spi-ti-qspi.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * TI QSPI driver
  4. *
  5. * Copyright (C) 2013 Texas Instruments Incorporated - https://www.ti.com
  6. * Author: Sourav Poddar <[email protected]>
  7. */
  8. #include <linux/kernel.h>
  9. #include <linux/init.h>
  10. #include <linux/interrupt.h>
  11. #include <linux/module.h>
  12. #include <linux/device.h>
  13. #include <linux/delay.h>
  14. #include <linux/dma-mapping.h>
  15. #include <linux/dmaengine.h>
  16. #include <linux/omap-dma.h>
  17. #include <linux/platform_device.h>
  18. #include <linux/err.h>
  19. #include <linux/clk.h>
  20. #include <linux/io.h>
  21. #include <linux/slab.h>
  22. #include <linux/pm_runtime.h>
  23. #include <linux/of.h>
  24. #include <linux/of_device.h>
  25. #include <linux/pinctrl/consumer.h>
  26. #include <linux/mfd/syscon.h>
  27. #include <linux/regmap.h>
  28. #include <linux/sizes.h>
  29. #include <linux/spi/spi.h>
  30. #include <linux/spi/spi-mem.h>
  31. struct ti_qspi_regs {
  32. u32 clkctrl;
  33. };
  34. struct ti_qspi {
  35. struct completion transfer_complete;
  36. /* list synchronization */
  37. struct mutex list_lock;
  38. struct spi_master *master;
  39. void __iomem *base;
  40. void __iomem *mmap_base;
  41. size_t mmap_size;
  42. struct regmap *ctrl_base;
  43. unsigned int ctrl_reg;
  44. struct clk *fclk;
  45. struct device *dev;
  46. struct ti_qspi_regs ctx_reg;
  47. dma_addr_t mmap_phys_base;
  48. dma_addr_t rx_bb_dma_addr;
  49. void *rx_bb_addr;
  50. struct dma_chan *rx_chan;
  51. u32 cmd;
  52. u32 dc;
  53. bool mmap_enabled;
  54. int current_cs;
  55. };
  56. #define QSPI_PID (0x0)
  57. #define QSPI_SYSCONFIG (0x10)
  58. #define QSPI_SPI_CLOCK_CNTRL_REG (0x40)
  59. #define QSPI_SPI_DC_REG (0x44)
  60. #define QSPI_SPI_CMD_REG (0x48)
  61. #define QSPI_SPI_STATUS_REG (0x4c)
  62. #define QSPI_SPI_DATA_REG (0x50)
  63. #define QSPI_SPI_SETUP_REG(n) ((0x54 + 4 * n))
  64. #define QSPI_SPI_SWITCH_REG (0x64)
  65. #define QSPI_SPI_DATA_REG_1 (0x68)
  66. #define QSPI_SPI_DATA_REG_2 (0x6c)
  67. #define QSPI_SPI_DATA_REG_3 (0x70)
  68. #define QSPI_COMPLETION_TIMEOUT msecs_to_jiffies(2000)
  69. /* Clock Control */
  70. #define QSPI_CLK_EN (1 << 31)
  71. #define QSPI_CLK_DIV_MAX 0xffff
  72. /* Command */
  73. #define QSPI_EN_CS(n) (n << 28)
  74. #define QSPI_WLEN(n) ((n - 1) << 19)
  75. #define QSPI_3_PIN (1 << 18)
  76. #define QSPI_RD_SNGL (1 << 16)
  77. #define QSPI_WR_SNGL (2 << 16)
  78. #define QSPI_RD_DUAL (3 << 16)
  79. #define QSPI_RD_QUAD (7 << 16)
  80. #define QSPI_INVAL (4 << 16)
  81. #define QSPI_FLEN(n) ((n - 1) << 0)
  82. #define QSPI_WLEN_MAX_BITS 128
  83. #define QSPI_WLEN_MAX_BYTES 16
  84. #define QSPI_WLEN_MASK QSPI_WLEN(QSPI_WLEN_MAX_BITS)
  85. /* STATUS REGISTER */
  86. #define BUSY 0x01
  87. #define WC 0x02
  88. /* Device Control */
  89. #define QSPI_DD(m, n) (m << (3 + n * 8))
  90. #define QSPI_CKPHA(n) (1 << (2 + n * 8))
  91. #define QSPI_CSPOL(n) (1 << (1 + n * 8))
  92. #define QSPI_CKPOL(n) (1 << (n * 8))
  93. #define QSPI_FRAME 4096
  94. #define QSPI_AUTOSUSPEND_TIMEOUT 2000
  95. #define MEM_CS_EN(n) ((n + 1) << 8)
