spi-rspi.c 37 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * SH RSPI driver
  4. *
  5. * Copyright (C) 2012, 2013 Renesas Solutions Corp.
  6. * Copyright (C) 2014 Glider bvba
  7. *
  8. * Based on spi-sh.c:
  9. * Copyright (C) 2011 Renesas Solutions Corp.
  10. */
  11. #include <linux/module.h>
  12. #include <linux/kernel.h>
  13. #include <linux/sched.h>
  14. #include <linux/errno.h>
  15. #include <linux/interrupt.h>
  16. #include <linux/platform_device.h>
  17. #include <linux/io.h>
  18. #include <linux/clk.h>
  19. #include <linux/dmaengine.h>
  20. #include <linux/dma-mapping.h>
  21. #include <linux/of_device.h>
  22. #include <linux/pm_runtime.h>
  23. #include <linux/reset.h>
  24. #include <linux/sh_dma.h>
  25. #include <linux/spi/spi.h>
  26. #include <linux/spi/rspi.h>
  27. #include <linux/spinlock.h>
  28. #define RSPI_SPCR 0x00 /* Control Register */
  29. #define RSPI_SSLP 0x01 /* Slave Select Polarity Register */
  30. #define RSPI_SPPCR 0x02 /* Pin Control Register */
  31. #define RSPI_SPSR 0x03 /* Status Register */
  32. #define RSPI_SPDR 0x04 /* Data Register */
  33. #define RSPI_SPSCR 0x08 /* Sequence Control Register */
  34. #define RSPI_SPSSR 0x09 /* Sequence Status Register */
  35. #define RSPI_SPBR 0x0a /* Bit Rate Register */
  36. #define RSPI_SPDCR 0x0b /* Data Control Register */
  37. #define RSPI_SPCKD 0x0c /* Clock Delay Register */
  38. #define RSPI_SSLND 0x0d /* Slave Select Negation Delay Register */
  39. #define RSPI_SPND 0x0e /* Next-Access Delay Register */
  40. #define RSPI_SPCR2 0x0f /* Control Register 2 (SH only) */
  41. #define RSPI_SPCMD0 0x10 /* Command Register 0 */
  42. #define RSPI_SPCMD1 0x12 /* Command Register 1 */
  43. #define RSPI_SPCMD2 0x14 /* Command Register 2 */
  44. #define RSPI_SPCMD3 0x16 /* Command Register 3 */
  45. #define RSPI_SPCMD4 0x18 /* Command Register 4 */
  46. #define RSPI_SPCMD5 0x1a /* Command Register 5 */
  47. #define RSPI_SPCMD6 0x1c /* Command Register 6 */
  48. #define RSPI_SPCMD7 0x1e /* Command Register 7 */
  49. #define RSPI_SPCMD(i) (RSPI_SPCMD0 + (i) * 2)
  50. #define RSPI_NUM_SPCMD 8
  51. #define RSPI_RZ_NUM_SPCMD 4
  52. #define QSPI_NUM_SPCMD 4
  53. /* RSPI on RZ only */
  54. #define RSPI_SPBFCR 0x20 /* Buffer Control Register */
  55. #define RSPI_SPBFDR 0x22 /* Buffer Data Count Setting Register */
  56. /* QSPI only */
  57. #define QSPI_SPBFCR 0x18 /* Buffer Control Register */
  58. #define QSPI_SPBDCR 0x1a /* Buffer Data Count Register */
  59. #define QSPI_SPBMUL0 0x1c /* Transfer Data Length Multiplier Setting Register 0 */
  60. #define QSPI_SPBMUL1 0x20 /* Transfer Data Length Multiplier Setting Register 1 */
  61. #define QSPI_SPBMUL2 0x24 /* Transfer Data Length Multiplier Setting Register 2 */
  62. #define QSPI_SPBMUL3 0x28 /* Transfer Data Length Multiplier Setting Register 3 */
  63. #define QSPI_SPBMUL(i) (QSPI_SPBMUL0 + (i) * 4)
  64. /* SPCR - Control Register */
  65. #define SPCR_SPRIE 0x80 /* Receive Interrupt Enable */
  66. #define SPCR_SPE 0x40 /* Function Enable */
  67. #define SPCR_SPTIE 0x20 /* Transmit Interrupt Enable */
  68. #define SPCR_SPEIE 0x10 /* Error Interrupt Enable */
  69. #define SPCR_MSTR 0x08 /* Master/Slave Mode Select */
  70. #define SPCR_MODFEN 0x04 /* Mode Fault Error Detection Enable */
  71. /* RSPI on SH only */
