spi-sh-msiof.c 39 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * SuperH MSIOF SPI Controller Interface
  4. *
  5. * Copyright (c) 2009 Magnus Damm
  6. * Copyright (C) 2014 Renesas Electronics Corporation
  7. * Copyright (C) 2014-2017 Glider bvba
  8. */
  9. #include <linux/bitmap.h>
  10. #include <linux/clk.h>
  11. #include <linux/completion.h>
  12. #include <linux/delay.h>
  13. #include <linux/dma-mapping.h>
  14. #include <linux/dmaengine.h>
  15. #include <linux/err.h>
  16. #include <linux/interrupt.h>
  17. #include <linux/io.h>
  18. #include <linux/iopoll.h>
  19. #include <linux/kernel.h>
  20. #include <linux/module.h>
  21. #include <linux/of.h>
  22. #include <linux/of_device.h>
  23. #include <linux/platform_device.h>
  24. #include <linux/pm_runtime.h>
  25. #include <linux/sh_dma.h>
  26. #include <linux/spi/sh_msiof.h>
  27. #include <linux/spi/spi.h>
  28. #include <asm/unaligned.h>
  29. struct sh_msiof_chipdata {
  30. u32 bits_per_word_mask;
  31. u16 tx_fifo_size;
  32. u16 rx_fifo_size;
  33. u16 ctlr_flags;
  34. u16 min_div_pow;
  35. };
  36. struct sh_msiof_spi_priv {
  37. struct spi_controller *ctlr;
  38. void __iomem *mapbase;
  39. struct clk *clk;
  40. struct platform_device *pdev;
  41. struct sh_msiof_spi_info *info;
  42. struct completion done;
  43. struct completion done_txdma;
  44. unsigned int tx_fifo_size;
  45. unsigned int rx_fifo_size;
  46. unsigned int min_div_pow;
  47. void *tx_dma_page;
  48. void *rx_dma_page;
  49. dma_addr_t tx_dma_addr;
  50. dma_addr_t rx_dma_addr;
  51. bool native_cs_inited;
  52. bool native_cs_high;
  53. bool slave_aborted;
  54. };
  55. #define MAX_SS 3 /* Maximum number of native chip selects */
  56. #define SITMDR1 0x00 /* Transmit Mode Register 1 */
  57. #define SITMDR2 0x04 /* Transmit Mode Register 2 */
  58. #define SITMDR3 0x08 /* Transmit Mode Register 3 */
  59. #define SIRMDR1 0x10 /* Receive Mode Register 1 */
  60. #define SIRMDR2 0x14 /* Receive Mode Register 2 */
  61. #define SIRMDR3 0x18 /* Receive Mode Register 3 */
  62. #define SITSCR 0x20 /* Transmit Clock Select Register */
  63. #define SIRSCR 0x22 /* Receive Clock Select Register (SH, A1, APE6) */
  64. #define SICTR 0x28 /* Control Register */
  65. #define SIFCTR 0x30 /* FIFO Control Register */
  66. #define SISTR 0x40 /* Status Register */
  67. #define SIIER 0x44 /* Interrupt Enable Register */
  68. #define SITDR1 0x48 /* Transmit Control Data Register 1 (SH, A1) */
  69. #define SITDR2 0x4c /* Transmit Control Data Register 2 (SH, A1) */
  70. #define SITFDR 0x50 /* Transmit FIFO Data Register */
  71. #define SIRDR1 0x58 /* Receive Control Data Register 1 (SH, A1) */
  72. #define SIRDR2 0x5c /* Receive Control Data Register 2 (SH, A1) */
  73. #define SIRFDR 0x60 /* Receive FIFO Data Register */
  74. /* SITMDR1 and SIRMDR1 */
  75. #define SIMDR1_TRMD BIT(31) /* Transfer Mode (1 = Master mode) */
  76. #define SIMDR1_SYNCMD_MASK GENMASK(29, 28) /* SYNC Mode */
  77. #define SIMDR1_SYNCMD_SPI (2 << 28) /* Level mode/SPI */
  78. #define SIMDR1_SYNCMD_LR (3 << 28) /* L/R mode */
  79. #define SIMDR1_SYNCAC_SHIFT 25 /* Sync Polarity (1 = Active-low) */
  80. #define SIMDR1_BITLSB_SHIFT 24 /* MSB/LSB First (1 = LSB first) */
  81. #define SIMDR1_DTDL_SHIFT 20 /* Data Pin Bit Delay for MSIOF_SYNC */
  82. #define SIMDR1_SYNCDL_SHIFT 16 /* Frame Sync Signal Timing Delay */
  83. #define SIMDR1_FLD_MASK GENMASK(3, 2) /* Frame Sync Signal Interval (0-3) */
  84. #define SIMDR1_FLD_SHIFT 2
  85. #define SIMDR1_XXSTP BIT(0) /* Transmission/Reception Stop on FIFO */
  86. /* SITMDR1 */
  87. #define SITMDR1_PCON BIT(30) /* Transfer Signal Connection */
  88. #define SITMDR1_SYNCCH_MASK GENMASK(27, 26) /* Sync Signal Channel Select */
  89. #define SITMDR1_SYNCCH_SHIFT 26 /* 0=MSIOF_SYNC, 1=MSIOF_SS1, 2=MSIOF_SS2 */
  90. /* SITMDR2 and SIRMDR2 */
  91. #define SIMDR2_BITLEN1(i) (((i) - 1) << 24) /* Data Size (8-32 bits) */
  92. #define SIMDR2_WDLEN1(i) (((i) - 1) << 16) /* Word Count (1-64/256 (SH, A1))) */
  93. #define SIMDR2_GRPMASK1 BIT(0) /* Group Output Mask 1 (SH, A1) */
  94. /* SITSCR and SIRSCR */
  95. #define SISCR_BRPS_MASK GENMASK(12, 8) /* Prescaler Setting (1-32) */
  96. #define SISCR_BRPS(i) (((i) - 1) << 8)
  97. #define SISCR_BRDV_MASK GENMASK(2, 0) /* Baud Rate Generator's Division Ratio */
  98. #define SISCR_BRDV_DIV_2 0
  99. #define SISCR_BRDV_DIV_4 1
  100. #define SISCR_BRDV_DIV_8 2
  101. #define SISCR_BRDV_DIV_16 3
  102. #define SISCR_BRDV_DIV_32 4
  103. #define SISCR_BRDV_DIV_1 7
  104. /* SICTR */
  105. #define SICTR_TSCKIZ_MASK GENMASK(31, 30) /* Transmit Clock I/O Polarity Select */
  106. #define SICTR_TSCKIZ_SCK BIT(31) /* Disable SCK when TX disabled */
  107. #define SICTR_TSCKIZ_POL_SHIFT 30 /* Transmit Clock Polarity */
  108. #define SICTR_RSCKIZ_MASK GENMASK(29, 28) /* Receive Clock Polarity Select */
  109. #define SICTR_RSCKIZ_SCK BIT(29) /* Must match CTR_TSCKIZ_SCK */
  110. #define SICTR_RSCKIZ_POL_SHIFT 28 /* Receive Clock Polarity */
  111. #define SICTR_TEDG_SHIFT 27 /* Transmit Timing (1 = falling edge) */
  112. #define SICTR_REDG_SHIFT 26 /* Receive Timing (1 = falling edge) */
  113. #define SICTR_TXDIZ_MASK GENMASK(23, 22) /* Pin Output When TX is Disabled */
  114. #define SICTR_TXDIZ_LOW (0 << 22) /* 0 */
  115. #define SICTR_TXDIZ_HIGH (1 << 22) /* 1 */
  116. #define SICTR_TXDIZ_HIZ (2 << 22) /* High-impedance */
  117. #define SICTR_TSCKE BIT(15) /* Transmit Serial Clock Output Enable */
  118. #define SICTR_TFSE BIT(14) /* Transmit Frame Sync Signal Output Enable */
  119. #define SICTR_TXE BIT(9) /* Transmit Enable */
  120. #define SICTR_RXE BIT(8) /* Receive Enable */
  121. #define SICTR_TXRST BIT(1) /* Transmit Reset */