  96. #define MEM_CS_MASK (7 << 8)
  97. #define MM_SWITCH 0x1
  98. #define QSPI_SETUP_RD_NORMAL (0x0 << 12)
  99. #define QSPI_SETUP_RD_DUAL (0x1 << 12)
  100. #define QSPI_SETUP_RD_QUAD (0x3 << 12)
  101. #define QSPI_SETUP_ADDR_SHIFT 8
  102. #define QSPI_SETUP_DUMMY_SHIFT 10
  103. #define QSPI_DMA_BUFFER_SIZE SZ_64K
  104. static inline unsigned long ti_qspi_read(struct ti_qspi *qspi,
  105. unsigned long reg)
  106. {
  107. return readl(qspi->base + reg);
  108. }
  109. static inline void ti_qspi_write(struct ti_qspi *qspi,
  110. unsigned long val, unsigned long reg)
  111. {
  112. writel(val, qspi->base + reg);
  113. }
  114. static int ti_qspi_setup(struct spi_device *spi)
  115. {
  116. struct ti_qspi *qspi = spi_master_get_devdata(spi->master);
  117. int ret;
  118. if (spi->master->busy) {
  119. dev_dbg(qspi->dev, "master busy doing other transfers\n");
  120. return -EBUSY;
  121. }
  122. if (!qspi->master->max_speed_hz) {
  123. dev_err(qspi->dev, "spi max frequency not defined\n");
  124. return -EINVAL;
  125. }
  126. spi->max_speed_hz = min(spi->max_speed_hz, qspi->master->max_speed_hz);
  127. ret = pm_runtime_resume_and_get(qspi->dev);
  128. if (ret < 0) {
  129. dev_err(qspi->dev, "pm_runtime_get_sync() failed\n");
  130. return ret;
  131. }
  132. pm_runtime_mark_last_busy(qspi->dev);
  133. ret = pm_runtime_put_autosuspend(qspi->dev);
  134. if (ret < 0) {
  135. dev_err(qspi->dev, "pm_runtime_put_autosuspend() failed\n");
  136. return ret;
  137. }
  138. return 0;
  139. }
  140. static void ti_qspi_setup_clk(struct ti_qspi *qspi, u32 speed_hz)
  141. {
  142. struct ti_qspi_regs *ctx_reg = &qspi->ctx_reg;
  143. int clk_div;
  144. u32 clk_ctrl_reg, clk_rate, clk_ctrl_new;
  145. clk_rate = clk_get_rate(qspi->fclk);
  146. clk_div = DIV_ROUND_UP(clk_rate, speed_hz) - 1;
  147. clk_div = clamp(clk_div, 0, QSPI_CLK_DIV_MAX);
  148. dev_dbg(qspi->dev, "hz: %d, clock divider %d\n", speed_hz, clk_div);
  149. pm_runtime_resume_and_get(qspi->dev);
  150. clk_ctrl_new = QSPI_CLK_EN | clk_div;
  151. if (ctx_reg->clkctrl != clk_ctrl_new) {
  152. clk_ctrl_reg = ti_qspi_read(qspi, QSPI_SPI_CLOCK_CNTRL_REG);
  153. clk_ctrl_reg &= ~QSPI_CLK_EN;
  154. /* disable SCLK */
  155. ti_qspi_write(qspi, clk_ctrl_reg, QSPI_SPI_CLOCK_CNTRL_REG);
  156. /* enable SCLK */
  157. ti_qspi_write(qspi, clk_ctrl_new, QSPI_SPI_CLOCK_CNTRL_REG);
  158. ctx_reg->clkctrl = clk_ctrl_new;
  159. }
  160. pm_runtime_mark_last_busy(qspi->dev);
  161. pm_runtime_put_autosuspend(qspi->dev);
  162. }
  163. static void ti_qspi_restore_ctx(struct ti_qspi *qspi)
  164. {
  165. struct ti_qspi_regs *ctx_reg = &qspi->ctx_reg;
  166. ti_qspi_write(qspi, ctx_reg->clkctrl, QSPI_SPI_CLOCK_CNTRL_REG);
  167. }
  168. static inline u32 qspi_is_busy(struct ti_qspi *qspi)
  169. {
  170. u32 stat;
  171. unsigned long timeout = jiffies + QSPI_COMPLETION_TIMEOUT;
  172. stat = ti_qspi_read(qspi, QSPI_SPI_STATUS_REG);
  173. while ((stat & BUSY) && time_after(timeout, jiffies)) {
  174. cpu_relax();
  175. stat = ti_qspi_read(qspi, QSPI_SPI_STATUS_REG);
  176. }
  177. WARN(stat & BUSY, "qspi busy\n");
  178. return stat & BUSY;
  179. }