  72. #define SPCR_TXMD 0x02 /* TX Only Mode (vs. Full Duplex) */
  73. #define SPCR_SPMS 0x01 /* 3-wire Mode (vs. 4-wire) */
  74. /* QSPI on R-Car Gen2 only */
  75. #define SPCR_WSWAP 0x02 /* Word Swap of read-data for DMAC */
  76. #define SPCR_BSWAP 0x01 /* Byte Swap of read-data for DMAC */
  77. /* SSLP - Slave Select Polarity Register */
  78. #define SSLP_SSLP(i) BIT(i) /* SSLi Signal Polarity Setting */
  79. /* SPPCR - Pin Control Register */
  80. #define SPPCR_MOIFE 0x20 /* MOSI Idle Value Fixing Enable */
  81. #define SPPCR_MOIFV 0x10 /* MOSI Idle Fixed Value */
  82. #define SPPCR_SPOM 0x04
  83. #define SPPCR_SPLP2 0x02 /* Loopback Mode 2 (non-inverting) */
  84. #define SPPCR_SPLP 0x01 /* Loopback Mode (inverting) */
  85. #define SPPCR_IO3FV 0x04 /* Single-/Dual-SPI Mode IO3 Output Fixed Value */
  86. #define SPPCR_IO2FV 0x04 /* Single-/Dual-SPI Mode IO2 Output Fixed Value */
  87. /* SPSR - Status Register */
  88. #define SPSR_SPRF 0x80 /* Receive Buffer Full Flag */
  89. #define SPSR_TEND 0x40 /* Transmit End */
  90. #define SPSR_SPTEF 0x20 /* Transmit Buffer Empty Flag */
  91. #define SPSR_PERF 0x08 /* Parity Error Flag */
  92. #define SPSR_MODF 0x04 /* Mode Fault Error Flag */
  93. #define SPSR_IDLNF 0x02 /* RSPI Idle Flag */
  94. #define SPSR_OVRF 0x01 /* Overrun Error Flag (RSPI only) */
  95. /* SPSCR - Sequence Control Register */
  96. #define SPSCR_SPSLN_MASK 0x07 /* Sequence Length Specification */
  97. /* SPSSR - Sequence Status Register */
  98. #define SPSSR_SPECM_MASK 0x70 /* Command Error Mask */
  99. #define SPSSR_SPCP_MASK 0x07 /* Command Pointer Mask */
  100. /* SPDCR - Data Control Register */
  101. #define SPDCR_TXDMY 0x80 /* Dummy Data Transmission Enable */
  102. #define SPDCR_SPLW1 0x40 /* Access Width Specification (RZ) */
  103. #define SPDCR_SPLW0 0x20 /* Access Width Specification (RZ) */
  104. #define SPDCR_SPLLWORD (SPDCR_SPLW1 | SPDCR_SPLW0)
  105. #define SPDCR_SPLWORD SPDCR_SPLW1
  106. #define SPDCR_SPLBYTE SPDCR_SPLW0
  107. #define SPDCR_SPLW 0x20 /* Access Width Specification (SH) */
  108. #define SPDCR_SPRDTD 0x10 /* Receive Transmit Data Select (SH) */
  109. #define SPDCR_SLSEL1 0x08
  110. #define SPDCR_SLSEL0 0x04
  111. #define SPDCR_SLSEL_MASK 0x0c /* SSL1 Output Select (SH) */
  112. #define SPDCR_SPFC1 0x02
  113. #define SPDCR_SPFC0 0x01
  114. #define SPDCR_SPFC_MASK 0x03 /* Frame Count Setting (1-4) (SH) */
  115. /* SPCKD - Clock Delay Register */
  116. #define SPCKD_SCKDL_MASK 0x07 /* Clock Delay Setting (1-8) */
  117. /* SSLND - Slave Select Negation Delay Register */
  118. #define SSLND_SLNDL_MASK 0x07 /* SSL Negation Delay Setting (1-8) */
  119. /* SPND - Next-Access Delay Register */
  120. #define SPND_SPNDL_MASK 0x07 /* Next-Access Delay Setting (1-8) */
  121. /* SPCR2 - Control Register 2 */
  122. #define SPCR2_PTE 0x08 /* Parity Self-Test Enable */
  123. #define SPCR2_SPIE 0x04 /* Idle Interrupt Enable */
  124. #define SPCR2_SPOE 0x02 /* Odd Parity Enable (vs. Even) */
  125. #define SPCR2_SPPE 0x01 /* Parity Enable */
  126. /* SPCMDn - Command Registers */
  127. #define SPCMD_SCKDEN 0x8000 /* Clock Delay Setting Enable */
  128. #define SPCMD_SLNDEN 0x4000 /* SSL Negation Delay Setting Enable */
  129. #define SPCMD_SPNDEN 0x2000 /* Next-Access Delay Enable */
  130. #define SPCMD_LSBF 0x1000 /* LSB First */
  131. #define SPCMD_SPB_MASK 0x0f00 /* Data Length Setting */
