belongs to. With the current limit on delayed items, we rarely
  1323. * accumulate enough dir index items to fill more than one leaf (even
  1324. * when using a leaf size of 4K).
  1325. */
  1326. if (node->index_item_leaves == 1) {
  1327. const u32 data_len = item->data_len + sizeof(struct btrfs_item);
  1328. ASSERT(node->curr_index_batch_size >= data_len);
  1329. node->curr_index_batch_size -= data_len;
  1330. }
  1331. btrfs_release_delayed_item(item);
  1332. /* If we now have no more dir index items, we can release all leaves. */
  1333. if (RB_EMPTY_ROOT(&node->ins_root.rb_root)) {
  1334. btrfs_delayed_item_release_leaves(node, node->index_item_leaves);
  1335. node->index_item_leaves = 0;
  1336. }
  1337. mutex_unlock(&node->mutex);
  1338. return 0;
  1339. }
  1340. int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
  1341. struct btrfs_inode *dir, u64 index)
  1342. {
  1343. struct btrfs_delayed_node *node;
  1344. struct btrfs_delayed_item *item;
  1345. int ret;
  1346. node = btrfs_get_or_create_delayed_node(dir);
  1347. if (IS_ERR(node))
  1348. return PTR_ERR(node);
  1349. ret = btrfs_delete_delayed_insertion_item(trans->fs_info, node, index);
  1350. if (!ret)
  1351. goto end;
  1352. item = btrfs_alloc_delayed_item(0, node, BTRFS_DELAYED_DELETION_ITEM);
  1353. if (!item) {
  1354. ret = -ENOMEM;
  1355. goto end;
  1356. }
  1357. item->index = index;
  1358. ret = btrfs_delayed_item_reserve_metadata(trans, item);
  1359. /*
  1360. * we have reserved enough space when we start a new transaction,
  1361. * so reserving metadata failure is impossible.
  1362. */
  1363. if (ret < 0) {
  1364. btrfs_err(trans->fs_info,
  1365. "metadata reservation failed for delayed dir item deltiona, should have been reserved");
  1366. btrfs_release_delayed_item(item);
  1367. goto end;
  1368. }
  1369. mutex_lock(&node->mutex);
  1370. ret = __btrfs_add_delayed_item(node, item);
  1371. if (unlikely(ret)) {
  1372. btrfs_err(trans->fs_info,
  1373. "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
  1374. index, node->root->root_key.objectid,
  1375. node->inode_id, ret);
  1376. btrfs_delayed_item_release_metadata(dir->root, item);
  1377. btrfs_release_delayed_item(item);
  1378. }
  1379. mutex_unlock(&node->mutex);
  1380. end:
  1381. btrfs_release_delayed_node(node);
  1382. return ret;
  1383. }
  1384. int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode)
  1385. {
  1386. struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
  1387. if (!delayed_node)
  1388. return -ENOENT;
  1389. /*
  1390. * Since we have held i_mutex of this directory, it is impossible that
  1391. * a new directory index is added into the delayed node and index_cnt
  1392. * is updated now. So we needn't lock the delayed node.
  1393. */
  1394. if (!delayed_node->index_cnt) {
  1395. btrfs_release_delayed_node(delayed_node);
  1396. return -EINVAL;
  1397. }
  1398. inode->index_cnt = delayed_node->index_cnt;
  1399. btrfs_release_delayed_node(delayed_node);
  1400. return 0;
  1401. }
  1402. bool btrfs_readdir_get_delayed_items(struct inode *inode,
  1403. struct list_head *ins_list,
  1404. struct list_head *del_list)
  1405. {
  1406. struct btrfs_delayed_node *delayed_node;
  1407. struct btrfs_delayed_item *item;
  1408. delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
  1409. if (!delayed_node)
  1410. return false;
  1411. /*
  1412. * We can only do one readdir with delayed items at a time because of
  1413. * item->readdir_list.
  1414. */
  1415. btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
  1416. btrfs_inode_lock(inode, 0);
  1417. mutex_lock(&delayed_node->mutex);
  1418. item = __btrfs_first_delayed_insertion_item(delayed_node);
  1419. while (item) {
  1420. refcount_inc(&item->refs);
  1421. list_add_tail(&item->readdir_list, ins_list);
  1422. item = __btrfs_next_delayed_item(item);
  1423. }
  1424. item = __btrfs_first_delayed_deletion_item(delayed_node);
  1425. while (item) {
  1426. refcount_inc(&item->refs);
  1427. list_add_tail(&item->readdir_list, del_list);
  1428. item = __btrfs_next_delayed_item(item);
  1429. }
  1430. mutex_unlock(&delayed_node->mutex);
  1431. /*
  1432. * This delayed node is still cached in the btrfs inode, so refs
  1433. * must be > 1 now, and we needn't check it is going to be freed
  1434. * or not.