  180. static inline int ti_qspi_poll_wc(struct ti_qspi *qspi)
  181. {
  182. u32 stat;
  183. unsigned long timeout = jiffies + QSPI_COMPLETION_TIMEOUT;
  184. do {
  185. stat = ti_qspi_read(qspi, QSPI_SPI_STATUS_REG);
  186. if (stat & WC)
  187. return 0;
  188. cpu_relax();
  189. } while (time_after(timeout, jiffies));
  190. stat = ti_qspi_read(qspi, QSPI_SPI_STATUS_REG);
  191. if (stat & WC)
  192. return 0;
  193. return -ETIMEDOUT;
  194. }
  195. static int qspi_write_msg(struct ti_qspi *qspi, struct spi_transfer *t,
  196. int count)
  197. {
  198. int wlen, xfer_len;
  199. unsigned int cmd;
  200. const u8 *txbuf;
  201. u32 data;
  202. txbuf = t->tx_buf;
  203. cmd = qspi->cmd | QSPI_WR_SNGL;
  204. wlen = t->bits_per_word >> 3; /* in bytes */
  205. xfer_len = wlen;
  206. while (count) {
  207. if (qspi_is_busy(qspi))
  208. return -EBUSY;
  209. switch (wlen) {
  210. case 1:
  211. dev_dbg(qspi->dev, "tx cmd %08x dc %08x data %02x\n",
  212. cmd, qspi->dc, *txbuf);
  213. if (count >= QSPI_WLEN_MAX_BYTES) {
  214. u32 *txp = (u32 *)txbuf;
  215. data = cpu_to_be32(*txp++);
  216. writel(data, qspi->base +
  217. QSPI_SPI_DATA_REG_3);
  218. data = cpu_to_be32(*txp++);
  219. writel(data, qspi->base +
  220. QSPI_SPI_DATA_REG_2);
  221. data = cpu_to_be32(*txp++);
  222. writel(data, qspi->base +
  223. QSPI_SPI_DATA_REG_1);
  224. data = cpu_to_be32(*txp++);
  225. writel(data, qspi->base +
  226. QSPI_SPI_DATA_REG);
  227. xfer_len = QSPI_WLEN_MAX_BYTES;
  228. cmd |= QSPI_WLEN(QSPI_WLEN_MAX_BITS);
  229. } else {
  230. writeb(*txbuf, qspi->base + QSPI_SPI_DATA_REG);
  231. cmd = qspi->cmd | QSPI_WR_SNGL;
  232. xfer_len = wlen;
  233. cmd |= QSPI_WLEN(wlen);
  234. }
  235. break;
  236. case 2:
  237. dev_dbg(qspi->dev, "tx cmd %08x dc %08x data %04x\n",
  238. cmd, qspi->dc, *txbuf);
  239. writew(*((u16 *)txbuf), qspi->base + QSPI_SPI_DATA_REG);
  240. break;
  241. case 4:
  242. dev_dbg(qspi->dev, "tx cmd %08x dc %08x data %08x\n",
  243. cmd, qspi->dc, *txbuf);
  244. writel(*((u32 *)txbuf), qspi->base + QSPI_SPI_DATA_REG);
  245. break;
  246. }
  247. ti_qspi_write(qspi, cmd, QSPI_SPI_CMD_REG);
  248. if (ti_qspi_poll_wc(qspi)) {
  249. dev_err(qspi->dev, "write timed out\n");
  250. return -ETIMEDOUT;
  251. }
  252. txbuf += xfer_len;
  253. count -= xfer_len;
  254. }
  255. return 0;
  256. }
  257. static int qspi_read_msg(struct ti_qspi *qspi, struct spi_transfer *t,
  258. int count)
  259. {
  260. int wlen;
  261. unsigned int cmd;
  262. u32 rx;
  263. u8 rxlen, rx_wlen;
  264. u8 *rxbuf;
  265. rxbuf = t->rx_buf;
  266. cmd = qspi->cmd;
  267. switch (t->rx_nbits) {
  268. case SPI_NBITS_DUAL:
  269. cmd |= QSPI_RD_DUAL;
  270. break;
  271. case SPI_NBITS_QUAD:
  272. cmd |= QSPI_RD_QUAD;
  273. break;
  274. default:
  275. cmd |= QSPI_RD_SNGL;
  276. break;
  277. }
  278. wlen = t->bits_per_word >> 3; /* in bytes */
  279. rx_wlen = wlen;
  280. while (count) {
  281. dev_dbg(qspi->dev, "rx cmd %08x dc %08x\n", cmd, qspi->dc);
  282. if (qspi_is_busy(qspi))
  283. return -EBUSY;
  284. switch (wlen) {
  285. case 1:
  286. /*
  287. * Optimize the 8-bit words transfers, as used by
  288. * the SPI flash devices.
