pvcalls-back.c 30 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242
  1. // SPDX-License-Identifier: GPL-2.0-or-later
  2. /*
  3. * (c) 2017 Stefano Stabellini <[email protected]>
  4. */
  5. #include <linux/inet.h>
  6. #include <linux/kthread.h>
  7. #include <linux/list.h>
  8. #include <linux/radix-tree.h>
  9. #include <linux/module.h>
  10. #include <linux/semaphore.h>
  11. #include <linux/wait.h>
  12. #include <net/sock.h>
  13. #include <net/inet_common.h>
  14. #include <net/inet_connection_sock.h>
  15. #include <net/request_sock.h>
  16. #include <xen/events.h>
  17. #include <xen/grant_table.h>
  18. #include <xen/xen.h>
  19. #include <xen/xenbus.h>
  20. #include <xen/interface/io/pvcalls.h>
  21. #define PVCALLS_VERSIONS "1"
  22. #define MAX_RING_ORDER XENBUS_MAX_RING_GRANT_ORDER
  23. static struct pvcalls_back_global {
  24. struct list_head frontends;
  25. struct semaphore frontends_lock;
  26. } pvcalls_back_global;
  27. /*
  28. * Per-frontend data structure. It contains pointers to the command
  29. * ring, its event channel, a list of active sockets and a tree of
  30. * passive sockets.
  31. */
  32. struct pvcalls_fedata {
  33. struct list_head list;
  34. struct xenbus_device *dev;
  35. struct xen_pvcalls_sring *sring;
  36. struct xen_pvcalls_back_ring ring;
  37. int irq;
  38. struct list_head socket_mappings;
  39. struct radix_tree_root socketpass_mappings;
  40. struct semaphore socket_lock;
  41. };
  42. struct pvcalls_ioworker {
  43. struct work_struct register_work;
  44. struct workqueue_struct *wq;
  45. };
  46. struct sock_mapping {
  47. struct list_head list;
  48. struct pvcalls_fedata *fedata;
  49. struct sockpass_mapping *sockpass;
  50. struct socket *sock;
  51. uint64_t id;
  52. grant_ref_t ref;
  53. struct pvcalls_data_intf *ring;
  54. void *bytes;
  55. struct pvcalls_data data;
  56. uint32_t ring_order;
  57. int irq;
  58. atomic_t read;
  59. atomic_t write;
  60. atomic_t io;
  61. atomic_t release;
  62. atomic_t eoi;
  63. void (*saved_data_ready)(struct sock *sk);
  64. struct pvcalls_ioworker ioworker;
  65. };
  66. struct sockpass_mapping {
  67. struct list_head list;
  68. struct pvcalls_fedata *fedata;
  69. struct socket *sock;
  70. uint64_t id;
  71. struct xen_pvcalls_request reqcopy;
  72. spinlock_t copy_lock;
  73. struct workqueue_struct *wq;
  74. struct work_struct register_work;
  75. void (*saved_data_ready)(struct sock *sk);
  76. };
  77. static irqreturn_t pvcalls_back_conn_event(int irq, void *sock_map);
  78. static int pvcalls_back_release_active(struct xenbus_device *dev,
  79. struct pvcalls_fedata *fedata,
  80. struct sock_mapping *map);
  81. static bool pvcalls_conn_back_read(void *opaque)
  82. {
  83. struct sock_mapping *map = (struct sock_mapping *)opaque;
  84. struct msghdr msg;
  85. struct kvec vec[2];
  86. RING_IDX cons, prod, size, wanted, array_size, masked_prod, masked_cons;
  87. int32_t error;
  88. struct pvcalls_data_intf *intf = map->ring;
  89. struct pvcalls_data *data = &map->data;
  90. unsigned long flags;
  91. int ret;
  92. array_size = XEN_FLEX_RING_SIZE(map->ring_order);
  93. cons = intf->in_cons;
  94. prod = intf->in_prod;
  95. error = intf->in_error;
  96. /* read the indexes first, then deal with the data */
  97. virt_mb();
  98. if (error)
  99. return false;
  100. size = pvcalls_queued(prod, cons, array_size);
  101. if (size >= array_size)
  102. return false;
  103. spin_lock_irqsave(&map->sock->sk->sk_receive_queue.lock, flags);
  104. if (skb_queue_empty(&map->sock->sk->sk_receive_queue)) {
  105. atomic_set(&map->read, 0);
  106. spin_unlock_irqrestore(&map->sock->sk->sk_receive_queue.lock,
  107. flags);
  108. return true;
  109. }
  110. spin_unlock_irqrestore(&map->sock->sk->sk_receive_queue.lock, flags);
  111. wanted = array_size - size;
  112. masked_prod = pvcalls_mask(prod, array_size);
  113. masked_cons = pvcalls_mask(cons, array_size);
  114. memset(&msg, 0, sizeof(msg));
  115. if (masked_prod < masked_cons) {
  116. vec[0].iov_base = data->in + masked_prod;
  117. vec[0].iov_len = wanted;
  118. iov_iter_kvec(&msg.msg_iter, ITER_DEST, vec, 1, wanted);
  119. } else {
  120. vec[0].iov_base = data->in + masked_prod;
  121. vec[0].iov_len = array_size - masked_prod;
  122. vec[1].iov_base = data->in;
  123. vec[1].iov_len = wanted - vec[0].iov_len;
  124. iov_iter_kvec(&msg.msg_iter, ITER_DEST, vec, 2, wanted);