  1435. *
  1436. * Besides that, this function is used to read dir, we do not
  1437. * insert/delete delayed items in this period. So we also needn't
  1438. * requeue or dequeue this delayed node.
  1439. */
  1440. refcount_dec(&delayed_node->refs);
  1441. return true;
  1442. }
  1443. void btrfs_readdir_put_delayed_items(struct inode *inode,
  1444. struct list_head *ins_list,
  1445. struct list_head *del_list)
  1446. {
  1447. struct btrfs_delayed_item *curr, *next;
  1448. list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
  1449. list_del(&curr->readdir_list);
  1450. if (refcount_dec_and_test(&curr->refs))
  1451. kfree(curr);
  1452. }
  1453. list_for_each_entry_safe(curr, next, del_list, readdir_list) {
  1454. list_del(&curr->readdir_list);
  1455. if (refcount_dec_and_test(&curr->refs))
  1456. kfree(curr);
  1457. }
  1458. /*
  1459. * The VFS is going to do up_read(), so we need to downgrade back to a
  1460. * read lock.
  1461. */
  1462. downgrade_write(&inode->i_rwsem);
  1463. }
  1464. int btrfs_should_delete_dir_index(struct list_head *del_list,
  1465. u64 index)
  1466. {
  1467. struct btrfs_delayed_item *curr;
  1468. int ret = 0;
  1469. list_for_each_entry(curr, del_list, readdir_list) {
  1470. if (curr->index > index)
  1471. break;
  1472. if (curr->index == index) {
  1473. ret = 1;
  1474. break;
  1475. }
  1476. }
  1477. return ret;
  1478. }
  1479. /*
  1480. * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
  1481. *
  1482. */
  1483. int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
  1484. struct list_head *ins_list)
  1485. {
  1486. struct btrfs_dir_item *di;
  1487. struct btrfs_delayed_item *curr, *next;
  1488. struct btrfs_key location;
  1489. char *name;
  1490. int name_len;
  1491. int over = 0;
  1492. unsigned char d_type;
  1493. if (list_empty(ins_list))
  1494. return 0;
  1495. /*
  1496. * Changing the data of the delayed item is impossible. So
  1497. * we needn't lock them. And we have held i_mutex of the
  1498. * directory, nobody can delete any directory indexes now.
  1499. */
  1500. list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
  1501. list_del(&curr->readdir_list);
  1502. if (curr->index < ctx->pos) {
  1503. if (refcount_dec_and_test(&curr->refs))
  1504. kfree(curr);
  1505. continue;
  1506. }
  1507. ctx->pos = curr->index;
  1508. di = (struct btrfs_dir_item *)curr->data;
  1509. name = (char *)(di + 1);
  1510. name_len = btrfs_stack_dir_name_len(di);
  1511. d_type = fs_ftype_to_dtype(di->type);
  1512. btrfs_disk_key_to_cpu(&location, &di->location);
  1513. over = !dir_emit(ctx, name, name_len,
  1514. location.objectid, d_type);
  1515. if (refcount_dec_and_test(&curr->refs))
  1516. kfree(curr);
  1517. if (over)
  1518. return 1;
  1519. ctx->pos++;
  1520. }
  1521. return 0;
  1522. }
  1523. static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
  1524. struct btrfs_inode_item *inode_item,
  1525. struct inode *inode)
  1526. {
  1527. u64 flags;
  1528. btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
  1529. btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
  1530. btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
  1531. btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
  1532. btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
  1533. btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
  1534. btrfs_set_stack_inode_generation(inode_item,
  1535. BTRFS_I(inode)->generation);
  1536. btrfs_set_stack_inode_sequence(inode_item,
  1537. inode_peek_iversion(inode));
  1538. btrfs_set_stack_inode_transid(inode_item, trans->transid);
  1539. btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
  1540. flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
  1541. BTRFS_I(inode)->ro_flags);
  1542. btrfs_set_stack_inode_flags(inode_item, flags);
  1543. btrfs_set_stack_inode_block_group(inode_item, 0);
  1544. btrfs_set_stack_timespec_sec(&inode_item->atime,
  1545. inode->i_atime.tv_sec);
  1546. btrfs_set_stack_timespec_nsec(&inode_item->atime,
  1547. inode->i_atime.tv_nsec);
  1548. btrfs_set_stack_timespec_sec(&inode_item->mtime,
  1549. inode->i_mtime.tv_sec);
  1550. btrfs_set_stack_timespec_nsec(&inode_item->mtime,
  1551. inode->i_mtime.tv_nsec);
  1552. btrfs_set_stack_timespec_sec(&inode_item->ctime,
  1553. inode->i_ctime.tv_sec);
  1554. btrfs_set_stack_timespec_nsec(&inode_item->ctime,
  1555. inode->i_ctime.tv_nsec);