  289. */
  290. if (count >= QSPI_WLEN_MAX_BYTES) {
  291. rxlen = QSPI_WLEN_MAX_BYTES;
  292. } else {
  293. rxlen = min(count, 4);
  294. }
  295. rx_wlen = rxlen << 3;
  296. cmd &= ~QSPI_WLEN_MASK;
  297. cmd |= QSPI_WLEN(rx_wlen);
  298. break;
  299. default:
  300. rxlen = wlen;
  301. break;
  302. }
  303. ti_qspi_write(qspi, cmd, QSPI_SPI_CMD_REG);
  304. if (ti_qspi_poll_wc(qspi)) {
  305. dev_err(qspi->dev, "read timed out\n");
  306. return -ETIMEDOUT;
  307. }
  308. switch (wlen) {
  309. case 1:
  310. /*
  311. * Optimize the 8-bit words transfers, as used by
  312. * the SPI flash devices.
  313. */
  314. if (count >= QSPI_WLEN_MAX_BYTES) {
  315. u32 *rxp = (u32 *) rxbuf;
  316. rx = readl(qspi->base + QSPI_SPI_DATA_REG_3);
  317. *rxp++ = be32_to_cpu(rx);
  318. rx = readl(qspi->base + QSPI_SPI_DATA_REG_2);
  319. *rxp++ = be32_to_cpu(rx);
  320. rx = readl(qspi->base + QSPI_SPI_DATA_REG_1);
  321. *rxp++ = be32_to_cpu(rx);
  322. rx = readl(qspi->base + QSPI_SPI_DATA_REG);
  323. *rxp++ = be32_to_cpu(rx);
  324. } else {
  325. u8 *rxp = rxbuf;
  326. rx = readl(qspi->base + QSPI_SPI_DATA_REG);
  327. if (rx_wlen >= 8)
  328. *rxp++ = rx >> (rx_wlen - 8);
  329. if (rx_wlen >= 16)
  330. *rxp++ = rx >> (rx_wlen - 16);
  331. if (rx_wlen >= 24)
  332. *rxp++ = rx >> (rx_wlen - 24);
  333. if (rx_wlen >= 32)
  334. *rxp++ = rx;
  335. }
  336. break;
  337. case 2:
  338. *((u16 *)rxbuf) = readw(qspi->base + QSPI_SPI_DATA_REG);
  339. break;
  340. case 4:
  341. *((u32 *)rxbuf) = readl(qspi->base + QSPI_SPI_DATA_REG);
  342. break;
  343. }
  344. rxbuf += rxlen;
  345. count -= rxlen;
  346. }
  347. return 0;
  348. }
  349. static int qspi_transfer_msg(struct ti_qspi *qspi, struct spi_transfer *t,
  350. int count)
  351. {
  352. int ret;
  353. if (t->tx_buf) {
  354. ret = qspi_write_msg(qspi, t, count);
  355. if (ret) {
  356. dev_dbg(qspi->dev, "Error while writing\n");
  357. return ret;
  358. }
  359. }
  360. if (t->rx_buf) {
  361. ret = qspi_read_msg(qspi, t, count);
  362. if (ret) {
  363. dev_dbg(qspi->dev, "Error while reading\n");
  364. return ret;
  365. }
  366. }
  367. return 0;
  368. }
  369. static void ti_qspi_dma_callback(void *param)
  370. {
  371. struct ti_qspi *qspi = param;
  372. complete(&qspi->transfer_complete);
  373. }
  374. static int ti_qspi_dma_xfer(struct ti_qspi *qspi, dma_addr_t dma_dst,
  375. dma_addr_t dma_src, size_t len)
  376. {
  377. struct dma_chan *chan = qspi->rx_chan;
  378. dma_cookie_t cookie;
  379. enum dma_ctrl_flags flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
  380. struct dma_async_tx_descriptor *tx;
  381. int ret;
  382. unsigned long time_left;
  383. tx = dmaengine_prep_dma_memcpy(chan, dma_dst, dma_src, len, flags);
  384. if (!tx) {
  385. dev_err(qspi->dev, "device_prep_dma_memcpy error\n");
  386. return -EIO;
  387. }
  388. tx->callback = ti_qspi_dma_callback;
  389. tx->callback_param = qspi;
  390. cookie = tx->tx_submit(tx);
  391. reinit_completion(&qspi->transfer_complete);
  392. ret = dma_submit_error(cookie);
  393. if (ret) {
  394. dev_err(qspi->dev, "dma_submit_error %d\n", cookie);
  395. return -EIO;
  396. }
  397. dma_async_issue_pending(chan);
  398. time_left = wait_for_completion_timeout(&qspi->transfer_complete,
  399. msecs_to_jiffies(len));
  400. if (time_left == 0) {
  401. dmaengine_terminate_sync(chan);
  402. dev_err(qspi->dev, "DMA wait_for_completion_timeout\n");
  403. return -ETIMEDOUT;
  404. }
  405. return 0;
  406. }
  407. static int ti_qspi_dma_bounce_buffer(struct ti_qspi *qspi, loff_t offs,
  408. void *to, size_t readsize)
  409. {
  410. dma_addr_t dma_src = qspi->mmap_phys_base + offs;
  411. int ret = 0;
  412. /*
  413. * Use bounce buffer as FS like jffs2, ubifs may pass
  414. * buffers that does not belong to kernel lowmem region.