  125. }
  126. atomic_set(&map->read, 0);
  127. ret = inet_recvmsg(map->sock, &msg, wanted, MSG_DONTWAIT);
  128. WARN_ON(ret > wanted);
  129. if (ret == -EAGAIN) /* shouldn't happen */
  130. return true;
  131. if (!ret)
  132. ret = -ENOTCONN;
  133. spin_lock_irqsave(&map->sock->sk->sk_receive_queue.lock, flags);
  134. if (ret > 0 && !skb_queue_empty(&map->sock->sk->sk_receive_queue))
  135. atomic_inc(&map->read);
  136. spin_unlock_irqrestore(&map->sock->sk->sk_receive_queue.lock, flags);
  137. /* write the data, then modify the indexes */
  138. virt_wmb();
  139. if (ret < 0) {
  140. atomic_set(&map->read, 0);
  141. intf->in_error = ret;
  142. } else
  143. intf->in_prod = prod + ret;
  144. /* update the indexes, then notify the other end */
  145. virt_wmb();
  146. notify_remote_via_irq(map->irq);
  147. return true;
  148. }
  149. static bool pvcalls_conn_back_write(struct sock_mapping *map)
  150. {
  151. struct pvcalls_data_intf *intf = map->ring;
  152. struct pvcalls_data *data = &map->data;
  153. struct msghdr msg;
  154. struct kvec vec[2];
  155. RING_IDX cons, prod, size, array_size;
  156. int ret;
  157. cons = intf->out_cons;
  158. prod = intf->out_prod;
  159. /* read the indexes before dealing with the data */
  160. virt_mb();
  161. array_size = XEN_FLEX_RING_SIZE(map->ring_order);
  162. size = pvcalls_queued(prod, cons, array_size);
  163. if (size == 0)
  164. return false;
  165. memset(&msg, 0, sizeof(msg));
  166. msg.msg_flags |= MSG_DONTWAIT;
  167. if (pvcalls_mask(prod, array_size) > pvcalls_mask(cons, array_size)) {
  168. vec[0].iov_base = data->out + pvcalls_mask(cons, array_size);
  169. vec[0].iov_len = size;
  170. iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, vec, 1, size);
  171. } else {
  172. vec[0].iov_base = data->out + pvcalls_mask(cons, array_size);
  173. vec[0].iov_len = array_size - pvcalls_mask(cons, array_size);
  174. vec[1].iov_base = data->out;
  175. vec[1].iov_len = size - vec[0].iov_len;
  176. iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, vec, 2, size);
  177. }
  178. atomic_set(&map->write, 0);
  179. ret = inet_sendmsg(map->sock, &msg, size);
  180. if (ret == -EAGAIN) {
  181. atomic_inc(&map->write);
  182. atomic_inc(&map->io);
  183. return true;
  184. }
  185. /* write the data, then update the indexes */
  186. virt_wmb();
  187. if (ret < 0) {
  188. intf->out_error = ret;
  189. } else {
  190. intf->out_error = 0;
  191. intf->out_cons = cons + ret;
  192. prod = intf->out_prod;
  193. }
  194. /* update the indexes, then notify the other end */
  195. virt_wmb();
  196. if (prod != cons + ret) {
  197. atomic_inc(&map->write);
  198. atomic_inc(&map->io);
  199. }
  200. notify_remote_via_irq(map->irq);
  201. return true;
  202. }
  203. static void pvcalls_back_ioworker(struct work_struct *work)
  204. {
  205. struct pvcalls_ioworker *ioworker = container_of(work,
  206. struct pvcalls_ioworker, register_work);
  207. struct sock_mapping *map = container_of(ioworker, struct sock_mapping,
  208. ioworker);
  209. unsigned int eoi_flags = XEN_EOI_FLAG_SPURIOUS;
  210. while (atomic_read(&map->io) > 0) {
  211. if (atomic_read(&map->release) > 0) {
  212. atomic_set(&map->release, 0);
  213. return;
  214. }
  215. if (atomic_read(&map->read) > 0 &&
  216. pvcalls_conn_back_read(map))
  217. eoi_flags = 0;
  218. if (atomic_read(&map->write) > 0 &&
  219. pvcalls_conn_back_write(map))
  220. eoi_flags = 0;
  221. if (atomic_read(&map->eoi) > 0 && !atomic_read(&map->write)) {
  222. atomic_set(&map->eoi, 0);
  223. xen_irq_lateeoi(map->irq, eoi_flags);
  224. eoi_flags = XEN_EOI_FLAG_SPURIOUS;
  225. }
  226. atomic_dec(&map->io);
  227. }
  228. }
  229. static int pvcalls_back_socket(struct xenbus_device *dev,
  230. struct xen_pvcalls_request *req)
  231. {
  232. struct pvcalls_fedata *fedata;
  233. int ret;
  234. struct xen_pvcalls_response *rsp;
  235. fedata = dev_get_drvdata(&dev->dev);
  236. if (req->u.socket.domain != AF_INET ||
  237. req->u.socket.type != SOCK_STREAM ||
  238. (req->u.socket.protocol != IPPROTO_IP &&
  239. req->u.socket.protocol != AF_INET))
  240. ret = -EAFNOSUPPORT;
  241. else
  242. ret = 0;
  243. /* leave the actual socket allocation for later */
  244. rsp = RING_GET_RESPONSE(&fedata->ring, fedata->ring.rsp_prod_pvt++);
  245. rsp->req_id = req->req_id;
  246. rsp->cmd = req->cmd;