  1556. btrfs_set_stack_timespec_sec(&inode_item->otime,
  1557. BTRFS_I(inode)->i_otime.tv_sec);
  1558. btrfs_set_stack_timespec_nsec(&inode_item->otime,
  1559. BTRFS_I(inode)->i_otime.tv_nsec);
  1560. }
  1561. int btrfs_fill_inode(struct inode *inode, u32 *rdev)
  1562. {
  1563. struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
  1564. struct btrfs_delayed_node *delayed_node;
  1565. struct btrfs_inode_item *inode_item;
  1566. delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
  1567. if (!delayed_node)
  1568. return -ENOENT;
  1569. mutex_lock(&delayed_node->mutex);
  1570. if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
  1571. mutex_unlock(&delayed_node->mutex);
  1572. btrfs_release_delayed_node(delayed_node);
  1573. return -ENOENT;
  1574. }
  1575. inode_item = &delayed_node->inode_item;
  1576. i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
  1577. i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
  1578. btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item));
  1579. btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
  1580. round_up(i_size_read(inode), fs_info->sectorsize));
  1581. inode->i_mode = btrfs_stack_inode_mode(inode_item);
  1582. set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
  1583. inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
  1584. BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
  1585. BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
  1586. inode_set_iversion_queried(inode,
  1587. btrfs_stack_inode_sequence(inode_item));
  1588. inode->i_rdev = 0;
  1589. *rdev = btrfs_stack_inode_rdev(inode_item);
  1590. btrfs_inode_split_flags(btrfs_stack_inode_flags(inode_item),
  1591. &BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags);
  1592. inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
  1593. inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
  1594. inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
  1595. inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
  1596. inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime);
  1597. inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime);
  1598. BTRFS_I(inode)->i_otime.tv_sec =
  1599. btrfs_stack_timespec_sec(&inode_item->otime);
  1600. BTRFS_I(inode)->i_otime.tv_nsec =
  1601. btrfs_stack_timespec_nsec(&inode_item->otime);
  1602. inode->i_generation = BTRFS_I(inode)->generation;
  1603. BTRFS_I(inode)->index_cnt = (u64)-1;
  1604. mutex_unlock(&delayed_node->mutex);
  1605. btrfs_release_delayed_node(delayed_node);
  1606. return 0;
  1607. }
  1608. int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
  1609. struct btrfs_root *root,
  1610. struct btrfs_inode *inode)
  1611. {
  1612. struct btrfs_delayed_node *delayed_node;
  1613. int ret = 0;
  1614. delayed_node = btrfs_get_or_create_delayed_node(inode);
  1615. if (IS_ERR(delayed_node))
  1616. return PTR_ERR(delayed_node);
  1617. mutex_lock(&delayed_node->mutex);
  1618. if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
  1619. fill_stack_inode_item(trans, &delayed_node->inode_item,
  1620. &inode->vfs_inode);
  1621. goto release_node;
  1622. }
  1623. ret = btrfs_delayed_inode_reserve_metadata(trans, root, delayed_node);
  1624. if (ret)
  1625. goto release_node;
  1626. fill_stack_inode_item(trans, &delayed_node->inode_item, &inode->vfs_inode);
  1627. set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
  1628. delayed_node->count++;
  1629. atomic_inc(&root->fs_info->delayed_root->items);
  1630. release_node:
  1631. mutex_unlock(&delayed_node->mutex);
  1632. btrfs_release_delayed_node(delayed_node);
  1633. return ret;
  1634. }
  1635. int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode)
  1636. {
  1637. struct btrfs_fs_info *fs_info = inode->root->fs_info;
  1638. struct btrfs_delayed_node *delayed_node;
  1639. /*
  1640. * we don't do delayed inode updates during log recovery because it
  1641. * leads to enospc problems. This means we also can't do
  1642. * delayed inode refs
  1643. */
  1644. if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
  1645. return -EAGAIN;
  1646. delayed_node = btrfs_get_or_create_delayed_node(inode);
  1647. if (IS_ERR(delayed_node))
  1648. return PTR_ERR(delayed_node);
  1649. /*
  1650. * We don't reserve space for inode ref deletion is because:
  1651. * - We ONLY do async inode ref deletion for the inode who has only
  1652. * one link(i_nlink == 1), it means there is only one inode ref.