  415. */
  416. while (readsize != 0) {
  417. size_t xfer_len = min_t(size_t, QSPI_DMA_BUFFER_SIZE,
  418. readsize);
  419. ret = ti_qspi_dma_xfer(qspi, qspi->rx_bb_dma_addr,
  420. dma_src, xfer_len);
  421. if (ret != 0)
  422. return ret;
  423. memcpy(to, qspi->rx_bb_addr, xfer_len);
  424. readsize -= xfer_len;
  425. dma_src += xfer_len;
  426. to += xfer_len;
  427. }
  428. return ret;
  429. }
  430. static int ti_qspi_dma_xfer_sg(struct ti_qspi *qspi, struct sg_table rx_sg,
  431. loff_t from)
  432. {
  433. struct scatterlist *sg;
  434. dma_addr_t dma_src = qspi->mmap_phys_base + from;
  435. dma_addr_t dma_dst;
  436. int i, len, ret;
  437. for_each_sg(rx_sg.sgl, sg, rx_sg.nents, i) {
  438. dma_dst = sg_dma_address(sg);
  439. len = sg_dma_len(sg);
  440. ret = ti_qspi_dma_xfer(qspi, dma_dst, dma_src, len);
  441. if (ret)
  442. return ret;
  443. dma_src += len;
  444. }
  445. return 0;
  446. }
  447. static void ti_qspi_enable_memory_map(struct spi_device *spi)
  448. {
  449. struct ti_qspi *qspi = spi_master_get_devdata(spi->master);
  450. ti_qspi_write(qspi, MM_SWITCH, QSPI_SPI_SWITCH_REG);
  451. if (qspi->ctrl_base) {
  452. regmap_update_bits(qspi->ctrl_base, qspi->ctrl_reg,
  453. MEM_CS_MASK,
  454. MEM_CS_EN(spi->chip_select));
  455. }
  456. qspi->mmap_enabled = true;
  457. qspi->current_cs = spi->chip_select;
  458. }
  459. static void ti_qspi_disable_memory_map(struct spi_device *spi)
  460. {
  461. struct ti_qspi *qspi = spi_master_get_devdata(spi->master);
  462. ti_qspi_write(qspi, 0, QSPI_SPI_SWITCH_REG);
  463. if (qspi->ctrl_base)
  464. regmap_update_bits(qspi->ctrl_base, qspi->ctrl_reg,
  465. MEM_CS_MASK, 0);
  466. qspi->mmap_enabled = false;
  467. qspi->current_cs = -1;
  468. }
  469. static void ti_qspi_setup_mmap_read(struct spi_device *spi, u8 opcode,
  470. u8 data_nbits, u8 addr_width,
  471. u8 dummy_bytes)
  472. {
  473. struct ti_qspi *qspi = spi_master_get_devdata(spi->master);
  474. u32 memval = opcode;
  475. switch (data_nbits) {
  476. case SPI_NBITS_QUAD:
  477. memval |= QSPI_SETUP_RD_QUAD;
  478. break;
  479. case SPI_NBITS_DUAL:
  480. memval |= QSPI_SETUP_RD_DUAL;
  481. break;
  482. default:
  483. memval |= QSPI_SETUP_RD_NORMAL;
  484. break;
  485. }
  486. memval |= ((addr_width - 1) << QSPI_SETUP_ADDR_SHIFT |
  487. dummy_bytes << QSPI_SETUP_DUMMY_SHIFT);
  488. ti_qspi_write(qspi, memval,
  489. QSPI_SPI_SETUP_REG(spi->chip_select));
  490. }
  491. static int ti_qspi_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
  492. {
  493. struct ti_qspi *qspi = spi_controller_get_devdata(mem->spi->master);
  494. size_t max_len;
  495. if (op->data.dir == SPI_MEM_DATA_IN) {
  496. if (op->addr.val < qspi->mmap_size) {
  497. /* Limit MMIO to the mmaped region */
  498. if (op->addr.val + op->data.nbytes > qspi->mmap_size) {
  499. max_len = qspi->mmap_size - op->addr.val;
  500. op->data.nbytes = min((size_t) op->data.nbytes,
  501. max_len);
  502. }
  503. } else {
  504. /*
  505. * Use fallback mode (SW generated transfers) above the
  506. * mmaped region.