  247. rsp->u.socket.id = req->u.socket.id;
  248. rsp->ret = ret;
  249. return 0;
  250. }
  251. static void pvcalls_sk_state_change(struct sock *sock)
  252. {
  253. struct sock_mapping *map = sock->sk_user_data;
  254. if (map == NULL)
  255. return;
  256. atomic_inc(&map->read);
  257. notify_remote_via_irq(map->irq);
  258. }
  259. static void pvcalls_sk_data_ready(struct sock *sock)
  260. {
  261. struct sock_mapping *map = sock->sk_user_data;
  262. struct pvcalls_ioworker *iow;
  263. if (map == NULL)
  264. return;
  265. iow = &map->ioworker;
  266. atomic_inc(&map->read);
  267. atomic_inc(&map->io);
  268. queue_work(iow->wq, &iow->register_work);
  269. }
  270. static struct sock_mapping *pvcalls_new_active_socket(
  271. struct pvcalls_fedata *fedata,
  272. uint64_t id,
  273. grant_ref_t ref,
  274. evtchn_port_t evtchn,
  275. struct socket *sock)
  276. {
  277. int ret;
  278. struct sock_mapping *map;
  279. void *page;
  280. map = kzalloc(sizeof(*map), GFP_KERNEL);
  281. if (map == NULL) {
  282. sock_release(sock);
  283. return NULL;
  284. }
  285. map->fedata = fedata;
  286. map->sock = sock;
  287. map->id = id;
  288. map->ref = ref;
  289. ret = xenbus_map_ring_valloc(fedata->dev, &ref, 1, &page);
  290. if (ret < 0)
  291. goto out;
  292. map->ring = page;
  293. map->ring_order = map->ring->ring_order;
  294. /* first read the order, then map the data ring */
  295. virt_rmb();
  296. if (map->ring_order > MAX_RING_ORDER) {
  297. pr_warn("%s frontend requested ring_order %u, which is > MAX (%u)\n",
  298. __func__, map->ring_order, MAX_RING_ORDER);
  299. goto out;
  300. }
  301. ret = xenbus_map_ring_valloc(fedata->dev, map->ring->ref,
  302. (1 << map->ring_order), &page);
  303. if (ret < 0)
  304. goto out;
  305. map->bytes = page;
  306. ret = bind_interdomain_evtchn_to_irqhandler_lateeoi(
  307. fedata->dev, evtchn,
  308. pvcalls_back_conn_event, 0, "pvcalls-backend", map);
  309. if (ret < 0)
  310. goto out;
  311. map->irq = ret;
  312. map->data.in = map->bytes;
  313. map->data.out = map->bytes + XEN_FLEX_RING_SIZE(map->ring_order);
  314. map->ioworker.wq = alloc_workqueue("pvcalls_io", WQ_UNBOUND, 1);
  315. if (!map->ioworker.wq)
  316. goto out;
  317. atomic_set(&map->io, 1);
  318. INIT_WORK(&map->ioworker.register_work, pvcalls_back_ioworker);
  319. down(&fedata->socket_lock);
  320. list_add_tail(&map->list, &fedata->socket_mappings);
  321. up(&fedata->socket_lock);
  322. write_lock_bh(&map->sock->sk->sk_callback_lock);
  323. map->saved_data_ready = map->sock->sk->sk_data_ready;
  324. map->sock->sk->sk_user_data = map;
  325. map->sock->sk->sk_data_ready = pvcalls_sk_data_ready;
  326. map->sock->sk->sk_state_change = pvcalls_sk_state_change;
  327. write_unlock_bh(&map->sock->sk->sk_callback_lock);
  328. return map;
  329. out:
  330. down(&fedata->socket_lock);
  331. list_del(&map->list);
  332. pvcalls_back_release_active(fedata->dev, fedata, map);
  333. up(&fedata->socket_lock);
  334. return NULL;
  335. }
  336. static int pvcalls_back_connect(struct xenbus_device *dev,
  337. struct xen_pvcalls_request *req)
  338. {
  339. struct pvcalls_fedata *fedata;
  340. int ret = -EINVAL;
  341. struct socket *sock;
  342. struct sock_mapping *map;
  343. struct xen_pvcalls_response *rsp;
  344. struct sockaddr *sa = (struct sockaddr *)&req->u.connect.addr;
  345. fedata = dev_get_drvdata(&dev->dev);
  346. if (req->u.connect.len < sizeof(sa->sa_family) ||
  347. req->u.connect.len > sizeof(req->u.connect.addr) ||
  348. sa->sa_family != AF_INET)
  349. goto out;
  350. ret = sock_create(AF_INET, SOCK_STREAM, 0, &sock);
  351. if (ret < 0)
  352. goto out;
  353. ret = inet_stream_connect(sock, sa, req->u.connect.len, 0);
  354. if (ret < 0) {
  355. sock_release(sock);
  356. goto out;
  357. }
  358. map = pvcalls_new_active_socket(fedata,
  359. req->u.connect.id,
  360. req->u.connect.ref,
  361. req->u.connect.evtchn,
  362. sock);
  363. if (!map)
  364. ret = -EFAULT;
  365. out:
  366. rsp = RING_GET_RESPONSE(&fedata->ring, fedata->ring.rsp_prod_pvt++);
  367. rsp->req_id = req->req_id;
  368. rsp->cmd = req->cmd;
  369. rsp->u.connect.id = req->u.connect.id;
  370. rsp->ret = ret;
  371. return 0;
  372. }
  373. static int pvcalls_back_release_active(struct xenbus_device *dev,
  374. struct pvcalls_fedata *fedata,
  375. struct sock_mapping *map)
  376. {