  1653. * And in most case, the inode ref and the inode item are in the
  1654. * same leaf, and we will deal with them at the same time.
  1655. * Since we are sure we will reserve the space for the inode item,
  1656. * it is unnecessary to reserve space for inode ref deletion.
  1657. * - If the inode ref and the inode item are not in the same leaf,
  1658. * We also needn't worry about enospc problem, because we reserve
  1659. * much more space for the inode update than it needs.
  1660. * - At the worst, we can steal some space from the global reservation.
  1661. * It is very rare.
  1662. */
  1663. mutex_lock(&delayed_node->mutex);
  1664. if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
  1665. goto release_node;
  1666. set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
  1667. delayed_node->count++;
  1668. atomic_inc(&fs_info->delayed_root->items);
  1669. release_node:
  1670. mutex_unlock(&delayed_node->mutex);
  1671. btrfs_release_delayed_node(delayed_node);
  1672. return 0;
  1673. }
  1674. static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
  1675. {
  1676. struct btrfs_root *root = delayed_node->root;
  1677. struct btrfs_fs_info *fs_info = root->fs_info;
  1678. struct btrfs_delayed_item *curr_item, *prev_item;
  1679. mutex_lock(&delayed_node->mutex);
  1680. curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
  1681. while (curr_item) {
  1682. prev_item = curr_item;
  1683. curr_item = __btrfs_next_delayed_item(prev_item);
  1684. btrfs_release_delayed_item(prev_item);
  1685. }
  1686. if (delayed_node->index_item_leaves > 0) {
  1687. btrfs_delayed_item_release_leaves(delayed_node,
  1688. delayed_node->index_item_leaves);
  1689. delayed_node->index_item_leaves = 0;
  1690. }
  1691. curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
  1692. while (curr_item) {
  1693. btrfs_delayed_item_release_metadata(root, curr_item);
  1694. prev_item = curr_item;
  1695. curr_item = __btrfs_next_delayed_item(prev_item);
  1696. btrfs_release_delayed_item(prev_item);
  1697. }
  1698. btrfs_release_delayed_iref(delayed_node);
  1699. if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
  1700. btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false);
  1701. btrfs_release_delayed_inode(delayed_node);
  1702. }
  1703. mutex_unlock(&delayed_node->mutex);
  1704. }
  1705. void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode)
  1706. {
  1707. struct btrfs_delayed_node *delayed_node;
  1708. delayed_node = btrfs_get_delayed_node(inode);
  1709. if (!delayed_node)
  1710. return;
  1711. __btrfs_kill_delayed_node(delayed_node);
  1712. btrfs_release_delayed_node(delayed_node);
  1713. }
  1714. void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
  1715. {
  1716. u64 inode_id = 0;
  1717. struct btrfs_delayed_node *delayed_nodes[8];
  1718. int i, n;
  1719. while (1) {
  1720. spin_lock(&root->inode_lock);
  1721. n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
  1722. (void **)delayed_nodes, inode_id,
  1723. ARRAY_SIZE(delayed_nodes));
  1724. if (!n) {
  1725. spin_unlock(&root->inode_lock);
  1726. break;
  1727. }
  1728. inode_id = delayed_nodes[n - 1]->inode_id + 1;
  1729. for (i = 0; i < n; i++) {
  1730. /*
  1731. * Don't increase refs in case the node is dead and
  1732. * about to be removed from the tree in the loop below
  1733. */
  1734. if (!refcount_inc_not_zero(&delayed_nodes[i]->refs))
  1735. delayed_nodes[i] = NULL;
  1736. }
  1737. spin_unlock(&root->inode_lock);
  1738. for (i = 0; i < n; i++) {
  1739. if (!delayed_nodes[i])
  1740. continue;
  1741. __btrfs_kill_delayed_node(delayed_nodes[i]);
  1742. btrfs_release_delayed_node(delayed_nodes[i]);
  1743. }
  1744. }
  1745. }
  1746. void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
  1747. {
  1748. struct btrfs_delayed_node *curr_node, *prev_node;
  1749. curr_node = btrfs_first_delayed_node(fs_info->delayed_root);
  1750. while (curr_node) {
  1751. __btrfs_kill_delayed_node(curr_node);
  1752. prev_node = curr_node;
  1753. curr_node = btrfs_next_delayed_node(curr_node);
  1754. btrfs_release_delayed_node(prev_node);
  1755. }
  1756. }
  1757. void btrfs_log_get_delayed_items(struct btrfs_inode *inode,