  132. #define SPCMD_SPB_8_TO_16(bit) (((bit - 1) << 8) & SPCMD_SPB_MASK)
  133. #define SPCMD_SPB_8BIT 0x0000 /* QSPI only */
  134. #define SPCMD_SPB_16BIT 0x0100
  135. #define SPCMD_SPB_20BIT 0x0000
  136. #define SPCMD_SPB_24BIT 0x0100
  137. #define SPCMD_SPB_32BIT 0x0200
  138. #define SPCMD_SSLKP 0x0080 /* SSL Signal Level Keeping */
  139. #define SPCMD_SPIMOD_MASK 0x0060 /* SPI Operating Mode (QSPI only) */
  140. #define SPCMD_SPIMOD1 0x0040
  141. #define SPCMD_SPIMOD0 0x0020
  142. #define SPCMD_SPIMOD_SINGLE 0
  143. #define SPCMD_SPIMOD_DUAL SPCMD_SPIMOD0
  144. #define SPCMD_SPIMOD_QUAD SPCMD_SPIMOD1
  145. #define SPCMD_SPRW 0x0010 /* SPI Read/Write Access (Dual/Quad) */
  146. #define SPCMD_SSLA(i) ((i) << 4) /* SSL Assert Signal Setting */
  147. #define SPCMD_BRDV_MASK 0x000c /* Bit Rate Division Setting */
  148. #define SPCMD_BRDV(brdv) ((brdv) << 2)
  149. #define SPCMD_CPOL 0x0002 /* Clock Polarity Setting */
  150. #define SPCMD_CPHA 0x0001 /* Clock Phase Setting */
  151. /* SPBFCR - Buffer Control Register */
  152. #define SPBFCR_TXRST 0x80 /* Transmit Buffer Data Reset */
  153. #define SPBFCR_RXRST 0x40 /* Receive Buffer Data Reset */
  154. #define SPBFCR_TXTRG_MASK 0x30 /* Transmit Buffer Data Triggering Number */
  155. #define SPBFCR_RXTRG_MASK 0x07 /* Receive Buffer Data Triggering Number */
  156. /* QSPI on R-Car Gen2 */
  157. #define SPBFCR_TXTRG_1B 0x00 /* 31 bytes (1 byte available) */
  158. #define SPBFCR_TXTRG_32B 0x30 /* 0 byte (32 bytes available) */
  159. #define SPBFCR_RXTRG_1B 0x00 /* 1 byte (31 bytes available) */
  160. #define SPBFCR_RXTRG_32B 0x07 /* 32 bytes (0 byte available) */
  161. #define QSPI_BUFFER_SIZE 32u
  162. struct rspi_data {
  163. void __iomem *addr;
  164. u32 speed_hz;
  165. struct spi_controller *ctlr;
  166. struct platform_device *pdev;
  167. wait_queue_head_t wait;
  168. spinlock_t lock; /* Protects RMW-access to RSPI_SSLP */
  169. struct clk *clk;
  170. u16 spcmd;
  171. u8 spsr;
  172. u8 sppcr;
  173. int rx_irq, tx_irq;
  174. const struct spi_ops *ops;
  175. unsigned dma_callbacked:1;
  176. unsigned byte_access:1;
  177. };
  178. static void rspi_write8(const struct rspi_data *rspi, u8 data, u16 offset)
  179. {
  180. iowrite8(data, rspi->addr + offset);
  181. }
  182. static void rspi_write16(const struct rspi_data *rspi, u16 data, u16 offset)
  183. {
  184. iowrite16(data, rspi->addr + offset);
  185. }
  186. static void rspi_write32(const struct rspi_data *rspi, u32 data, u16 offset)
  187. {
  188. iowrite32(data, rspi->addr + offset);
  189. }
  190. static u8 rspi_read8(const struct rspi_data *rspi, u16 offset)
  191. {
  192. return ioread8(rspi->addr + offset);
  193. }
  194. static u16 rspi_read16(const struct rspi_data *rspi, u16 offset)
  195. {
  196. return ioread16(rspi->addr + offset);
  197. }
  198. static void rspi_write_data(const struct rspi_data *rspi, u16 data)
  199. {
  200. if (rspi->byte_access)
  201. rspi_write8(rspi, data, RSPI_SPDR);
  202. else /* 16 bit */
  203. rspi_write16(rspi, data, RSPI_SPDR);
  204. }
  205. static u16 rspi_read_data(const struct rspi_data *rspi)
  206. {
  207. if (rspi->byte_access)
  208. return rspi_read8(rspi, RSPI_SPDR);
  209. else /* 16 bit */
  210. return rspi_read16(rspi, RSPI_SPDR);
  211. }
  212. /* optional functions */
  213. struct spi_ops {