  377. disable_irq(map->irq);
  378. if (map->sock->sk != NULL) {
  379. write_lock_bh(&map->sock->sk->sk_callback_lock);
  380. map->sock->sk->sk_user_data = NULL;
  381. map->sock->sk->sk_data_ready = map->saved_data_ready;
  382. write_unlock_bh(&map->sock->sk->sk_callback_lock);
  383. }
  384. atomic_set(&map->release, 1);
  385. flush_work(&map->ioworker.register_work);
  386. xenbus_unmap_ring_vfree(dev, map->bytes);
  387. xenbus_unmap_ring_vfree(dev, (void *)map->ring);
  388. unbind_from_irqhandler(map->irq, map);
  389. sock_release(map->sock);
  390. kfree(map);
  391. return 0;
  392. }
  393. static int pvcalls_back_release_passive(struct xenbus_device *dev,
  394. struct pvcalls_fedata *fedata,
  395. struct sockpass_mapping *mappass)
  396. {
  397. if (mappass->sock->sk != NULL) {
  398. write_lock_bh(&mappass->sock->sk->sk_callback_lock);
  399. mappass->sock->sk->sk_user_data = NULL;
  400. mappass->sock->sk->sk_data_ready = mappass->saved_data_ready;
  401. write_unlock_bh(&mappass->sock->sk->sk_callback_lock);
  402. }
  403. sock_release(mappass->sock);
  404. destroy_workqueue(mappass->wq);
  405. kfree(mappass);
  406. return 0;
  407. }
  408. static int pvcalls_back_release(struct xenbus_device *dev,
  409. struct xen_pvcalls_request *req)
  410. {
  411. struct pvcalls_fedata *fedata;
  412. struct sock_mapping *map, *n;
  413. struct sockpass_mapping *mappass;
  414. int ret = 0;
  415. struct xen_pvcalls_response *rsp;
  416. fedata = dev_get_drvdata(&dev->dev);
  417. down(&fedata->socket_lock);
  418. list_for_each_entry_safe(map, n, &fedata->socket_mappings, list) {
  419. if (map->id == req->u.release.id) {
  420. list_del(&map->list);
  421. up(&fedata->socket_lock);
  422. ret = pvcalls_back_release_active(dev, fedata, map);
  423. goto out;
  424. }
  425. }
  426. mappass = radix_tree_lookup(&fedata->socketpass_mappings,
  427. req->u.release.id);
  428. if (mappass != NULL) {
  429. radix_tree_delete(&fedata->socketpass_mappings, mappass->id);
  430. up(&fedata->socket_lock);
  431. ret = pvcalls_back_release_passive(dev, fedata, mappass);
  432. } else
  433. up(&fedata->socket_lock);
  434. out:
  435. rsp = RING_GET_RESPONSE(&fedata->ring, fedata->ring.rsp_prod_pvt++);
  436. rsp->req_id = req->req_id;
  437. rsp->u.release.id = req->u.release.id;
  438. rsp->cmd = req->cmd;
  439. rsp->ret = ret;
  440. return 0;
  441. }
  442. static void __pvcalls_back_accept(struct work_struct *work)
  443. {
  444. struct sockpass_mapping *mappass = container_of(
  445. work, struct sockpass_mapping, register_work);
  446. struct sock_mapping *map;
  447. struct pvcalls_ioworker *iow;
  448. struct pvcalls_fedata *fedata;
  449. struct socket *sock;
  450. struct xen_pvcalls_response *rsp;
  451. struct xen_pvcalls_request *req;
  452. int notify;
  453. int ret = -EINVAL;
  454. unsigned long flags;
  455. fedata = mappass->fedata;
  456. /*
  457. * __pvcalls_back_accept can race against pvcalls_back_accept.
  458. * We only need to check the value of "cmd" on read. It could be
  459. * done atomically, but to simplify the code on the write side, we
  460. * use a spinlock.
  461. */
  462. spin_lock_irqsave(&mappass->copy_lock, flags);
  463. req = &mappass->reqcopy;
  464. if (req->cmd != PVCALLS_ACCEPT) {
  465. spin_unlock_irqrestore(&mappass->copy_lock, flags);
  466. return;
  467. }
  468. spin_unlock_irqrestore(&mappass->copy_lock, flags);
  469. sock = sock_alloc();
  470. if (sock == NULL)
  471. goto out_error;
  472. sock->type = mappass->sock->type;
  473. sock->ops = mappass->sock->ops;
  474. ret = inet_accept(mappass->sock, sock, O_NONBLOCK, true);
  475. if (ret == -EAGAIN) {
  476. sock_release(sock);
  477. return;
  478. }
  479. map = pvcalls_new_active_socket(fedata,
  480. req->u.accept.id_new,
  481. req->u.accept.ref,
  482. req->u.accept.evtchn,
  483. sock);
  484. if (!map) {
  485. ret = -EFAULT;
  486. goto out_error;
  487. }
  488. map->sockpass = mappass;
  489. iow = &map->ioworker;
  490. atomic_inc(&map->read);
  491. atomic_inc(&map->io);
  492. queue_work(iow->wq, &iow->register_work);
  493. out_error:
  494. rsp = RING_GET_RESPONSE(&fedata->ring, fedata->ring.rsp_prod_pvt++);
  495. rsp->req_id = req->req_id;
  496. rsp->cmd = req->cmd;
  497. rsp->u.accept.id = req->u.accept.id;
  498. rsp->ret = ret;
  499. RING_PUSH_RESPONSES_AND_CHECK_NOTIFY(&fedata->ring, notify);
  500. if (notify)