  122. #define SICTR_RXRST BIT(0) /* Receive Reset */
  123. /* SIFCTR */
  124. #define SIFCTR_TFWM_MASK GENMASK(31, 29) /* Transmit FIFO Watermark */
  125. #define SIFCTR_TFWM_64 (0 << 29) /* Transfer Request when 64 empty stages */
  126. #define SIFCTR_TFWM_32 (1 << 29) /* Transfer Request when 32 empty stages */
  127. #define SIFCTR_TFWM_24 (2 << 29) /* Transfer Request when 24 empty stages */
  128. #define SIFCTR_TFWM_16 (3 << 29) /* Transfer Request when 16 empty stages */
  129. #define SIFCTR_TFWM_12 (4 << 29) /* Transfer Request when 12 empty stages */
  130. #define SIFCTR_TFWM_8 (5 << 29) /* Transfer Request when 8 empty stages */
  131. #define SIFCTR_TFWM_4 (6 << 29) /* Transfer Request when 4 empty stages */
  132. #define SIFCTR_TFWM_1 (7 << 29) /* Transfer Request when 1 empty stage */
  133. #define SIFCTR_TFUA_MASK GENMASK(26, 20) /* Transmit FIFO Usable Area */
  134. #define SIFCTR_TFUA_SHIFT 20
  135. #define SIFCTR_TFUA(i) ((i) << SIFCTR_TFUA_SHIFT)
  136. #define SIFCTR_RFWM_MASK GENMASK(15, 13) /* Receive FIFO Watermark */
  137. #define SIFCTR_RFWM_1 (0 << 13) /* Transfer Request when 1 valid stages */
  138. #define SIFCTR_RFWM_4 (1 << 13) /* Transfer Request when 4 valid stages */
  139. #define SIFCTR_RFWM_8 (2 << 13) /* Transfer Request when 8 valid stages */
  140. #define SIFCTR_RFWM_16 (3 << 13) /* Transfer Request when 16 valid stages */
  141. #define SIFCTR_RFWM_32 (4 << 13) /* Transfer Request when 32 valid stages */
  142. #define SIFCTR_RFWM_64 (5 << 13) /* Transfer Request when 64 valid stages */
  143. #define SIFCTR_RFWM_128 (6 << 13) /* Transfer Request when 128 valid stages */
  144. #define SIFCTR_RFWM_256 (7 << 13) /* Transfer Request when 256 valid stages */
  145. #define SIFCTR_RFUA_MASK GENMASK(12, 4) /* Receive FIFO Usable Area (0x40 = full) */
  146. #define SIFCTR_RFUA_SHIFT 4
  147. #define SIFCTR_RFUA(i) ((i) << SIFCTR_RFUA_SHIFT)
  148. /* SISTR */
  149. #define SISTR_TFEMP BIT(29) /* Transmit FIFO Empty */
  150. #define SISTR_TDREQ BIT(28) /* Transmit Data Transfer Request */
  151. #define SISTR_TEOF BIT(23) /* Frame Transmission End */
  152. #define SISTR_TFSERR BIT(21) /* Transmit Frame Synchronization Error */
  153. #define SISTR_TFOVF BIT(20) /* Transmit FIFO Overflow */
  154. #define SISTR_TFUDF BIT(19) /* Transmit FIFO Underflow */
  155. #define SISTR_RFFUL BIT(13) /* Receive FIFO Full */
  156. #define SISTR_RDREQ BIT(12) /* Receive Data Transfer Request */
  157. #define SISTR_REOF BIT(7) /* Frame Reception End */
  158. #define SISTR_RFSERR BIT(5) /* Receive Frame Synchronization Error */
  159. #define SISTR_RFUDF BIT(4) /* Receive FIFO Underflow */
  160. #define SISTR_RFOVF BIT(3) /* Receive FIFO Overflow */
  161. /* SIIER */
  162. #define SIIER_TDMAE BIT(31) /* Transmit Data DMA Transfer Req. Enable */
  163. #define SIIER_TFEMPE BIT(29) /* Transmit FIFO Empty Enable */
  164. #define SIIER_TDREQE BIT(28) /* Transmit Data Transfer Request Enable */
  165. #define SIIER_TEOFE BIT(23) /* Frame Transmission End Enable */
  166. #define SIIER_TFSERRE BIT(21) /* Transmit Frame Sync Error Enable */
  167. #define SIIER_TFOVFE BIT(20) /* Transmit FIFO Overflow Enable */
  168. #define SIIER_TFUDFE BIT(19) /* Transmit FIFO Underflow Enable */
  169. #define SIIER_RDMAE BIT(15) /* Receive Data DMA Transfer Req. Enable */
  170. #define SIIER_RFFULE BIT(13) /* Receive FIFO Full Enable */
  171. #define SIIER_RDREQE BIT(12) /* Receive Data Transfer Request Enable */
  172. #define SIIER_REOFE BIT(7) /* Frame Reception End Enable */
  173. #define SIIER_RFSERRE BIT(5) /* Receive Frame Sync Error Enable */
  174. #define SIIER_RFUDFE BIT(4) /* Receive FIFO Underflow Enable */
  175. #define SIIER_RFOVFE BIT(3) /* Receive FIFO Overflow Enable */
  176. static u32 sh_msiof_read(struct sh_msiof_spi_priv *p, int reg_offs)
  177. {
  178. switch (reg_offs) {
  179. case SITSCR:
  180. case SIRSCR:
  181. return ioread16(p->mapbase + reg_offs);
  182. default:
  183. return ioread32(p->mapbase + reg_offs);
  184. }
  185. }
  186. static void sh_msiof_write(struct sh_msiof_spi_priv *p, int reg_offs,
  187. u32 value)
  188. {
  189. switch (reg_offs) {
  190. case SITSCR:
  191. case SIRSCR:
  192. iowrite16(value, p->mapbase + reg_offs);
  193. break;
  194. default:
  195. iowrite32(value, p->mapbase + reg_offs);
  196. break;
  197. }
  198. }
  199. static int sh_msiof_modify_ctr_wait(struct sh_msiof_spi_priv *p,
  200. u32 clr, u32 set)
  201. {
  202. u32 mask = clr | set;
  203. u32 data;
  204. data = sh_msiof_read(p, SICTR);
  205. data &= ~clr;
  206. data |= set;
  207. sh_msiof_write(p, SICTR, data);
  208. return readl_poll_timeout_atomic(p->mapbase + SICTR, data,
  209. (data & mask) == set, 1, 100);
  210. }
  211. static irqreturn_t sh_msiof_spi_irq(int irq, void *data)
  212. {
  213. struct sh_msiof_spi_priv *p = data;
  214. /* just disable the interrupt and wake up */
  215. sh_msiof_write(p, SIIER, 0);
  216. complete(&p->done);
  217. return IRQ_HANDLED;
  218. }
  219. static void sh_msiof_spi_reset_regs(struct sh_msiof_spi_priv *p)
  220. {
  221. u32 mask = SICTR_TXRST | SICTR_RXRST;
  222. u32 data;
  223. data = sh_msiof_read(p, SICTR);
  224. data |= mask;
  225. sh_msiof_write(p, SICTR, data);
  226. readl_poll_timeout_atomic(p->mapbase + SICTR, data, !(data & mask), 1,
  227. 100);
  228. }
  229. static const u32 sh_msiof_spi_div_array[] = {
  230. SISCR_BRDV_DIV_1, SISCR_BRDV_DIV_2, SISCR_BRDV_DIV_4,
  231. SISCR_BRDV_DIV_8, SISCR_BRDV_DIV_16, SISCR_BRDV_DIV_32,
  232. };
  233. static void sh_msiof_spi_set_clk_regs(struct sh_msiof_spi_priv *p,
  234. struct spi_transfer *t)
  235. {
  236. unsigned long parent_rate = clk_get_rate(p->clk);
  237. unsigned int div_pow = p->min_div_pow;