  214. int (*set_config_register)(struct rspi_data *rspi, int access_size);
  215. int (*transfer_one)(struct spi_controller *ctlr,
  216. struct spi_device *spi, struct spi_transfer *xfer);
  217. u16 extra_mode_bits;
  218. u16 min_div;
  219. u16 max_div;
  220. u16 flags;
  221. u16 fifo_size;
  222. u8 num_hw_ss;
  223. };
  224. static void rspi_set_rate(struct rspi_data *rspi)
  225. {
  226. unsigned long clksrc;
  227. int brdv = 0, spbr;
  228. clksrc = clk_get_rate(rspi->clk);
  229. spbr = DIV_ROUND_UP(clksrc, 2 * rspi->speed_hz) - 1;
  230. while (spbr > 255 && brdv < 3) {
  231. brdv++;
  232. spbr = DIV_ROUND_UP(spbr + 1, 2) - 1;
  233. }
  234. rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
  235. rspi->spcmd |= SPCMD_BRDV(brdv);
  236. rspi->speed_hz = DIV_ROUND_UP(clksrc, (2U << brdv) * (spbr + 1));
  237. }
  238. /*
  239. * functions for RSPI on legacy SH
  240. */
  241. static int rspi_set_config_register(struct rspi_data *rspi, int access_size)
  242. {
  243. /* Sets output mode, MOSI signal, and (optionally) loopback */
  244. rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
  245. /* Sets transfer bit rate */
  246. rspi_set_rate(rspi);
  247. /* Disable dummy transmission, set 16-bit word access, 1 frame */
  248. rspi_write8(rspi, 0, RSPI_SPDCR);
  249. rspi->byte_access = 0;
  250. /* Sets RSPCK, SSL, next-access delay value */
  251. rspi_write8(rspi, 0x00, RSPI_SPCKD);
  252. rspi_write8(rspi, 0x00, RSPI_SSLND);
  253. rspi_write8(rspi, 0x00, RSPI_SPND);
  254. /* Sets parity, interrupt mask */
  255. rspi_write8(rspi, 0x00, RSPI_SPCR2);
  256. /* Resets sequencer */
  257. rspi_write8(rspi, 0, RSPI_SPSCR);
  258. rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
  259. rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
  260. /* Sets RSPI mode */
  261. rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
  262. return 0;
  263. }
  264. /*
  265. * functions for RSPI on RZ
  266. */
  267. static int rspi_rz_set_config_register(struct rspi_data *rspi, int access_size)
  268. {
  269. /* Sets output mode, MOSI signal, and (optionally) loopback */
  270. rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
  271. /* Sets transfer bit rate */
  272. rspi_set_rate(rspi);
  273. /* Disable dummy transmission, set byte access */
  274. rspi_write8(rspi, SPDCR_SPLBYTE, RSPI_SPDCR);
  275. rspi->byte_access = 1;
  276. /* Sets RSPCK, SSL, next-access delay value */
  277. rspi_write8(rspi, 0x00, RSPI_SPCKD);
  278. rspi_write8(rspi, 0x00, RSPI_SSLND);
  279. rspi_write8(rspi, 0x00, RSPI_SPND);
  280. /* Resets sequencer */
  281. rspi_write8(rspi, 0, RSPI_SPSCR);
  282. rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
  283. rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
  284. /* Sets RSPI mode */
  285. rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
  286. return 0;
  287. }
  288. /*
  289. * functions for QSPI
  290. */
  291. static int qspi_set_config_register(struct rspi_data *rspi, int access_size)
  292. {
  293. unsigned long clksrc;
  294. int brdv = 0, spbr;
  295. /* Sets output mode, MOSI signal, and (optionally) loopback */
  296. rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
  297. /* Sets transfer bit rate */
  298. clksrc = clk_get_rate(rspi->clk);
  299. if (rspi->speed_hz >= clksrc) {
  300. spbr = 0;