  501. notify_remote_via_irq(fedata->irq);
  502. mappass->reqcopy.cmd = 0;
  503. }
  504. static void pvcalls_pass_sk_data_ready(struct sock *sock)
  505. {
  506. struct sockpass_mapping *mappass = sock->sk_user_data;
  507. struct pvcalls_fedata *fedata;
  508. struct xen_pvcalls_response *rsp;
  509. unsigned long flags;
  510. int notify;
  511. if (mappass == NULL)
  512. return;
  513. fedata = mappass->fedata;
  514. spin_lock_irqsave(&mappass->copy_lock, flags);
  515. if (mappass->reqcopy.cmd == PVCALLS_POLL) {
  516. rsp = RING_GET_RESPONSE(&fedata->ring,
  517. fedata->ring.rsp_prod_pvt++);
  518. rsp->req_id = mappass->reqcopy.req_id;
  519. rsp->u.poll.id = mappass->reqcopy.u.poll.id;
  520. rsp->cmd = mappass->reqcopy.cmd;
  521. rsp->ret = 0;
  522. mappass->reqcopy.cmd = 0;
  523. spin_unlock_irqrestore(&mappass->copy_lock, flags);
  524. RING_PUSH_RESPONSES_AND_CHECK_NOTIFY(&fedata->ring, notify);
  525. if (notify)
  526. notify_remote_via_irq(mappass->fedata->irq);
  527. } else {
  528. spin_unlock_irqrestore(&mappass->copy_lock, flags);
  529. queue_work(mappass->wq, &mappass->register_work);
  530. }
  531. }
  532. static int pvcalls_back_bind(struct xenbus_device *dev,
  533. struct xen_pvcalls_request *req)
  534. {
  535. struct pvcalls_fedata *fedata;
  536. int ret;
  537. struct sockpass_mapping *map;
  538. struct xen_pvcalls_response *rsp;
  539. fedata = dev_get_drvdata(&dev->dev);
  540. map = kzalloc(sizeof(*map), GFP_KERNEL);
  541. if (map == NULL) {
  542. ret = -ENOMEM;
  543. goto out;
  544. }
  545. INIT_WORK(&map->register_work, __pvcalls_back_accept);
  546. spin_lock_init(&map->copy_lock);
  547. map->wq = alloc_workqueue("pvcalls_wq", WQ_UNBOUND, 1);
  548. if (!map->wq) {
  549. ret = -ENOMEM;
  550. goto out;
  551. }
  552. ret = sock_create(AF_INET, SOCK_STREAM, 0, &map->sock);
  553. if (ret < 0)
  554. goto out;
  555. ret = inet_bind(map->sock, (struct sockaddr *)&req->u.bind.addr,
  556. req->u.bind.len);
  557. if (ret < 0)
  558. goto out;
  559. map->fedata = fedata;
  560. map->id = req->u.bind.id;
  561. down(&fedata->socket_lock);
  562. ret = radix_tree_insert(&fedata->socketpass_mappings, map->id,
  563. map);
  564. up(&fedata->socket_lock);
  565. if (ret)
  566. goto out;
  567. write_lock_bh(&map->sock->sk->sk_callback_lock);
  568. map->saved_data_ready = map->sock->sk->sk_data_ready;
  569. map->sock->sk->sk_user_data = map;
  570. map->sock->sk->sk_data_ready = pvcalls_pass_sk_data_ready;
  571. write_unlock_bh(&map->sock->sk->sk_callback_lock);
  572. out:
  573. if (ret) {
  574. if (map && map->sock)
  575. sock_release(map->sock);
  576. if (map && map->wq)
  577. destroy_workqueue(map->wq);
  578. kfree(map);
  579. }
  580. rsp = RING_GET_RESPONSE(&fedata->ring, fedata->ring.rsp_prod_pvt++);
  581. rsp->req_id = req->req_id;
  582. rsp->cmd = req->cmd;
  583. rsp->u.bind.id = req->u.bind.id;
  584. rsp->ret = ret;
  585. return 0;
  586. }
  587. static int pvcalls_back_listen(struct xenbus_device *dev,
  588. struct xen_pvcalls_request *req)
  589. {
  590. struct pvcalls_fedata *fedata;
  591. int ret = -EINVAL;
  592. struct sockpass_mapping *map;
  593. struct xen_pvcalls_response *rsp;
  594. fedata = dev_get_drvdata(&dev->dev);
  595. down(&fedata->socket_lock);
  596. map = radix_tree_lookup(&fedata->socketpass_mappings, req->u.listen.id);
  597. up(&fedata->socket_lock);
  598. if (map == NULL)
  599. goto out;
  600. ret = inet_listen(map->sock, req->u.listen.backlog);
  601. out:
  602. rsp = RING_GET_RESPONSE(&fedata->ring, fedata->ring.rsp_prod_pvt++);
  603. rsp->req_id = req->req_id;
  604. rsp->cmd = req->cmd;
  605. rsp->u.listen.id = req->u.listen.id;
  606. rsp->ret = ret;
  607. return 0;
  608. }
  609. static int pvcalls_back_accept(struct xenbus_device *dev,
  610. struct xen_pvcalls_request *req)
  611. {
  612. struct pvcalls_fedata *fedata;
  613. struct sockpass_mapping *mappass;
  614. int ret = -EINVAL;
  615. struct xen_pvcalls_response *rsp;
  616. unsigned long flags;
  617. fedata = dev_get_drvdata(&dev->dev);
  618. down(&fedata->socket_lock);
  619. mappass = radix_tree_lookup(&fedata->socketpass_mappings,
  620. req->u.accept.id);
  621. up(&fedata->socket_lock);
  622. if (mappass == NULL)
  623. goto out_error;
  624. /*
  625. * Limitation of the current implementation: only support one
  626. * concurrent accept or poll call on one socket.