  238. u32 spi_hz = t->speed_hz;
  239. unsigned long div;
  240. u32 brps, scr;
  241. if (!spi_hz || !parent_rate) {
  242. WARN(1, "Invalid clock rate parameters %lu and %u\n",
  243. parent_rate, spi_hz);
  244. return;
  245. }
  246. div = DIV_ROUND_UP(parent_rate, spi_hz);
  247. if (div <= 1024) {
  248. /* SISCR_BRDV_DIV_1 is valid only if BRPS is x 1/1 or x 1/2 */
  249. if (!div_pow && div <= 32 && div > 2)
  250. div_pow = 1;
  251. if (div_pow)
  252. brps = (div + 1) >> div_pow;
  253. else
  254. brps = div;
  255. for (; brps > 32; div_pow++)
  256. brps = (brps + 1) >> 1;
  257. } else {
  258. /* Set transfer rate composite divisor to 2^5 * 32 = 1024 */
  259. dev_err(&p->pdev->dev,
  260. "Requested SPI transfer rate %d is too low\n", spi_hz);
  261. div_pow = 5;
  262. brps = 32;
  263. }
  264. t->effective_speed_hz = parent_rate / (brps << div_pow);
  265. scr = sh_msiof_spi_div_array[div_pow] | SISCR_BRPS(brps);
  266. sh_msiof_write(p, SITSCR, scr);
  267. if (!(p->ctlr->flags & SPI_CONTROLLER_MUST_TX))
  268. sh_msiof_write(p, SIRSCR, scr);
  269. }
  270. static u32 sh_msiof_get_delay_bit(u32 dtdl_or_syncdl)
  271. {
  272. /*
  273. * DTDL/SYNCDL bit : p->info->dtdl or p->info->syncdl
  274. * b'000 : 0
  275. * b'001 : 100
  276. * b'010 : 200
  277. * b'011 (SYNCDL only) : 300
  278. * b'101 : 50
  279. * b'110 : 150
  280. */
  281. if (dtdl_or_syncdl % 100)
  282. return dtdl_or_syncdl / 100 + 5;
  283. else
  284. return dtdl_or_syncdl / 100;
  285. }
  286. static u32 sh_msiof_spi_get_dtdl_and_syncdl(struct sh_msiof_spi_priv *p)
  287. {
  288. u32 val;
  289. if (!p->info)
  290. return 0;
  291. /* check if DTDL and SYNCDL is allowed value */
  292. if (p->info->dtdl > 200 || p->info->syncdl > 300) {
  293. dev_warn(&p->pdev->dev, "DTDL or SYNCDL is too large\n");
  294. return 0;
  295. }
  296. /* check if the sum of DTDL and SYNCDL becomes an integer value */
  297. if ((p->info->dtdl + p->info->syncdl) % 100) {
  298. dev_warn(&p->pdev->dev, "the sum of DTDL/SYNCDL is not good\n");
  299. return 0;
  300. }
  301. val = sh_msiof_get_delay_bit(p->info->dtdl) << SIMDR1_DTDL_SHIFT;
  302. val |= sh_msiof_get_delay_bit(p->info->syncdl) << SIMDR1_SYNCDL_SHIFT;
  303. return val;
  304. }
  305. static void sh_msiof_spi_set_pin_regs(struct sh_msiof_spi_priv *p, u32 ss,
  306. u32 cpol, u32 cpha,
  307. u32 tx_hi_z, u32 lsb_first, u32 cs_high)
  308. {
  309. u32 tmp;
  310. int edge;
  311. /*
  312. * CPOL CPHA TSCKIZ RSCKIZ TEDG REDG
  313. * 0 0 10 10 1 1
  314. * 0 1 10 10 0 0
  315. * 1 0 11 11 0 0
  316. * 1 1 11 11 1 1
  317. */
  318. tmp = SIMDR1_SYNCMD_SPI | 1 << SIMDR1_FLD_SHIFT | SIMDR1_XXSTP;
  319. tmp |= !cs_high << SIMDR1_SYNCAC_SHIFT;
  320. tmp |= lsb_first << SIMDR1_BITLSB_SHIFT;
  321. tmp |= sh_msiof_spi_get_dtdl_and_syncdl(p);
  322. if (spi_controller_is_slave(p->ctlr)) {
  323. sh_msiof_write(p, SITMDR1, tmp | SITMDR1_PCON);
  324. } else {
  325. sh_msiof_write(p, SITMDR1,
  326. tmp | SIMDR1_TRMD | SITMDR1_PCON |
  327. (ss < MAX_SS ? ss : 0) << SITMDR1_SYNCCH_SHIFT);
  328. }
  329. if (p->ctlr->flags & SPI_CONTROLLER_MUST_TX) {
  330. /* These bits are reserved if RX needs TX */
  331. tmp &= ~0x0000ffff;
  332. }
  333. sh_msiof_write(p, SIRMDR1, tmp);
  334. tmp = 0;
  335. tmp |= SICTR_TSCKIZ_SCK | cpol << SICTR_TSCKIZ_POL_SHIFT;
  336. tmp |= SICTR_RSCKIZ_SCK | cpol << SICTR_RSCKIZ_POL_SHIFT;
  337. edge = cpol ^ !cpha;
  338. tmp |= edge << SICTR_TEDG_SHIFT;
  339. tmp |= edge << SICTR_REDG_SHIFT;
  340. tmp |= tx_hi_z ? SICTR_TXDIZ_HIZ : SICTR_TXDIZ_LOW;
  341. sh_msiof_write(p, SICTR, tmp);
  342. }
  343. static void sh_msiof_spi_set_mode_regs(struct sh_msiof_spi_priv *p,
  344. const void *tx_buf, void *rx_buf,
  345. u32 bits, u32 words)
  346. {
  347. u32 dr2 = SIMDR2_BITLEN1(bits) | SIMDR2_WDLEN1(words);
  348. if (tx_buf || (p->ctlr->flags & SPI_CONTROLLER_MUST_TX))
  349. sh_msiof_write(p, SITMDR2, dr2);
  350. else
  351. sh_msiof_write(p, SITMDR2, dr2 | SIMDR2_GRPMASK1);
  352. if (rx_buf)
  353. sh_msiof_write(p, SIRMDR2, dr2);
  354. }
  355. static void sh_msiof_reset_str(struct sh_msiof_spi_priv *p)
  356. {
  357. sh_msiof_write(p, SISTR,
  358. sh_msiof_read(p, SISTR) & ~(SISTR_TDREQ | SISTR_RDREQ));
  359. }
  360. static void sh_msiof_spi_write_fifo_8(struct sh_msiof_spi_priv *p,
  361. const void *tx_buf, int words, int fs)
  362. {
  363. const u8 *buf_8 = tx_buf;
  364. int k;
  365. for (k = 0; k < words; k++)
  366. sh_msiof_write(p, SITFDR, buf_8[k] << fs);
  367. }
  368. static void sh_msiof_spi_write_fifo_16(struct sh_msiof_spi_priv *p,
  369. const void *tx_buf, int words, int fs)
  370. {
  371. const u16 *buf_16 = tx_buf;
  372. int k;
  373. for (k = 0; k < words; k++)
  374. sh_msiof_write(p, SITFDR, buf_16[k] << fs);
  375. }
  376. static void sh_msiof_spi_write_fifo_16u(struct sh_msiof_spi_priv *p,
  377. const void *tx_buf, int words, int fs)
  378. {
  379. const u16 *buf_16 = tx_buf;
  380. int k;
  381. for (k = 0; k < words; k++)
  382. sh_msiof_write(p, SITFDR, get_unaligned(&buf_16[k]) << fs);
  383. }
  384. static void sh_msiof_spi_write_fifo_32(struct sh_msiof_spi_priv *p,
  385. const void *tx_buf, int words, int fs)
  386. {
  387. const u32 *buf_32 = tx_buf;
  388. int k;
  389. for (k = 0; k < words; k++)
  390. sh_msiof_write(p, SITFDR, buf_32[k] << fs);
  391. }
  392. static void sh_msiof_spi_write_fifo_32u(struct sh_msiof_spi_priv *p,
  393. const void *tx_buf, int words, int fs)
  394. {
  395. const u32 *buf_32 = tx_buf;
  396. int k;
  397. for (k = 0; k < words; k++)
  398. sh_msiof_write(p, SITFDR, get_unaligned(&buf_32[k]) << fs);
  399. }
  400. static void sh_msiof_spi_write_fifo_s32(struct sh_msiof_spi_priv *p,
  401. const void *tx_buf, int words, int fs)
  402. {