  301. rspi->speed_hz = clksrc;
  302. } else {
  303. spbr = DIV_ROUND_UP(clksrc, 2 * rspi->speed_hz);
  304. while (spbr > 255 && brdv < 3) {
  305. brdv++;
  306. spbr = DIV_ROUND_UP(spbr, 2);
  307. }
  308. spbr = clamp(spbr, 0, 255);
  309. rspi->speed_hz = DIV_ROUND_UP(clksrc, (2U << brdv) * spbr);
  310. }
  311. rspi_write8(rspi, spbr, RSPI_SPBR);
  312. rspi->spcmd |= SPCMD_BRDV(brdv);
  313. /* Disable dummy transmission, set byte access */
  314. rspi_write8(rspi, 0, RSPI_SPDCR);
  315. rspi->byte_access = 1;
  316. /* Sets RSPCK, SSL, next-access delay value */
  317. rspi_write8(rspi, 0x00, RSPI_SPCKD);
  318. rspi_write8(rspi, 0x00, RSPI_SSLND);
  319. rspi_write8(rspi, 0x00, RSPI_SPND);
  320. /* Data Length Setting */
  321. if (access_size == 8)
  322. rspi->spcmd |= SPCMD_SPB_8BIT;
  323. else if (access_size == 16)
  324. rspi->spcmd |= SPCMD_SPB_16BIT;
  325. else
  326. rspi->spcmd |= SPCMD_SPB_32BIT;
  327. rspi->spcmd |= SPCMD_SCKDEN | SPCMD_SLNDEN | SPCMD_SPNDEN;
  328. /* Resets transfer data length */
  329. rspi_write32(rspi, 0, QSPI_SPBMUL0);
  330. /* Resets transmit and receive buffer */
  331. rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
  332. /* Sets buffer to allow normal operation */
  333. rspi_write8(rspi, 0x00, QSPI_SPBFCR);
  334. /* Resets sequencer */
  335. rspi_write8(rspi, 0, RSPI_SPSCR);
  336. rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
  337. /* Sets RSPI mode */
  338. rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
  339. return 0;
  340. }
  341. static void qspi_update(const struct rspi_data *rspi, u8 mask, u8 val, u8 reg)
  342. {
  343. u8 data;
  344. data = rspi_read8(rspi, reg);
  345. data &= ~mask;
  346. data |= (val & mask);
  347. rspi_write8(rspi, data, reg);
  348. }
  349. static unsigned int qspi_set_send_trigger(struct rspi_data *rspi,
  350. unsigned int len)
  351. {
  352. unsigned int n;
  353. n = min(len, QSPI_BUFFER_SIZE);
  354. if (len >= QSPI_BUFFER_SIZE) {
  355. /* sets triggering number to 32 bytes */
  356. qspi_update(rspi, SPBFCR_TXTRG_MASK,
  357. SPBFCR_TXTRG_32B, QSPI_SPBFCR);
  358. } else {
  359. /* sets triggering number to 1 byte */
  360. qspi_update(rspi, SPBFCR_TXTRG_MASK,
  361. SPBFCR_TXTRG_1B, QSPI_SPBFCR);
  362. }
  363. return n;
  364. }
  365. static int qspi_set_receive_trigger(struct rspi_data *rspi, unsigned int len)
  366. {
  367. unsigned int n;
  368. n = min(len, QSPI_BUFFER_SIZE);
  369. if (len >= QSPI_BUFFER_SIZE) {
  370. /* sets triggering number to 32 bytes */
  371. qspi_update(rspi, SPBFCR_RXTRG_MASK,
  372. SPBFCR_RXTRG_32B, QSPI_SPBFCR);
  373. } else {
  374. /* sets triggering number to 1 byte */
  375. qspi_update(rspi, SPBFCR_RXTRG_MASK,
  376. SPBFCR_RXTRG_1B, QSPI_SPBFCR);
  377. }
  378. return n;
  379. }
  380. static void rspi_enable_irq(const struct rspi_data *rspi, u8 enable)
  381. {
  382. rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | enable, RSPI_SPCR);
  383. }
  384. static void rspi_disable_irq(const struct rspi_data *rspi, u8 disable)
  385. {
  386. rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~disable, RSPI_SPCR);
  387. }
  388. static int rspi_wait_for_interrupt(struct rspi_data *rspi, u8 wait_mask,
  389. u8 enable_bit)
  390. {
  391. int ret;
  392. rspi->spsr = rspi_read8(rspi, RSPI_SPSR);
  393. if (rspi->spsr & wait_mask)
  394. return 0;