  627. */
  628. spin_lock_irqsave(&mappass->copy_lock, flags);
  629. if (mappass->reqcopy.cmd != 0) {
  630. spin_unlock_irqrestore(&mappass->copy_lock, flags);
  631. ret = -EINTR;
  632. goto out_error;
  633. }
  634. mappass->reqcopy = *req;
  635. spin_unlock_irqrestore(&mappass->copy_lock, flags);
  636. queue_work(mappass->wq, &mappass->register_work);
  637. /* Tell the caller we don't need to send back a notification yet */
  638. return -1;
  639. out_error:
  640. rsp = RING_GET_RESPONSE(&fedata->ring, fedata->ring.rsp_prod_pvt++);
  641. rsp->req_id = req->req_id;
  642. rsp->cmd = req->cmd;
  643. rsp->u.accept.id = req->u.accept.id;
  644. rsp->ret = ret;
  645. return 0;
  646. }
  647. static int pvcalls_back_poll(struct xenbus_device *dev,
  648. struct xen_pvcalls_request *req)
  649. {
  650. struct pvcalls_fedata *fedata;
  651. struct sockpass_mapping *mappass;
  652. struct xen_pvcalls_response *rsp;
  653. struct inet_connection_sock *icsk;
  654. struct request_sock_queue *queue;
  655. unsigned long flags;
  656. int ret;
  657. bool data;
  658. fedata = dev_get_drvdata(&dev->dev);
  659. down(&fedata->socket_lock);
  660. mappass = radix_tree_lookup(&fedata->socketpass_mappings,
  661. req->u.poll.id);
  662. up(&fedata->socket_lock);
  663. if (mappass == NULL)
  664. return -EINVAL;
  665. /*
  666. * Limitation of the current implementation: only support one
  667. * concurrent accept or poll call on one socket.
  668. */
  669. spin_lock_irqsave(&mappass->copy_lock, flags);
  670. if (mappass->reqcopy.cmd != 0) {
  671. ret = -EINTR;
  672. goto out;
  673. }
  674. mappass->reqcopy = *req;
  675. icsk = inet_csk(mappass->sock->sk);
  676. queue = &icsk->icsk_accept_queue;
  677. data = READ_ONCE(queue->rskq_accept_head) != NULL;
  678. if (data) {
  679. mappass->reqcopy.cmd = 0;
  680. ret = 0;
  681. goto out;
  682. }
  683. spin_unlock_irqrestore(&mappass->copy_lock, flags);
  684. /* Tell the caller we don't need to send back a notification yet */
  685. return -1;
  686. out:
  687. spin_unlock_irqrestore(&mappass->copy_lock, flags);
  688. rsp = RING_GET_RESPONSE(&fedata->ring, fedata->ring.rsp_prod_pvt++);
  689. rsp->req_id = req->req_id;
  690. rsp->cmd = req->cmd;
  691. rsp->u.poll.id = req->u.poll.id;
  692. rsp->ret = ret;
  693. return 0;
  694. }
  695. static int pvcalls_back_handle_cmd(struct xenbus_device *dev,
  696. struct xen_pvcalls_request *req)
  697. {
  698. int ret = 0;
  699. switch (req->cmd) {
  700. case PVCALLS_SOCKET:
  701. ret = pvcalls_back_socket(dev, req);
  702. break;
  703. case PVCALLS_CONNECT:
  704. ret = pvcalls_back_connect(dev, req);
  705. break;
  706. case PVCALLS_RELEASE:
  707. ret = pvcalls_back_release(dev, req);
  708. break;
  709. case PVCALLS_BIND:
  710. ret = pvcalls_back_bind(dev, req);
  711. break;
  712. case PVCALLS_LISTEN:
  713. ret = pvcalls_back_listen(dev, req);
  714. break;
  715. case PVCALLS_ACCEPT:
  716. ret = pvcalls_back_accept(dev, req);
  717. break;
  718. case PVCALLS_POLL:
  719. ret = pvcalls_back_poll(dev, req);
  720. break;
  721. default:
  722. {
  723. struct pvcalls_fedata *fedata;
  724. struct xen_pvcalls_response *rsp;
  725. fedata = dev_get_drvdata(&dev->dev);
  726. rsp = RING_GET_RESPONSE(
  727. &fedata->ring, fedata->ring.rsp_prod_pvt++);
  728. rsp->req_id = req->req_id;
  729. rsp->cmd = req->cmd;
  730. rsp->ret = -ENOTSUPP;
  731. break;
  732. }
  733. }
  734. return ret;
  735. }
  736. static void pvcalls_back_work(struct pvcalls_fedata *fedata)
  737. {
  738. int notify, notify_all = 0, more = 1;
  739. struct xen_pvcalls_request req;
  740. struct xenbus_device *dev = fedata->dev;
  741. while (more) {
  742. while (RING_HAS_UNCONSUMED_REQUESTS(&fedata->ring)) {
  743. RING_COPY_REQUEST(&fedata->ring,
  744. fedata->ring.req_cons++,
  745. &req);
  746. if (!pvcalls_back_handle_cmd(dev, &req)) {
  747. RING_PUSH_RESPONSES_AND_CHECK_NOTIFY(
  748. &fedata->ring, notify);
  749. notify_all += notify;
  750. }
  751. }
  752. if (notify_all) {
  753. notify_remote_via_irq(fedata->irq);
  754. notify_all = 0;
  755. }
  756. RING_FINAL_CHECK_FOR_REQUESTS(&fedata->ring, more);
  757. }
  758. }
  759. static irqreturn_t pvcalls_back_event(int irq, void *dev_id)
  760. {
  761. struct xenbus_device *dev = dev_id;
  762. struct pvcalls_fedata *fedata = NULL;
  763. unsigned int eoi_flags = XEN_EOI_FLAG_SPURIOUS;
  764. if (dev) {
  765. fedata = dev_get_drvdata(&dev->dev);
  766. if (fedata) {
  767. pvcalls_back_work(fedata);
  768. eoi_flags = 0;
  769. }
  770. }
  771. xen_irq_lateeoi(irq, eoi_flags);
  772. return IRQ_HANDLED;
  773. }