  507. * Adjust size to comply with the QSPI max frame length.
  508. */
  509. max_len = QSPI_FRAME;
  510. max_len -= 1 + op->addr.nbytes + op->dummy.nbytes;
  511. op->data.nbytes = min((size_t) op->data.nbytes,
  512. max_len);
  513. }
  514. }
  515. return 0;
  516. }
  517. static int ti_qspi_exec_mem_op(struct spi_mem *mem,
  518. const struct spi_mem_op *op)
  519. {
  520. struct ti_qspi *qspi = spi_master_get_devdata(mem->spi->master);
  521. u32 from = 0;
  522. int ret = 0;
  523. /* Only optimize read path. */
  524. if (!op->data.nbytes || op->data.dir != SPI_MEM_DATA_IN ||
  525. !op->addr.nbytes || op->addr.nbytes > 4)
  526. return -ENOTSUPP;
  527. /* Address exceeds MMIO window size, fall back to regular mode. */
  528. from = op->addr.val;
  529. if (from + op->data.nbytes > qspi->mmap_size)
  530. return -ENOTSUPP;
  531. mutex_lock(&qspi->list_lock);
  532. if (!qspi->mmap_enabled || qspi->current_cs != mem->spi->chip_select) {
  533. ti_qspi_setup_clk(qspi, mem->spi->max_speed_hz);
  534. ti_qspi_enable_memory_map(mem->spi);
  535. }
  536. ti_qspi_setup_mmap_read(mem->spi, op->cmd.opcode, op->data.buswidth,
  537. op->addr.nbytes, op->dummy.nbytes);
  538. if (qspi->rx_chan) {
  539. struct sg_table sgt;
  540. if (virt_addr_valid(op->data.buf.in) &&
  541. !spi_controller_dma_map_mem_op_data(mem->spi->master, op,
  542. &sgt)) {
  543. ret = ti_qspi_dma_xfer_sg(qspi, sgt, from);
  544. spi_controller_dma_unmap_mem_op_data(mem->spi->master,
  545. op, &sgt);
  546. } else {
  547. ret = ti_qspi_dma_bounce_buffer(qspi, from,
  548. op->data.buf.in,
  549. op->data.nbytes);
  550. }
  551. } else {
  552. memcpy_fromio(op->data.buf.in, qspi->mmap_base + from,
  553. op->data.nbytes);
  554. }
  555. mutex_unlock(&qspi->list_lock);
  556. return ret;
  557. }
  558. static const struct spi_controller_mem_ops ti_qspi_mem_ops = {
  559. .exec_op = ti_qspi_exec_mem_op,
  560. .adjust_op_size = ti_qspi_adjust_op_size,
  561. };
  562. static int ti_qspi_start_transfer_one(struct spi_master *master,
  563. struct spi_message *m)
  564. {
  565. struct ti_qspi *qspi = spi_master_get_devdata(master);
  566. struct spi_device *spi = m->spi;
  567. struct spi_transfer *t;
  568. int status = 0, ret;
  569. unsigned int frame_len_words, transfer_len_words;
  570. int wlen;
  571. /* setup device control reg */
  572. qspi->dc = 0;
  573. if (spi->mode & SPI_CPHA)
  574. qspi->dc |= QSPI_CKPHA(spi->chip_select);
  575. if (spi->mode & SPI_CPOL)
  576. qspi->dc |= QSPI_CKPOL(spi->chip_select);
  577. if (spi->mode & SPI_CS_HIGH)
  578. qspi->dc |= QSPI_CSPOL(spi->chip_select);
  579. frame_len_words = 0;
  580. list_for_each_entry(t, &m->transfers, transfer_list)
  581. frame_len_words += t->len / (t->bits_per_word >> 3);
  582. frame_len_words = min_t(unsigned int, frame_len_words, QSPI_FRAME);
  583. /* setup command reg */
  584. qspi->cmd = 0;
  585. qspi->cmd |= QSPI_EN_CS(spi->chip_select);
  586. qspi->cmd |= QSPI_FLEN(frame_len_words);
  587. ti_qspi_write(qspi, qspi->dc, QSPI_SPI_DC_REG);
  588. mutex_lock(&qspi->list_lock);
  589. if (qspi->mmap_enabled)
  590. ti_qspi_disable_memory_map(spi);
  591. list_for_each_entry(t, &m->transfers, transfer_list) {
  592. qspi->cmd = ((qspi->cmd & ~QSPI_WLEN_MASK) |
  593. QSPI_WLEN(t->bits_per_word));
  594. wlen = t->bits_per_word >> 3;
  595. transfer_len_words = min(t->len / wlen, frame_len_words);