  395. rspi_enable_irq(rspi, enable_bit);
  396. ret = wait_event_timeout(rspi->wait, rspi->spsr & wait_mask, HZ);
  397. if (ret == 0 && !(rspi->spsr & wait_mask))
  398. return -ETIMEDOUT;
  399. return 0;
  400. }
  401. static inline int rspi_wait_for_tx_empty(struct rspi_data *rspi)
  402. {
  403. return rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE);
  404. }
  405. static inline int rspi_wait_for_rx_full(struct rspi_data *rspi)
  406. {
  407. return rspi_wait_for_interrupt(rspi, SPSR_SPRF, SPCR_SPRIE);
  408. }
  409. static int rspi_data_out(struct rspi_data *rspi, u8 data)
  410. {
  411. int error = rspi_wait_for_tx_empty(rspi);
  412. if (error < 0) {
  413. dev_err(&rspi->ctlr->dev, "transmit timeout\n");
  414. return error;
  415. }
  416. rspi_write_data(rspi, data);
  417. return 0;
  418. }
  419. static int rspi_data_in(struct rspi_data *rspi)
  420. {
  421. int error;
  422. u8 data;
  423. error = rspi_wait_for_rx_full(rspi);
  424. if (error < 0) {
  425. dev_err(&rspi->ctlr->dev, "receive timeout\n");
  426. return error;
  427. }
  428. data = rspi_read_data(rspi);
  429. return data;
  430. }
  431. static int rspi_pio_transfer(struct rspi_data *rspi, const u8 *tx, u8 *rx,
  432. unsigned int n)
  433. {
  434. while (n-- > 0) {
  435. if (tx) {
  436. int ret = rspi_data_out(rspi, *tx++);
  437. if (ret < 0)
  438. return ret;
  439. }
  440. if (rx) {
  441. int ret = rspi_data_in(rspi);
  442. if (ret < 0)
  443. return ret;
  444. *rx++ = ret;
  445. }
  446. }
  447. return 0;
  448. }
  449. static void rspi_dma_complete(void *arg)
  450. {
  451. struct rspi_data *rspi = arg;
  452. rspi->dma_callbacked = 1;
  453. wake_up_interruptible(&rspi->wait);
  454. }
  455. static int rspi_dma_transfer(struct rspi_data *rspi, struct sg_table *tx,
  456. struct sg_table *rx)
  457. {
  458. struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
  459. u8 irq_mask = 0;
  460. unsigned int other_irq = 0;
  461. dma_cookie_t cookie;
  462. int ret;
  463. /* First prepare and submit the DMA request(s), as this may fail */
  464. if (rx) {
  465. desc_rx = dmaengine_prep_slave_sg(rspi->ctlr->dma_rx, rx->sgl,
  466. rx->nents, DMA_DEV_TO_MEM,
  467. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  468. if (!desc_rx) {
  469. ret = -EAGAIN;
  470. goto no_dma_rx;
  471. }
  472. desc_rx->callback = rspi_dma_complete;
  473. desc_rx->callback_param = rspi;
  474. cookie = dmaengine_submit(desc_rx);
  475. if (dma_submit_error(cookie)) {
  476. ret = cookie;
  477. goto no_dma_rx;
  478. }
  479. irq_mask |= SPCR_SPRIE;
  480. }
  481. if (tx) {
  482. desc_tx = dmaengine_prep_slave_sg(rspi->ctlr->dma_tx, tx->sgl,
  483. tx->nents, DMA_MEM_TO_DEV,
  484. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  485. if (!desc_tx) {
  486. ret = -EAGAIN;
  487. goto no_dma_tx;
  488. }
  489. if (rx) {
  490. /* No callback */
  491. desc_tx->callback = NULL;
  492. } else {
  493. desc_tx->callback = rspi_dma_complete;
  494. desc_tx->callback_param = rspi;
  495. }
  496. cookie = dmaengine_submit(desc_tx);
  497. if (dma_submit_error(cookie)) {
  498. ret = cookie;
  499. goto no_dma_tx;
  500. }
  501. irq_mask |= SPCR_SPTIE;
  502. }
  503. /*
  504. * DMAC needs SPxIE, but if SPxIE is set, the IRQ routine will be
  505. * called. So, this driver disables the IRQ while DMA transfer.