  774. static irqreturn_t pvcalls_back_conn_event(int irq, void *sock_map)
  775. {
  776. struct sock_mapping *map = sock_map;
  777. struct pvcalls_ioworker *iow;
  778. if (map == NULL || map->sock == NULL || map->sock->sk == NULL ||
  779. map->sock->sk->sk_user_data != map) {
  780. xen_irq_lateeoi(irq, 0);
  781. return IRQ_HANDLED;
  782. }
  783. iow = &map->ioworker;
  784. atomic_inc(&map->write);
  785. atomic_inc(&map->eoi);
  786. atomic_inc(&map->io);
  787. queue_work(iow->wq, &iow->register_work);
  788. return IRQ_HANDLED;
  789. }
  790. static int backend_connect(struct xenbus_device *dev)
  791. {
  792. int err;
  793. evtchn_port_t evtchn;
  794. grant_ref_t ring_ref;
  795. struct pvcalls_fedata *fedata = NULL;
  796. fedata = kzalloc(sizeof(struct pvcalls_fedata), GFP_KERNEL);
  797. if (!fedata)
  798. return -ENOMEM;
  799. fedata->irq = -1;
  800. err = xenbus_scanf(XBT_NIL, dev->otherend, "port", "%u",
  801. &evtchn);
  802. if (err != 1) {
  803. err = -EINVAL;
  804. xenbus_dev_fatal(dev, err, "reading %s/event-channel",
  805. dev->otherend);
  806. goto error;
  807. }
  808. err = xenbus_scanf(XBT_NIL, dev->otherend, "ring-ref", "%u", &ring_ref);
  809. if (err != 1) {
  810. err = -EINVAL;
  811. xenbus_dev_fatal(dev, err, "reading %s/ring-ref",
  812. dev->otherend);
  813. goto error;
  814. }
  815. err = bind_interdomain_evtchn_to_irq_lateeoi(dev, evtchn);
  816. if (err < 0)
  817. goto error;
  818. fedata->irq = err;
  819. err = request_threaded_irq(fedata->irq, NULL, pvcalls_back_event,
  820. IRQF_ONESHOT, "pvcalls-back", dev);
  821. if (err < 0)
  822. goto error;
  823. err = xenbus_map_ring_valloc(dev, &ring_ref, 1,
  824. (void **)&fedata->sring);
  825. if (err < 0)
  826. goto error;
  827. BACK_RING_INIT(&fedata->ring, fedata->sring, XEN_PAGE_SIZE * 1);
  828. fedata->dev = dev;
  829. INIT_LIST_HEAD(&fedata->socket_mappings);
  830. INIT_RADIX_TREE(&fedata->socketpass_mappings, GFP_KERNEL);
  831. sema_init(&fedata->socket_lock, 1);
  832. dev_set_drvdata(&dev->dev, fedata);
  833. down(&pvcalls_back_global.frontends_lock);
  834. list_add_tail(&fedata->list, &pvcalls_back_global.frontends);
  835. up(&pvcalls_back_global.frontends_lock);
  836. return 0;
  837. error:
  838. if (fedata->irq >= 0)
  839. unbind_from_irqhandler(fedata->irq, dev);
  840. if (fedata->sring != NULL)
  841. xenbus_unmap_ring_vfree(dev, fedata->sring);
  842. kfree(fedata);
  843. return err;
  844. }
  845. static int backend_disconnect(struct xenbus_device *dev)
  846. {
  847. struct pvcalls_fedata *fedata;
  848. struct sock_mapping *map, *n;
  849. struct sockpass_mapping *mappass;
  850. struct radix_tree_iter iter;
  851. void **slot;
  852. fedata = dev_get_drvdata(&dev->dev);
  853. down(&fedata->socket_lock);
  854. list_for_each_entry_safe(map, n, &fedata->socket_mappings, list) {
  855. list_del(&map->list);
  856. pvcalls_back_release_active(dev, fedata, map);
  857. }
  858. radix_tree_for_each_slot(slot, &fedata->socketpass_mappings, &iter, 0) {
  859. mappass = radix_tree_deref_slot(slot);
  860. if (!mappass)
  861. continue;
  862. if (radix_tree_exception(mappass)) {
  863. if (radix_tree_deref_retry(mappass))
  864. slot = radix_tree_iter_retry(&iter);
  865. } else {
  866. radix_tree_delete(&fedata->socketpass_mappings,
  867. mappass->id);
  868. pvcalls_back_release_passive(dev, fedata, mappass);
  869. }
  870. }
  871. up(&fedata->socket_lock);
  872. unbind_from_irqhandler(fedata->irq, dev);
  873. xenbus_unmap_ring_vfree(dev, fedata->sring);
  874. list_del(&fedata->list);
  875. kfree(fedata);
  876. dev_set_drvdata(&dev->dev, NULL);
  877. return 0;
  878. }
  879. static int pvcalls_back_probe(struct xenbus_device *dev,
  880. const struct xenbus_device_id *id)
  881. {
  882. int err, abort;
  883. struct xenbus_transaction xbt;
  884. again:
  885. abort = 1;
  886. err = xenbus_transaction_start(&xbt);
  887. if (err) {
  888. pr_warn("%s cannot create xenstore transaction\n", __func__);
  889. return err;
  890. }
  891. err = xenbus_printf(xbt, dev->nodename, "versions", "%s",
  892. PVCALLS_VERSIONS);
  893. if (err) {
  894. pr_warn("%s write out 'versions' failed\n", __func__);
  895. goto abort;
  896. }
  897. err = xenbus_printf(xbt, dev->nodename, "max-page-order", "%u",
  898. MAX_RING_ORDER);
  899. if (err) {
  900. pr_warn("%s write out 'max-page-order' failed\n", __func__);
  901. goto abort;
  902. }
  903. err = xenbus_printf(xbt, dev->nodename, "function-calls",
  904. XENBUS_FUNCTIONS_CALLS);
  905. if (err) {
  906. pr_warn("%s write out 'function-calls' failed\n", __func__);
  907. goto abort;
  908. }
  909. abort = 0;