  403. const u32 *buf_32 = tx_buf;
  404. int k;
  405. for (k = 0; k < words; k++)
  406. sh_msiof_write(p, SITFDR, swab32(buf_32[k] << fs));
  407. }
  408. static void sh_msiof_spi_write_fifo_s32u(struct sh_msiof_spi_priv *p,
  409. const void *tx_buf, int words, int fs)
  410. {
  411. const u32 *buf_32 = tx_buf;
  412. int k;
  413. for (k = 0; k < words; k++)
  414. sh_msiof_write(p, SITFDR, swab32(get_unaligned(&buf_32[k]) << fs));
  415. }
  416. static void sh_msiof_spi_read_fifo_8(struct sh_msiof_spi_priv *p,
  417. void *rx_buf, int words, int fs)
  418. {
  419. u8 *buf_8 = rx_buf;
  420. int k;
  421. for (k = 0; k < words; k++)
  422. buf_8[k] = sh_msiof_read(p, SIRFDR) >> fs;
  423. }
  424. static void sh_msiof_spi_read_fifo_16(struct sh_msiof_spi_priv *p,
  425. void *rx_buf, int words, int fs)
  426. {
  427. u16 *buf_16 = rx_buf;
  428. int k;
  429. for (k = 0; k < words; k++)
  430. buf_16[k] = sh_msiof_read(p, SIRFDR) >> fs;
  431. }
  432. static void sh_msiof_spi_read_fifo_16u(struct sh_msiof_spi_priv *p,
  433. void *rx_buf, int words, int fs)
  434. {
  435. u16 *buf_16 = rx_buf;
  436. int k;
  437. for (k = 0; k < words; k++)
  438. put_unaligned(sh_msiof_read(p, SIRFDR) >> fs, &buf_16[k]);
  439. }
  440. static void sh_msiof_spi_read_fifo_32(struct sh_msiof_spi_priv *p,
  441. void *rx_buf, int words, int fs)
  442. {
  443. u32 *buf_32 = rx_buf;
  444. int k;
  445. for (k = 0; k < words; k++)
  446. buf_32[k] = sh_msiof_read(p, SIRFDR) >> fs;
  447. }
  448. static void sh_msiof_spi_read_fifo_32u(struct sh_msiof_spi_priv *p,
  449. void *rx_buf, int words, int fs)
  450. {
  451. u32 *buf_32 = rx_buf;
  452. int k;
  453. for (k = 0; k < words; k++)
  454. put_unaligned(sh_msiof_read(p, SIRFDR) >> fs, &buf_32[k]);
  455. }
  456. static void sh_msiof_spi_read_fifo_s32(struct sh_msiof_spi_priv *p,
  457. void *rx_buf, int words, int fs)
  458. {
  459. u32 *buf_32 = rx_buf;
  460. int k;
  461. for (k = 0; k < words; k++)
  462. buf_32[k] = swab32(sh_msiof_read(p, SIRFDR) >> fs);
  463. }
  464. static void sh_msiof_spi_read_fifo_s32u(struct sh_msiof_spi_priv *p,
  465. void *rx_buf, int words, int fs)
  466. {
  467. u32 *buf_32 = rx_buf;
  468. int k;
  469. for (k = 0; k < words; k++)
  470. put_unaligned(swab32(sh_msiof_read(p, SIRFDR) >> fs), &buf_32[k]);
  471. }
  472. static int sh_msiof_spi_setup(struct spi_device *spi)
  473. {
  474. struct sh_msiof_spi_priv *p =
  475. spi_controller_get_devdata(spi->controller);
  476. u32 clr, set, tmp;
  477. if (spi->cs_gpiod || spi_controller_is_slave(p->ctlr))
  478. return 0;
  479. if (p->native_cs_inited &&
  480. (p->native_cs_high == !!(spi->mode & SPI_CS_HIGH)))
  481. return 0;
  482. /* Configure native chip select mode/polarity early */
  483. clr = SIMDR1_SYNCMD_MASK;
  484. set = SIMDR1_SYNCMD_SPI;
  485. if (spi->mode & SPI_CS_HIGH)
  486. clr |= BIT(SIMDR1_SYNCAC_SHIFT);
  487. else
  488. set |= BIT(SIMDR1_SYNCAC_SHIFT);
  489. pm_runtime_get_sync(&p->pdev->dev);
  490. tmp = sh_msiof_read(p, SITMDR1) & ~clr;
  491. sh_msiof_write(p, SITMDR1, tmp | set | SIMDR1_TRMD | SITMDR1_PCON);
  492. tmp = sh_msiof_read(p, SIRMDR1) & ~clr;
  493. sh_msiof_write(p, SIRMDR1, tmp | set);
  494. pm_runtime_put(&p->pdev->dev);
  495. p->native_cs_high = spi->mode & SPI_CS_HIGH;
  496. p->native_cs_inited = true;
  497. return 0;
  498. }
  499. static int sh_msiof_prepare_message(struct spi_controller *ctlr,
  500. struct spi_message *msg)
  501. {
  502. struct sh_msiof_spi_priv *p = spi_controller_get_devdata(ctlr);
  503. const struct spi_device *spi = msg->spi;
  504. u32 ss, cs_high;
  505. /* Configure pins before asserting CS */
  506. if (spi->cs_gpiod) {
  507. ss = ctlr->unused_native_cs;
  508. cs_high = p->native_cs_high;
  509. } else {
  510. ss = spi->chip_select;
  511. cs_high = !!(spi->mode & SPI_CS_HIGH);
  512. }
  513. sh_msiof_spi_set_pin_regs(p, ss, !!(spi->mode & SPI_CPOL),
  514. !!(spi->mode & SPI_CPHA),
  515. !!(spi->mode & SPI_3WIRE),
  516. !!(spi->mode & SPI_LSB_FIRST), cs_high);
  517. return 0;
  518. }
  519. static int sh_msiof_spi_start(struct sh_msiof_spi_priv *p, void *rx_buf)
  520. {
  521. bool slave = spi_controller_is_slave(p->ctlr);
  522. int ret = 0;
  523. /* setup clock and rx/tx signals */
  524. if (!slave)
  525. ret = sh_msiof_modify_ctr_wait(p, 0, SICTR_TSCKE);
  526. if (rx_buf && !ret)
  527. ret = sh_msiof_modify_ctr_wait(p, 0, SICTR_RXE);
  528. if (!ret)
  529. ret = sh_msiof_modify_ctr_wait(p, 0, SICTR_TXE);
  530. /* start by setting frame bit */
  531. if (!ret && !slave)
  532. ret = sh_msiof_modify_ctr_wait(p, 0, SICTR_TFSE);
  533. return ret;
  534. }
  535. static int sh_msiof_spi_stop(struct sh_msiof_spi_priv *p, void *rx_buf)
  536. {
  537. bool slave = spi_controller_is_slave(p->ctlr);
  538. int ret = 0;
  539. /* shut down frame, rx/tx and clock signals */
  540. if (!slave)
  541. ret = sh_msiof_modify_ctr_wait(p, SICTR_TFSE, 0);
  542. if (!ret)
  543. ret = sh_msiof_modify_ctr_wait(p, SICTR_TXE, 0);
  544. if (rx_buf && !ret)
  545. ret = sh_msiof_modify_ctr_wait(p, SICTR_RXE, 0);
  546. if (!ret && !slave)
  547. ret = sh_msiof_modify_ctr_wait(p, SICTR_TSCKE, 0);
  548. return ret;
  549. }
  550. static int sh_msiof_slave_abort(struct spi_controller *ctlr)
  551. {
  552. struct sh_msiof_spi_priv *p = spi_controller_get_devdata(ctlr);
  553. p->slave_aborted = true;
  554. complete(&p->done);
  555. complete(&p->done_txdma);
  556. return 0;
  557. }
  558. static int sh_msiof_wait_for_completion(struct sh_msiof_spi_priv *p,
  559. struct completion *x)
  560. {
  561. if (spi_controller_is_slave(p->ctlr)) {
  562. if (wait_for_completion_interruptible(x) ||
  563. p->slave_aborted) {
  564. dev_dbg(&p->pdev->dev, "interrupted\n");