  506. */
  507. if (tx)
  508. disable_irq(other_irq = rspi->tx_irq);
  509. if (rx && rspi->rx_irq != other_irq)
  510. disable_irq(rspi->rx_irq);
  511. rspi_enable_irq(rspi, irq_mask);
  512. rspi->dma_callbacked = 0;
  513. /* Now start DMA */
  514. if (rx)
  515. dma_async_issue_pending(rspi->ctlr->dma_rx);
  516. if (tx)
  517. dma_async_issue_pending(rspi->ctlr->dma_tx);
  518. ret = wait_event_interruptible_timeout(rspi->wait,
  519. rspi->dma_callbacked, HZ);
  520. if (ret > 0 && rspi->dma_callbacked) {
  521. ret = 0;
  522. if (tx)
  523. dmaengine_synchronize(rspi->ctlr->dma_tx);
  524. if (rx)
  525. dmaengine_synchronize(rspi->ctlr->dma_rx);
  526. } else {
  527. if (!ret) {
  528. dev_err(&rspi->ctlr->dev, "DMA timeout\n");
  529. ret = -ETIMEDOUT;
  530. }
  531. if (tx)
  532. dmaengine_terminate_sync(rspi->ctlr->dma_tx);
  533. if (rx)
  534. dmaengine_terminate_sync(rspi->ctlr->dma_rx);
  535. }
  536. rspi_disable_irq(rspi, irq_mask);
  537. if (tx)
  538. enable_irq(rspi->tx_irq);
  539. if (rx && rspi->rx_irq != other_irq)
  540. enable_irq(rspi->rx_irq);
  541. return ret;
  542. no_dma_tx:
  543. if (rx)
  544. dmaengine_terminate_sync(rspi->ctlr->dma_rx);
  545. no_dma_rx:
  546. if (ret == -EAGAIN) {
  547. dev_warn_once(&rspi->ctlr->dev,
  548. "DMA not available, falling back to PIO\n");
  549. }
  550. return ret;
  551. }
  552. static void rspi_receive_init(const struct rspi_data *rspi)
  553. {
  554. u8 spsr;
  555. spsr = rspi_read8(rspi, RSPI_SPSR);
  556. if (spsr & SPSR_SPRF)
  557. rspi_read_data(rspi); /* dummy read */
  558. if (spsr & SPSR_OVRF)
  559. rspi_write8(rspi, rspi_read8(rspi, RSPI_SPSR) & ~SPSR_OVRF,
  560. RSPI_SPSR);
  561. }
  562. static void rspi_rz_receive_init(const struct rspi_data *rspi)
  563. {
  564. rspi_receive_init(rspi);
  565. rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, RSPI_SPBFCR);
  566. rspi_write8(rspi, 0, RSPI_SPBFCR);
  567. }
  568. static void qspi_receive_init(const struct rspi_data *rspi)
  569. {
  570. u8 spsr;
  571. spsr = rspi_read8(rspi, RSPI_SPSR);
  572. if (spsr & SPSR_SPRF)
  573. rspi_read_data(rspi); /* dummy read */
  574. rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
  575. rspi_write8(rspi, 0, QSPI_SPBFCR);
  576. }
  577. static bool __rspi_can_dma(const struct rspi_data *rspi,
  578. const struct spi_transfer *xfer)
  579. {
  580. return xfer->len > rspi->ops->fifo_size;
  581. }
  582. static bool rspi_can_dma(struct spi_controller *ctlr, struct spi_device *spi,
  583. struct spi_transfer *xfer)
  584. {
  585. struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
  586. return __rspi_can_dma(rspi, xfer);
  587. }
  588. static int rspi_dma_check_then_transfer(struct rspi_data *rspi,
  589. struct spi_transfer *xfer)
  590. {