  596. ti_qspi_setup_clk(qspi, t->speed_hz);
  597. ret = qspi_transfer_msg(qspi, t, transfer_len_words * wlen);
  598. if (ret) {
  599. dev_dbg(qspi->dev, "transfer message failed\n");
  600. mutex_unlock(&qspi->list_lock);
  601. return -EINVAL;
  602. }
  603. m->actual_length += transfer_len_words * wlen;
  604. frame_len_words -= transfer_len_words;
  605. if (frame_len_words == 0)
  606. break;
  607. }
  608. mutex_unlock(&qspi->list_lock);
  609. ti_qspi_write(qspi, qspi->cmd | QSPI_INVAL, QSPI_SPI_CMD_REG);
  610. m->status = status;
  611. spi_finalize_current_message(master);
  612. return status;
  613. }
  614. static int ti_qspi_runtime_resume(struct device *dev)
  615. {
  616. struct ti_qspi *qspi;
  617. qspi = dev_get_drvdata(dev);
  618. ti_qspi_restore_ctx(qspi);
  619. return 0;
  620. }
  621. static void ti_qspi_dma_cleanup(struct ti_qspi *qspi)
  622. {
  623. if (qspi->rx_bb_addr)
  624. dma_free_coherent(qspi->dev, QSPI_DMA_BUFFER_SIZE,
  625. qspi->rx_bb_addr,
  626. qspi->rx_bb_dma_addr);
  627. if (qspi->rx_chan)
  628. dma_release_channel(qspi->rx_chan);
  629. }
  630. static const struct of_device_id ti_qspi_match[] = {
  631. {.compatible = "ti,dra7xxx-qspi" },
  632. {.compatible = "ti,am4372-qspi" },
  633. {},
  634. };
  635. MODULE_DEVICE_TABLE(of, ti_qspi_match);
  636. static int ti_qspi_probe(struct platform_device *pdev)
  637. {
  638. struct ti_qspi *qspi;
  639. struct spi_master *master;
  640. struct resource *r, *res_mmap;
  641. struct device_node *np = pdev->dev.of_node;
  642. u32 max_freq;
  643. int ret = 0, num_cs, irq;
  644. dma_cap_mask_t mask;
  645. master = spi_alloc_master(&pdev->dev, sizeof(*qspi));
  646. if (!master)
  647. return -ENOMEM;
  648. master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_RX_DUAL | SPI_RX_QUAD;
  649. master->flags = SPI_MASTER_HALF_DUPLEX;
  650. master->setup = ti_qspi_setup;
  651. master->auto_runtime_pm = true;
  652. master->transfer_one_message = ti_qspi_start_transfer_one;
  653. master->dev.of_node = pdev->dev.of_node;
  654. master->bits_per_word_mask = SPI_BPW_MASK(32) | SPI_BPW_MASK(16) |
  655. SPI_BPW_MASK(8);
  656. master->mem_ops = &ti_qspi_mem_ops;
  657. if (!of_property_read_u32(np, "num-cs", &num_cs))
  658. master->num_chipselect = num_cs;
  659. qspi = spi_master_get_devdata(master);
  660. qspi->master = master;
  661. qspi->dev = &pdev->dev;
  662. platform_set_drvdata(pdev, qspi);
  663. r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "qspi_base");
  664. if (r == NULL) {
  665. r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  666. if (r == NULL) {
  667. dev_err(&pdev->dev, "missing platform data\n");
  668. ret = -ENODEV;
  669. goto free_master;
  670. }
  671. }
  672. res_mmap = platform_get_resource_byname(pdev,
  673. IORESOURCE_MEM, "qspi_mmap");
  674. if (res_mmap == NULL) {
  675. res_mmap = platform_get_resource(pdev, IORESOURCE_MEM, 1);
  676. if (res_mmap == NULL) {
  677. dev_err(&pdev->dev,
  678. "memory mapped resource not required\n");
  679. }
  680. }
  681. if (res_mmap)
  682. qspi->mmap_size = resource_size(res_mmap);
  683. irq = platform_get_irq(pdev, 0);
  684. if (irq < 0) {
  685. ret = irq;
  686. goto free_master;
  687. }
  688. mutex_init(&qspi->list_lock);
  689. qspi->base = devm_ioremap_resource(&pdev->dev, r);
  690. if (IS_ERR(qspi->base)) {
  691. ret = PTR_ERR(qspi->base);
  692. goto free_master;