  565. return -EINTR;
  566. }
  567. } else {
  568. if (!wait_for_completion_timeout(x, HZ)) {
  569. dev_err(&p->pdev->dev, "timeout\n");
  570. return -ETIMEDOUT;
  571. }
  572. }
  573. return 0;
  574. }
  575. static int sh_msiof_spi_txrx_once(struct sh_msiof_spi_priv *p,
  576. void (*tx_fifo)(struct sh_msiof_spi_priv *,
  577. const void *, int, int),
  578. void (*rx_fifo)(struct sh_msiof_spi_priv *,
  579. void *, int, int),
  580. const void *tx_buf, void *rx_buf,
  581. int words, int bits)
  582. {
  583. int fifo_shift;
  584. int ret;
  585. /* limit maximum word transfer to rx/tx fifo size */
  586. if (tx_buf)
  587. words = min_t(int, words, p->tx_fifo_size);
  588. if (rx_buf)
  589. words = min_t(int, words, p->rx_fifo_size);
  590. /* the fifo contents need shifting */
  591. fifo_shift = 32 - bits;
  592. /* default FIFO watermarks for PIO */
  593. sh_msiof_write(p, SIFCTR, 0);
  594. /* setup msiof transfer mode registers */
  595. sh_msiof_spi_set_mode_regs(p, tx_buf, rx_buf, bits, words);
  596. sh_msiof_write(p, SIIER, SIIER_TEOFE | SIIER_REOFE);
  597. /* write tx fifo */
  598. if (tx_buf)
  599. tx_fifo(p, tx_buf, words, fifo_shift);
  600. reinit_completion(&p->done);
  601. p->slave_aborted = false;
  602. ret = sh_msiof_spi_start(p, rx_buf);
  603. if (ret) {
  604. dev_err(&p->pdev->dev, "failed to start hardware\n");
  605. goto stop_ier;
  606. }
  607. /* wait for tx fifo to be emptied / rx fifo to be filled */
  608. ret = sh_msiof_wait_for_completion(p, &p->done);
  609. if (ret)
  610. goto stop_reset;
  611. /* read rx fifo */
  612. if (rx_buf)
  613. rx_fifo(p, rx_buf, words, fifo_shift);
  614. /* clear status bits */
  615. sh_msiof_reset_str(p);
  616. ret = sh_msiof_spi_stop(p, rx_buf);
  617. if (ret) {
  618. dev_err(&p->pdev->dev, "failed to shut down hardware\n");
  619. return ret;
  620. }
  621. return words;
  622. stop_reset:
  623. sh_msiof_reset_str(p);
  624. sh_msiof_spi_stop(p, rx_buf);
  625. stop_ier:
  626. sh_msiof_write(p, SIIER, 0);
  627. return ret;
  628. }
  629. static void sh_msiof_dma_complete(void *arg)
  630. {
  631. complete(arg);
  632. }
  633. static int sh_msiof_dma_once(struct sh_msiof_spi_priv *p, const void *tx,
  634. void *rx, unsigned int len)
  635. {
  636. u32 ier_bits = 0;
  637. struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
  638. dma_cookie_t cookie;
  639. int ret;
  640. /* First prepare and submit the DMA request(s), as this may fail */
  641. if (rx) {
  642. ier_bits |= SIIER_RDREQE | SIIER_RDMAE;
  643. desc_rx = dmaengine_prep_slave_single(p->ctlr->dma_rx,
  644. p->rx_dma_addr, len, DMA_DEV_TO_MEM,
  645. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  646. if (!desc_rx)
  647. return -EAGAIN;
  648. desc_rx->callback = sh_msiof_dma_complete;
  649. desc_rx->callback_param = &p->done;
  650. cookie = dmaengine_submit(desc_rx);
  651. if (dma_submit_error(cookie))
  652. return cookie;
  653. }
  654. if (tx) {
  655. ier_bits |= SIIER_TDREQE | SIIER_TDMAE;
  656. dma_sync_single_for_device(p->ctlr->dma_tx->device->dev,
  657. p->tx_dma_addr, len, DMA_TO_DEVICE);
  658. desc_tx = dmaengine_prep_slave_single(p->ctlr->dma_tx,
  659. p->tx_dma_addr, len, DMA_MEM_TO_DEV,
  660. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  661. if (!desc_tx) {
  662. ret = -EAGAIN;
  663. goto no_dma_tx;
  664. }
  665. desc_tx->callback = sh_msiof_dma_complete;
  666. desc_tx->callback_param = &p->done_txdma;
  667. cookie = dmaengine_submit(desc_tx);
  668. if (dma_submit_error(cookie)) {
  669. ret = cookie;
  670. goto no_dma_tx;
  671. }
  672. }
  673. /* 1 stage FIFO watermarks for DMA */
  674. sh_msiof_write(p, SIFCTR, SIFCTR_TFWM_1 | SIFCTR_RFWM_1);
  675. /* setup msiof transfer mode registers (32-bit words) */
  676. sh_msiof_spi_set_mode_regs(p, tx, rx, 32, len / 4);
  677. sh_msiof_write(p, SIIER, ier_bits);
  678. reinit_completion(&p->done);
  679. if (tx)
  680. reinit_completion(&p->done_txdma);
  681. p->slave_aborted = false;
  682. /* Now start DMA */
  683. if (rx)
  684. dma_async_issue_pending(p->ctlr->dma_rx);
  685. if (tx)
  686. dma_async_issue_pending(p->ctlr->dma_tx);
  687. ret = sh_msiof_spi_start(p, rx);
  688. if (ret) {
  689. dev_err(&p->pdev->dev, "failed to start hardware\n");
  690. goto stop_dma;
  691. }
  692. if (tx) {
  693. /* wait for tx DMA completion */
  694. ret = sh_msiof_wait_for_completion(p, &p->done_txdma);
  695. if (ret)
  696. goto stop_reset;
  697. }
  698. if (rx) {
  699. /* wait for rx DMA completion */
  700. ret = sh_msiof_wait_for_completion(p, &p->done);
  701. if (ret)
  702. goto stop_reset;
  703. sh_msiof_write(p, SIIER, 0);
  704. } else {
  705. /* wait for tx fifo to be emptied */
  706. sh_msiof_write(p, SIIER, SIIER_TEOFE);
  707. ret = sh_msiof_wait_for_completion(p, &p->done);
  708. if (ret)
  709. goto stop_reset;
  710. }
  711. /* clear status bits */
  712. sh_msiof_reset_str(p);
  713. ret = sh_msiof_spi_stop(p, rx);
  714. if (ret) {
  715. dev_err(&p->pdev->dev, "failed to shut down hardware\n");
  716. return ret;
  717. }
  718. if (rx)
  719. dma_sync_single_for_cpu(p->ctlr->dma_rx->device->dev,
  720. p->rx_dma_addr, len, DMA_FROM_DEVICE);
  721. return 0;
  722. stop_reset:
  723. sh_msiof_reset_str(p);
  724. sh_msiof_spi_stop(p, rx);
  725. stop_dma:
  726. if (tx)
  727. dmaengine_terminate_sync(p->ctlr->dma_tx);
  728. no_dma_tx:
  729. if (rx)
  730. dmaengine_terminate_sync(p->ctlr->dma_rx);
  731. sh_msiof_write(p, SIIER, 0);
  732. return ret;
  733. }
  734. static void copy_bswap32(u32 *dst, const u32 *src, unsigned int words)
  735. {
  736. /* src or dst can be unaligned, but not both */
  737. if ((unsigned long)src & 3) {
  738. while (words--) {