  910. abort:
  911. err = xenbus_transaction_end(xbt, abort);
  912. if (err) {
  913. if (err == -EAGAIN && !abort)
  914. goto again;
  915. pr_warn("%s cannot complete xenstore transaction\n", __func__);
  916. return err;
  917. }
  918. if (abort)
  919. return -EFAULT;
  920. xenbus_switch_state(dev, XenbusStateInitWait);
  921. return 0;
  922. }
  923. static void set_backend_state(struct xenbus_device *dev,
  924. enum xenbus_state state)
  925. {
  926. while (dev->state != state) {
  927. switch (dev->state) {
  928. case XenbusStateClosed:
  929. switch (state) {
  930. case XenbusStateInitWait:
  931. case XenbusStateConnected:
  932. xenbus_switch_state(dev, XenbusStateInitWait);
  933. break;
  934. case XenbusStateClosing:
  935. xenbus_switch_state(dev, XenbusStateClosing);
  936. break;
  937. default:
  938. WARN_ON(1);
  939. }
  940. break;
  941. case XenbusStateInitWait:
  942. case XenbusStateInitialised:
  943. switch (state) {
  944. case XenbusStateConnected:
  945. if (backend_connect(dev))
  946. return;
  947. xenbus_switch_state(dev, XenbusStateConnected);
  948. break;
  949. case XenbusStateClosing:
  950. case XenbusStateClosed:
  951. xenbus_switch_state(dev, XenbusStateClosing);
  952. break;
  953. default:
  954. WARN_ON(1);
  955. }
  956. break;
  957. case XenbusStateConnected:
  958. switch (state) {
  959. case XenbusStateInitWait:
  960. case XenbusStateClosing:
  961. case XenbusStateClosed:
  962. down(&pvcalls_back_global.frontends_lock);
  963. backend_disconnect(dev);
  964. up(&pvcalls_back_global.frontends_lock);
  965. xenbus_switch_state(dev, XenbusStateClosing);
  966. break;
  967. default:
  968. WARN_ON(1);
  969. }
  970. break;
  971. case XenbusStateClosing:
  972. switch (state) {
  973. case XenbusStateInitWait:
  974. case XenbusStateConnected:
  975. case XenbusStateClosed:
  976. xenbus_switch_state(dev, XenbusStateClosed);
  977. break;
  978. default:
  979. WARN_ON(1);
  980. }
  981. break;
  982. default:
  983. WARN_ON(1);
  984. }
  985. }
  986. }
  987. static void pvcalls_back_changed(struct xenbus_device *dev,
  988. enum xenbus_state frontend_state)
  989. {
  990. switch (frontend_state) {
  991. case XenbusStateInitialising:
  992. set_backend_state(dev, XenbusStateInitWait);
  993. break;
  994. case XenbusStateInitialised:
  995. case XenbusStateConnected:
  996. set_backend_state(dev, XenbusStateConnected);
  997. break;
  998. case XenbusStateClosing:
  999. set_backend_state(dev, XenbusStateClosing);
  1000. break;
  1001. case XenbusStateClosed:
  1002. set_backend_state(dev, XenbusStateClosed);
  1003. if (xenbus_dev_is_online(dev))
  1004. break;
  1005. device_unregister(&dev->dev);
  1006. break;
  1007. case XenbusStateUnknown:
  1008. set_backend_state(dev, XenbusStateClosed);
  1009. device_unregister(&dev->dev);
  1010. break;
  1011. default:
  1012. xenbus_dev_fatal(dev, -EINVAL, "saw state %d at frontend",
  1013. frontend_state);
  1014. break;
  1015. }
  1016. }
  1017. static int pvcalls_back_remove(struct xenbus_device *dev)
  1018. {
  1019. return 0;
  1020. }
  1021. static int pvcalls_back_uevent(struct xenbus_device *xdev,
  1022. struct kobj_uevent_env *env)
  1023. {
  1024. return 0;
  1025. }
  1026. static const struct xenbus_device_id pvcalls_back_ids[] = {
  1027. { "pvcalls" },
  1028. { "" }
  1029. };
  1030. static struct xenbus_driver pvcalls_back_driver = {
  1031. .ids = pvcalls_back_ids,
  1032. .probe = pvcalls_back_probe,
  1033. .remove = pvcalls_back_remove,
  1034. .uevent = pvcalls_back_uevent,
  1035. .otherend_changed = pvcalls_back_changed,
  1036. };
  1037. static int __init pvcalls_back_init(void)
  1038. {
  1039. int ret;
  1040. if (!xen_domain())
  1041. return -ENODEV;
  1042. ret = xenbus_register_backend(&pvcalls_back_driver);
  1043. if (ret < 0)
  1044. return ret;
  1045. sema_init(&pvcalls_back_global.frontends_lock, 1);
  1046. INIT_LIST_HEAD(&pvcalls_back_global.frontends);
  1047. return 0;
  1048. }
  1049. module_init(pvcalls_back_init);
  1050. static void __exit pvcalls_back_fin(void)
  1051. {
  1052. struct pvcalls_fedata *fedata, *nfedata;
  1053. down(&pvcalls_back_global.frontends_lock);
  1054. list_for_each_entry_safe(fedata, nfedata,
  1055. &pvcalls_back_global.frontends, list) {
  1056. backend_disconnect(fedata->dev);
  1057. }
  1058. up(&pvcalls_back_global.frontends_lock);
  1059. xenbus_unregister_driver(&pvcalls_back_driver);
  1060. }
  1061. module_exit(pvcalls_back_fin);
  1062. MODULE_DESCRIPTION("Xen PV Calls backend driver");
  1063. MODULE_AUTHOR("Stefano Stabellini <[email protected]>");
  1064. MODULE_LICENSE("GPL");