  1758. struct list_head *ins_list,
  1759. struct list_head *del_list)
  1760. {
  1761. struct btrfs_delayed_node *node;
  1762. struct btrfs_delayed_item *item;
  1763. node = btrfs_get_delayed_node(inode);
  1764. if (!node)
  1765. return;
  1766. mutex_lock(&node->mutex);
  1767. item = __btrfs_first_delayed_insertion_item(node);
  1768. while (item) {
  1769. /*
  1770. * It's possible that the item is already in a log list. This
  1771. * can happen in case two tasks are trying to log the same
  1772. * directory. For example if we have tasks A and task B:
  1773. *
  1774. * Task A collected the delayed items into a log list while
  1775. * under the inode's log_mutex (at btrfs_log_inode()), but it
  1776. * only releases the items after logging the inodes they point
  1777. * to (if they are new inodes), which happens after unlocking
  1778. * the log mutex;
  1779. *
  1780. * Task B enters btrfs_log_inode() and acquires the log_mutex
  1781. * of the same directory inode, before task B releases the
  1782. * delayed items. This can happen for example when logging some
  1783. * inode we need to trigger logging of its parent directory, so
  1784. * logging two files that have the same parent directory can
  1785. * lead to this.
  1786. *
  1787. * If this happens, just ignore delayed items already in a log
  1788. * list. All the tasks logging the directory are under a log
  1789. * transaction and whichever finishes first can not sync the log
  1790. * before the other completes and leaves the log transaction.
  1791. */
  1792. if (!item->logged && list_empty(&item->log_list)) {
  1793. refcount_inc(&item->refs);
  1794. list_add_tail(&item->log_list, ins_list);
  1795. }
  1796. item = __btrfs_next_delayed_item(item);
  1797. }
  1798. item = __btrfs_first_delayed_deletion_item(node);
  1799. while (item) {
  1800. /* It may be non-empty, for the same reason mentioned above. */
  1801. if (!item->logged && list_empty(&item->log_list)) {
  1802. refcount_inc(&item->refs);
  1803. list_add_tail(&item->log_list, del_list);
  1804. }
  1805. item = __btrfs_next_delayed_item(item);
  1806. }
  1807. mutex_unlock(&node->mutex);
  1808. /*
  1809. * We are called during inode logging, which means the inode is in use
  1810. * and can not be evicted before we finish logging the inode. So we never
  1811. * have the last reference on the delayed inode.
  1812. * Also, we don't use btrfs_release_delayed_node() because that would
  1813. * requeue the delayed inode (change its order in the list of prepared
  1814. * nodes) and we don't want to do such change because we don't create or
  1815. * delete delayed items.
  1816. */
  1817. ASSERT(refcount_read(&node->refs) > 1);
  1818. refcount_dec(&node->refs);
  1819. }
  1820. void btrfs_log_put_delayed_items(struct btrfs_inode *inode,
  1821. struct list_head *ins_list,
  1822. struct list_head *del_list)
  1823. {
  1824. struct btrfs_delayed_node *node;
  1825. struct btrfs_delayed_item *item;
  1826. struct btrfs_delayed_item *next;
  1827. node = btrfs_get_delayed_node(inode);
  1828. if (!node)
  1829. return;
  1830. mutex_lock(&node->mutex);
  1831. list_for_each_entry_safe(item, next, ins_list, log_list) {
  1832. item->logged = true;
  1833. list_del_init(&item->log_list);
  1834. if (refcount_dec_and_test(&item->refs))
  1835. kfree(item);
  1836. }
  1837. list_for_each_entry_safe(item, next, del_list, log_list) {
  1838. item->logged = true;
  1839. list_del_init(&item->log_list);
  1840. if (refcount_dec_and_test(&item->refs))
  1841. kfree(item);
  1842. }
  1843. mutex_unlock(&node->mutex);
  1844. /*
  1845. * We are called during inode logging, which means the inode is in use
  1846. * and can not be evicted before we finish logging the inode. So we never
  1847. * have the last reference on the delayed inode.
  1848. * Also, we don't use btrfs_release_delayed_node() because that would
  1849. * requeue the delayed inode (change its order in the list of prepared
  1850. * nodes) and we don't want to do such change because we don't create or
  1851. * delete delayed items.
  1852. */
  1853. ASSERT(refcount_read(&node->refs) > 1);
  1854. refcount_dec(&node->refs);
  1855. }