  739. *dst++ = swab32(get_unaligned(src));
  740. src++;
  741. }
  742. } else if ((unsigned long)dst & 3) {
  743. while (words--) {
  744. put_unaligned(swab32(*src++), dst);
  745. dst++;
  746. }
  747. } else {
  748. while (words--)
  749. *dst++ = swab32(*src++);
  750. }
  751. }
  752. static void copy_wswap32(u32 *dst, const u32 *src, unsigned int words)
  753. {
  754. /* src or dst can be unaligned, but not both */
  755. if ((unsigned long)src & 3) {
  756. while (words--) {
  757. *dst++ = swahw32(get_unaligned(src));
  758. src++;
  759. }
  760. } else if ((unsigned long)dst & 3) {
  761. while (words--) {
  762. put_unaligned(swahw32(*src++), dst);
  763. dst++;
  764. }
  765. } else {
  766. while (words--)
  767. *dst++ = swahw32(*src++);
  768. }
  769. }
  770. static void copy_plain32(u32 *dst, const u32 *src, unsigned int words)
  771. {
  772. memcpy(dst, src, words * 4);
  773. }
  774. static int sh_msiof_transfer_one(struct spi_controller *ctlr,
  775. struct spi_device *spi,
  776. struct spi_transfer *t)
  777. {
  778. struct sh_msiof_spi_priv *p = spi_controller_get_devdata(ctlr);
  779. void (*copy32)(u32 *, const u32 *, unsigned int);
  780. void (*tx_fifo)(struct sh_msiof_spi_priv *, const void *, int, int);
  781. void (*rx_fifo)(struct sh_msiof_spi_priv *, void *, int, int);
  782. const void *tx_buf = t->tx_buf;
  783. void *rx_buf = t->rx_buf;
  784. unsigned int len = t->len;
  785. unsigned int bits = t->bits_per_word;
  786. unsigned int bytes_per_word;
  787. unsigned int words;
  788. int n;
  789. bool swab;
  790. int ret;
  791. /* reset registers */
  792. sh_msiof_spi_reset_regs(p);
  793. /* setup clocks (clock already enabled in chipselect()) */
  794. if (!spi_controller_is_slave(p->ctlr))
  795. sh_msiof_spi_set_clk_regs(p, t);
  796. while (ctlr->dma_tx && len > 15) {
  797. /*
  798. * DMA supports 32-bit words only, hence pack 8-bit and 16-bit
  799. * words, with byte resp. word swapping.
  800. */
  801. unsigned int l = 0;
  802. if (tx_buf)
  803. l = min(round_down(len, 4), p->tx_fifo_size * 4);
  804. if (rx_buf)
  805. l = min(round_down(len, 4), p->rx_fifo_size * 4);
  806. if (bits <= 8) {
  807. copy32 = copy_bswap32;
  808. } else if (bits <= 16) {
  809. copy32 = copy_wswap32;
  810. } else {
  811. copy32 = copy_plain32;
  812. }
  813. if (tx_buf)
  814. copy32(p->tx_dma_page, tx_buf, l / 4);
  815. ret = sh_msiof_dma_once(p, tx_buf, rx_buf, l);
  816. if (ret == -EAGAIN) {
  817. dev_warn_once(&p->pdev->dev,
  818. "DMA not available, falling back to PIO\n");
  819. break;
  820. }
  821. if (ret)
  822. return ret;
  823. if (rx_buf) {
  824. copy32(rx_buf, p->rx_dma_page, l / 4);
  825. rx_buf += l;
  826. }
  827. if (tx_buf)
  828. tx_buf += l;
  829. len -= l;
  830. if (!len)
  831. return 0;
  832. }
  833. if (bits <= 8 && len > 15) {
  834. bits = 32;
  835. swab = true;
  836. } else {
  837. swab = false;
  838. }
  839. /* setup bytes per word and fifo read/write functions */
  840. if (bits <= 8) {
  841. bytes_per_word = 1;
  842. tx_fifo = sh_msiof_spi_write_fifo_8;
  843. rx_fifo = sh_msiof_spi_read_fifo_8;
  844. } else if (bits <= 16) {
  845. bytes_per_word = 2;
  846. if ((unsigned long)tx_buf & 0x01)
  847. tx_fifo = sh_msiof_spi_write_fifo_16u;
  848. else
  849. tx_fifo = sh_msiof_spi_write_fifo_16;
  850. if ((unsigned long)rx_buf & 0x01)
  851. rx_fifo = sh_msiof_spi_read_fifo_16u;
  852. else
  853. rx_fifo = sh_msiof_spi_read_fifo_16;
  854. } else if (swab) {
  855. bytes_per_word = 4;
  856. if ((unsigned long)tx_buf & 0x03)
  857. tx_fifo = sh_msiof_spi_write_fifo_s32u;
  858. else
  859. tx_fifo = sh_msiof_spi_write_fifo_s32;
  860. if ((unsigned long)rx_buf & 0x03)
  861. rx_fifo = sh_msiof_spi_read_fifo_s32u;
  862. else
  863. rx_fifo = sh_msiof_spi_read_fifo_s32;
  864. } else {
  865. bytes_per_word = 4;
  866. if ((unsigned long)tx_buf & 0x03)
  867. tx_fifo = sh_msiof_spi_write_fifo_32u;
  868. else
  869. tx_fifo = sh_msiof_spi_write_fifo_32;
  870. if ((unsigned long)rx_buf & 0x03)
  871. rx_fifo = sh_msiof_spi_read_fifo_32u;
  872. else
  873. rx_fifo = sh_msiof_spi_read_fifo_32;
  874. }
  875. /* transfer in fifo sized chunks */
  876. words = len / bytes_per_word;
  877. while (words > 0) {
  878. n = sh_msiof_spi_txrx_once(p, tx_fifo, rx_fifo, tx_buf, rx_buf,
  879. words, bits);
  880. if (n < 0)
  881. return n;
  882. if (tx_buf)
  883. tx_buf += n * bytes_per_word;
  884. if (rx_buf)
  885. rx_buf += n * bytes_per_word;
  886. words -= n;
  887. if (words == 0 && (len % bytes_per_word)) {
  888. words = len % bytes_per_word;
  889. bits = t->bits_per_word;
  890. bytes_per_word = 1;
  891. tx_fifo = sh_msiof_spi_write_fifo_8;
  892. rx_fifo = sh_msiof_spi_read_fifo_8;
  893. }
  894. }
  895. return 0;
  896. }
  897. static const struct sh_msiof_chipdata sh_data = {
  898. .bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 32),
  899. .tx_fifo_size = 64,
  900. .rx_fifo_size = 64,
  901. .ctlr_flags = 0,
  902. .min_div_pow = 0,
  903. };
  904. static const struct sh_msiof_chipdata rcar_gen2_data = {
  905. .bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16) |
  906. SPI_BPW_MASK(24) | SPI_BPW_MASK(32),
  907. .tx_fifo_size = 64,
  908. .rx_fifo_size = 64,
  909. .ctlr_flags = SPI_CONTROLLER_MUST_TX,
  910. .min_div_pow = 0,
  911. };
  912. static const struct sh_msiof_chipdata rcar_gen3_data = {
  913. .bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16) |
  914. SPI_BPW_MASK(24) | SPI_BPW_MASK(32),
  915. .tx_fifo_size = 64,
  916. .rx_fifo_size = 64,
  917. .ctlr_flags = SPI_CONTROLLER_MUST_TX,
  918. .min_div_pow = 1,
  919. };
  920. static const struct of_device_id sh_msiof_match[] = {
  921. { .compatible = "renesas,sh-mobile-msiof", .data = &sh_data },