  693. }
  694. if (of_property_read_bool(np, "syscon-chipselects")) {
  695. qspi->ctrl_base =
  696. syscon_regmap_lookup_by_phandle(np,
  697. "syscon-chipselects");
  698. if (IS_ERR(qspi->ctrl_base)) {
  699. ret = PTR_ERR(qspi->ctrl_base);
  700. goto free_master;
  701. }
  702. ret = of_property_read_u32_index(np,
  703. "syscon-chipselects",
  704. 1, &qspi->ctrl_reg);
  705. if (ret) {
  706. dev_err(&pdev->dev,
  707. "couldn't get ctrl_mod reg index\n");
  708. goto free_master;
  709. }
  710. }
  711. qspi->fclk = devm_clk_get(&pdev->dev, "fck");
  712. if (IS_ERR(qspi->fclk)) {
  713. ret = PTR_ERR(qspi->fclk);
  714. dev_err(&pdev->dev, "could not get clk: %d\n", ret);
  715. }
  716. pm_runtime_use_autosuspend(&pdev->dev);
  717. pm_runtime_set_autosuspend_delay(&pdev->dev, QSPI_AUTOSUSPEND_TIMEOUT);
  718. pm_runtime_enable(&pdev->dev);
  719. if (!of_property_read_u32(np, "spi-max-frequency", &max_freq))
  720. master->max_speed_hz = max_freq;
  721. dma_cap_zero(mask);
  722. dma_cap_set(DMA_MEMCPY, mask);
  723. qspi->rx_chan = dma_request_chan_by_mask(&mask);
  724. if (IS_ERR(qspi->rx_chan)) {
  725. dev_err(qspi->dev,
  726. "No Rx DMA available, trying mmap mode\n");
  727. qspi->rx_chan = NULL;
  728. ret = 0;
  729. goto no_dma;
  730. }
  731. qspi->rx_bb_addr = dma_alloc_coherent(qspi->dev,
  732. QSPI_DMA_BUFFER_SIZE,
  733. &qspi->rx_bb_dma_addr,
  734. GFP_KERNEL | GFP_DMA);
  735. if (!qspi->rx_bb_addr) {
  736. dev_err(qspi->dev,
  737. "dma_alloc_coherent failed, using PIO mode\n");
  738. dma_release_channel(qspi->rx_chan);
  739. goto no_dma;
  740. }
  741. master->dma_rx = qspi->rx_chan;
  742. init_completion(&qspi->transfer_complete);
  743. if (res_mmap)
  744. qspi->mmap_phys_base = (dma_addr_t)res_mmap->start;
  745. no_dma:
  746. if (!qspi->rx_chan && res_mmap) {
  747. qspi->mmap_base = devm_ioremap_resource(&pdev->dev, res_mmap);
  748. if (IS_ERR(qspi->mmap_base)) {
  749. dev_info(&pdev->dev,
  750. "mmap failed with error %ld using PIO mode\n",
  751. PTR_ERR(qspi->mmap_base));
  752. qspi->mmap_base = NULL;
  753. master->mem_ops = NULL;
  754. }
  755. }
  756. qspi->mmap_enabled = false;
  757. qspi->current_cs = -1;
  758. ret = devm_spi_register_master(&pdev->dev, master);
  759. if (!ret)
  760. return 0;
  761. ti_qspi_dma_cleanup(qspi);
  762. pm_runtime_disable(&pdev->dev);
  763. free_master:
  764. spi_master_put(master);
  765. return ret;
  766. }
  767. static int ti_qspi_remove(struct platform_device *pdev)
  768. {
  769. struct ti_qspi *qspi = platform_get_drvdata(pdev);
  770. int rc;
  771. rc = spi_master_suspend(qspi->master);
  772. if (rc)
  773. return rc;
  774. pm_runtime_put_sync(&pdev->dev);
  775. pm_runtime_disable(&pdev->dev);
  776. ti_qspi_dma_cleanup(qspi);
  777. return 0;
  778. }
  779. static const struct dev_pm_ops ti_qspi_pm_ops = {
  780. .runtime_resume = ti_qspi_runtime_resume,
  781. };
  782. static struct platform_driver ti_qspi_driver = {
  783. .probe = ti_qspi_probe,
  784. .remove = ti_qspi_remove,
  785. .driver = {
  786. .name = "ti-qspi",
  787. .pm = &ti_qspi_pm_ops,
  788. .of_match_table = ti_qspi_match,
  789. }
  790. };
  791. module_platform_driver(ti_qspi_driver);
  792. MODULE_AUTHOR("Sourav Poddar <[email protected]>");
  793. MODULE_LICENSE("GPL v2");
  794. MODULE_DESCRIPTION("TI QSPI controller driver");
  795. MODULE_ALIAS("platform:ti-qspi");