  922. { .compatible = "renesas,msiof-r8a7743", .data = &rcar_gen2_data },
  923. { .compatible = "renesas,msiof-r8a7745", .data = &rcar_gen2_data },
  924. { .compatible = "renesas,msiof-r8a7790", .data = &rcar_gen2_data },
  925. { .compatible = "renesas,msiof-r8a7791", .data = &rcar_gen2_data },
  926. { .compatible = "renesas,msiof-r8a7792", .data = &rcar_gen2_data },
  927. { .compatible = "renesas,msiof-r8a7793", .data = &rcar_gen2_data },
  928. { .compatible = "renesas,msiof-r8a7794", .data = &rcar_gen2_data },
  929. { .compatible = "renesas,rcar-gen2-msiof", .data = &rcar_gen2_data },
  930. { .compatible = "renesas,msiof-r8a7796", .data = &rcar_gen3_data },
  931. { .compatible = "renesas,rcar-gen3-msiof", .data = &rcar_gen3_data },
  932. { .compatible = "renesas,rcar-gen4-msiof", .data = &rcar_gen3_data },
  933. { .compatible = "renesas,sh-msiof", .data = &sh_data }, /* Deprecated */
  934. {},
  935. };
  936. MODULE_DEVICE_TABLE(of, sh_msiof_match);
  937. #ifdef CONFIG_OF
  938. static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
  939. {
  940. struct sh_msiof_spi_info *info;
  941. struct device_node *np = dev->of_node;
  942. u32 num_cs = 1;
  943. info = devm_kzalloc(dev, sizeof(struct sh_msiof_spi_info), GFP_KERNEL);
  944. if (!info)
  945. return NULL;
  946. info->mode = of_property_read_bool(np, "spi-slave") ? MSIOF_SPI_SLAVE
  947. : MSIOF_SPI_MASTER;
  948. /* Parse the MSIOF properties */
  949. if (info->mode == MSIOF_SPI_MASTER)
  950. of_property_read_u32(np, "num-cs", &num_cs);
  951. of_property_read_u32(np, "renesas,tx-fifo-size",
  952. &info->tx_fifo_override);
  953. of_property_read_u32(np, "renesas,rx-fifo-size",
  954. &info->rx_fifo_override);
  955. of_property_read_u32(np, "renesas,dtdl", &info->dtdl);
  956. of_property_read_u32(np, "renesas,syncdl", &info->syncdl);
  957. info->num_chipselect = num_cs;
  958. return info;
  959. }
  960. #else
  961. static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
  962. {
  963. return NULL;
  964. }
  965. #endif
  966. static struct dma_chan *sh_msiof_request_dma_chan(struct device *dev,
  967. enum dma_transfer_direction dir, unsigned int id, dma_addr_t port_addr)
  968. {
  969. dma_cap_mask_t mask;
  970. struct dma_chan *chan;
  971. struct dma_slave_config cfg;
  972. int ret;
  973. dma_cap_zero(mask);
  974. dma_cap_set(DMA_SLAVE, mask);
  975. chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
  976. (void *)(unsigned long)id, dev,
  977. dir == DMA_MEM_TO_DEV ? "tx" : "rx");
  978. if (!chan) {
  979. dev_warn(dev, "dma_request_slave_channel_compat failed\n");
  980. return NULL;
  981. }
  982. memset(&cfg, 0, sizeof(cfg));
  983. cfg.direction = dir;
  984. if (dir == DMA_MEM_TO_DEV) {
  985. cfg.dst_addr = port_addr;
  986. cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
  987. } else {
  988. cfg.src_addr = port_addr;
  989. cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
  990. }
  991. ret = dmaengine_slave_config(chan, &cfg);
  992. if (ret) {
  993. dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
  994. dma_release_channel(chan);
  995. return NULL;
  996. }
  997. return chan;
  998. }
  999. static int sh_msiof_request_dma(struct sh_msiof_spi_priv *p)
  1000. {
  1001. struct platform_device *pdev = p->pdev;
  1002. struct device *dev = &pdev->dev;
  1003. const struct sh_msiof_spi_info *info = p->info;
  1004. unsigned int dma_tx_id, dma_rx_id;
  1005. const struct resource *res;
  1006. struct spi_controller *ctlr;
  1007. struct device *tx_dev, *rx_dev;
  1008. if (dev->of_node) {
  1009. /* In the OF case we will get the slave IDs from the DT */
  1010. dma_tx_id = 0;
  1011. dma_rx_id = 0;
  1012. } else if (info && info->dma_tx_id && info->dma_rx_id) {
  1013. dma_tx_id = info->dma_tx_id;
  1014. dma_rx_id = info->dma_rx_id;
  1015. } else {
  1016. /* The driver assumes no error */
  1017. return 0;
  1018. }
  1019. /* The DMA engine uses the second register set, if present */
  1020. res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
  1021. if (!res)
  1022. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1023. ctlr = p->ctlr;
  1024. ctlr->dma_tx = sh_msiof_request_dma_chan(dev, DMA_MEM_TO_DEV,
  1025. dma_tx_id, res->start + SITFDR);
  1026. if (!ctlr->dma_tx)
  1027. return -ENODEV;
  1028. ctlr->dma_rx = sh_msiof_request_dma_chan(dev, DMA_DEV_TO_MEM,
  1029. dma_rx_id, res->start + SIRFDR);
  1030. if (!ctlr->dma_rx)
  1031. goto free_tx_chan;
  1032. p->tx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
  1033. if (!p->tx_dma_page)
  1034. goto free_rx_chan;
  1035. p->rx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
  1036. if (!p->rx_dma_page)
  1037. goto free_tx_page;
  1038. tx_dev = ctlr->dma_tx->device->dev;
  1039. p->tx_dma_addr = dma_map_single(tx_dev, p->tx_dma_page, PAGE_SIZE,
  1040. DMA_TO_DEVICE);
  1041. if (dma_mapping_error(tx_dev, p->tx_dma_addr))
  1042. goto free_rx_page;
  1043. rx_dev = ctlr->dma_rx->device->dev;
  1044. p->rx_dma_addr = dma_map_single(rx_dev, p->rx_dma_page, PAGE_SIZE,
  1045. DMA_FROM_DEVICE);
  1046. if (dma_mapping_error(rx_dev, p->rx_dma_addr))
  1047. goto unmap_tx_page;
  1048. dev_info(dev, "DMA available");
  1049. return 0;
  1050. unmap_tx_page:
  1051. dma_unmap_single(tx_dev, p->tx_dma_addr, PAGE_SIZE, DMA_TO_DEVICE);
  1052. free_rx_page:
  1053. free_page((unsigned long)p->rx_dma_page);
  1054. free_tx_page:
  1055. free_page((unsigned long)p->tx_dma_page);
  1056. free_rx_chan:
  1057. dma_release_channel(ctlr->dma_rx);
  1058. free_tx_chan:
  1059. dma_release_channel(ctlr->dma_tx);
  1060. ctlr->dma_tx = NULL;
  1061. return -ENODEV;
  1062. }
  1063. static void sh_msiof_release_dma(struct sh_msiof_spi_priv *p)
  1064. {
  1065. struct spi_controller *ctlr = p->ctlr;
  1066. if (!ctlr->dma_tx)
  1067. return;
  1068. dma_unmap_single(ctlr->dma_rx->device->dev, p->rx_dma_addr, PAGE_SIZE,
  1069. DMA_FROM_DEVICE);
  1070. dma_unmap_single(ctlr->dma_tx->device->dev, p->tx_dma_addr, PAGE_SIZE,
  1071. DMA_TO_DEVICE);
  1072. free_page((unsigned long)p->rx_dma_page);
  1073. free_page((unsigned long)p->tx_dma_page);
  1074. dma_release_channel(ctlr->dma_rx);
  1075. dma_release_channel(ctlr->dma_tx);
  1076. }
  1077. static int sh_msiof_spi_probe(struct platform_device *pdev)
  1078. {
  1079. struct spi_controller *ctlr;
  1080. const struct sh_msiof_chipdata *chipdata;
  1081. struct sh_msiof_spi_info *info;
  1082. struct sh_msiof_spi_priv *p;
  1083. unsigned long clksrc;
  1084. int i;
  1085. int ret;
  1086. chipdata = of_device_get_match_data(&pdev->dev);
  1087. if (chipdata) {
  1088. info = sh_msiof_spi_parse_dt(&pdev->dev);
  1089. } else {
  1090. chipdata = (const void *)pdev->id_entry->driver_data;
  1091. info = dev_get_platdata(&pdev->dev);
  1092. }
  1093. if (!info) {
  1094. dev_err(&pdev->dev, "failed to obtain device info\n");
  1095. return -ENXIO;
  1096. }
  1097. if (info->mode == MSIOF_SPI_SLAVE)
  1098. ctlr = spi_alloc_slave(&pdev->dev,
  1099. sizeof(struct sh_msiof_spi_priv));
  1100. else
  1101. ctlr = spi_alloc_master(&pdev->dev,
  1102. sizeof(struct sh_msiof_spi_priv));
  1103. if (ctlr == NULL)
  1104. return -ENOMEM;
  1105. p = spi_controller_get_devdata(ctlr);
  1106. platform_set_drvdata(pdev, p);
  1107. p->ctlr = ctlr;
  1108. p->info = info;
  1109. p->min_div_pow = chipdata->min_div_pow;
  1110. init_completion(&p->done);
  1111. init_completion(&p->done_txdma);
  1112. p->clk = devm_clk_get(&pdev->dev, NULL);
  1113. if (IS_ERR(p->clk)) {
  1114. dev_err(&pdev->dev, "cannot get clock\n");
  1115. ret = PTR_ERR(p->clk);
  1116. goto err1;
  1117. }
  1118. i = platform_get_irq(pdev, 0);
  1119. if (i < 0) {
  1120. ret = i;
  1121. goto err1;
  1122. }
  1123. p->mapbase = devm_platform_ioremap_resource(pdev, 0);
  1124. if (IS_ERR(p->mapbase)) {
  1125. ret = PTR_ERR(p->mapbase);
  1126. goto err1;
  1127. }
  1128. ret = devm_request_irq(&pdev->dev, i, sh_msiof_spi_irq, 0,
  1129. dev_name(&pdev->dev), p);
  1130. if (ret) {
  1131. dev_err(&pdev->dev, "unable to request irq\n");
  1132. goto err1;
  1133. }
  1134. p->pdev = pdev;
  1135. pm_runtime_enable(&pdev->dev);
  1136. /* Platform data may override FIFO sizes */
  1137. p->tx_fifo_size = chipdata->tx_fifo_size;
  1138. p->rx_fifo_size = chipdata->rx_fifo_size;
  1139. if (p->info->tx_fifo_override)
  1140. p->tx_fifo_size = p->info->tx_fifo_override;
  1141. if (p->info->rx_fifo_override)
  1142. p->rx_fifo_size = p->info->rx_fifo_override;
  1143. /* init controller code */
  1144. ctlr->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
  1145. ctlr->mode_bits |= SPI_LSB_FIRST | SPI_3WIRE;
  1146. clksrc = clk_get_rate(p->clk);
  1147. ctlr->min_speed_hz = DIV_ROUND_UP(clksrc, 1024);
  1148. ctlr->max_speed_hz = DIV_ROUND_UP(clksrc, 1 << p->min_div_pow);
  1149. ctlr->flags = chipdata->ctlr_flags;
  1150. ctlr->bus_num = pdev->id;
  1151. ctlr->num_chipselect = p->info->num_chipselect;
  1152. ctlr->dev.of_node = pdev->dev.of_node;
  1153. ctlr->setup = sh_msiof_spi_setup;
  1154. ctlr->prepare_message = sh_msiof_prepare_message;
  1155. ctlr->slave_abort = sh_msiof_slave_abort;
  1156. ctlr->bits_per_word_mask = chipdata->bits_per_word_mask;
  1157. ctlr->auto_runtime_pm = true;
  1158. ctlr->transfer_one = sh_msiof_transfer_one;
  1159. ctlr->use_gpio_descriptors = true;
  1160. ctlr->max_native_cs = MAX_SS;
  1161. ret = sh_msiof_request_dma(p);
  1162. if (ret < 0)
  1163. dev_warn(&pdev->dev, "DMA not available, using PIO\n");
  1164. ret = devm_spi_register_controller(&pdev->dev, ctlr);
  1165. if (ret < 0) {
  1166. dev_err(&pdev->dev, "devm_spi_register_controller error.\n");
  1167. goto err2;
  1168. }
  1169. return 0;
  1170. err2:
  1171. sh_msiof_release_dma(p);
  1172. pm_runtime_disable(&pdev->dev);
  1173. err1:
  1174. spi_controller_put(ctlr);
  1175. return ret;
  1176. }
  1177. static int sh_msiof_spi_remove(struct platform_device *pdev)
  1178. {
  1179. struct sh_msiof_spi_priv *p = platform_get_drvdata(pdev);
  1180. sh_msiof_release_dma(p);
  1181. pm_runtime_disable(&pdev->dev);
  1182. return 0;
  1183. }
  1184. static const struct platform_device_id spi_driver_ids[] = {
  1185. { "spi_sh_msiof", (kernel_ulong_t)&sh_data },
  1186. {},
  1187. };
  1188. MODULE_DEVICE_TABLE(platform, spi_driver_ids);
  1189. #ifdef CONFIG_PM_SLEEP
  1190. static int sh_msiof_spi_suspend(struct device *dev)
  1191. {
  1192. struct sh_msiof_spi_priv *p = dev_get_drvdata(dev);
  1193. return spi_controller_suspend(p->ctlr);
  1194. }
  1195. static int sh_msiof_spi_resume(struct device *dev)
  1196. {
  1197. struct sh_msiof_spi_priv *p = dev_get_drvdata(dev);
  1198. return spi_controller_resume(p->ctlr);
  1199. }
  1200. static SIMPLE_DEV_PM_OPS(sh_msiof_spi_pm_ops, sh_msiof_spi_suspend,
  1201. sh_msiof_spi_resume);
  1202. #define DEV_PM_OPS (&sh_msiof_spi_pm_ops)
  1203. #else
  1204. #define DEV_PM_OPS NULL
  1205. #endif /* CONFIG_PM_SLEEP */
  1206. static struct platform_driver sh_msiof_spi_drv = {
  1207. .probe = sh_msiof_spi_probe,
  1208. .remove = sh_msiof_spi_remove,
  1209. .id_table = spi_driver_ids,
  1210. .driver = {
  1211. .name = "spi_sh_msiof",
  1212. .pm = DEV_PM_OPS,
  1213. .of_match_table = of_match_ptr(sh_msiof_match),
  1214. },
  1215. };
  1216. module_platform_driver(sh_msiof_spi_drv);
  1217. MODULE_DESCRIPTION("SuperH MSIOF SPI Controller Interface Driver");
  1218. MODULE_AUTHOR("Magnus Damm");
  1219. MODULE_LICENSE("GPL v2");