  591. if (!rspi->ctlr->can_dma || !__rspi_can_dma(rspi, xfer))
  592. return -EAGAIN;
  593. /* rx_buf can be NULL on RSPI on SH in TX-only Mode */
  594. return rspi_dma_transfer(rspi, &xfer->tx_sg,
  595. xfer->rx_buf ? &xfer->rx_sg : NULL);
  596. }
  597. static int rspi_common_transfer(struct rspi_data *rspi,
  598. struct spi_transfer *xfer)
  599. {
  600. int ret;
  601. xfer->effective_speed_hz = rspi->speed_hz;
  602. ret = rspi_dma_check_then_transfer(rspi, xfer);
  603. if (ret != -EAGAIN)
  604. return ret;
  605. ret = rspi_pio_transfer(rspi, xfer->tx_buf, xfer->rx_buf, xfer->len);
  606. if (ret < 0)
  607. return ret;
  608. /* Wait for the last transmission */
  609. rspi_wait_for_tx_empty(rspi);
  610. return 0;
  611. }
  612. static int rspi_transfer_one(struct spi_controller *ctlr,
  613. struct spi_device *spi, struct spi_transfer *xfer)
  614. {
  615. struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
  616. u8 spcr;
  617. spcr = rspi_read8(rspi, RSPI_SPCR);
  618. if (xfer->rx_buf) {
  619. rspi_receive_init(rspi);
  620. spcr &= ~SPCR_TXMD;
  621. } else {
  622. spcr |= SPCR_TXMD;
  623. }
  624. rspi_write8(rspi, spcr, RSPI_SPCR);
  625. return rspi_common_transfer(rspi, xfer);
  626. }
  627. static int rspi_rz_transfer_one(struct spi_controller *ctlr,
  628. struct spi_device *spi,
  629. struct spi_transfer *xfer)
  630. {
  631. struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
  632. rspi_rz_receive_init(rspi);
  633. return rspi_common_transfer(rspi, xfer);
  634. }
  635. static int qspi_trigger_transfer_out_in(struct rspi_data *rspi, const u8 *tx,
  636. u8 *rx, unsigned int len)
  637. {
  638. unsigned int i, n;
  639. int ret;
  640. while (len > 0) {
  641. n = qspi_set_send_trigger(rspi, len);
  642. qspi_set_receive_trigger(rspi, len);
  643. ret = rspi_wait_for_tx_empty(rspi);
  644. if (ret < 0) {
  645. dev_err(&rspi->ctlr->dev, "transmit timeout\n");
  646. return ret;
  647. }
  648. for (i = 0; i < n; i++)
  649. rspi_write_data(rspi, *tx++);
  650. ret = rspi_wait_for_rx_full(rspi);
  651. if (ret < 0) {
  652. dev_err(&rspi->ctlr->dev, "receive timeout\n");
  653. return ret;
  654. }
  655. for (i = 0; i < n; i++)
  656. *rx++ = rspi_read_data(rspi);
  657. len -= n;
  658. }
  659. return 0;
  660. }
  661. static int qspi_transfer_out_in(struct rspi_data *rspi,
  662. struct spi_transfer *xfer)
  663. {
  664. int ret;
  665. qspi_receive_init(rspi);
  666. ret = rspi_dma_check_then_transfer(rspi, xfer);
  667. if (ret != -EAGAIN)
  668. return ret;
  669. return qspi_trigger_transfer_out_in(rspi, xfer->tx_buf,
  670. xfer->rx_buf, xfer->len);
  671. }
  672. static int qspi_transfer_out(struct rspi_data *rspi, struct spi_transfer *xfer)
  673. {
  674. const u8 *tx = xfer->tx_buf;
  675. unsigned int n = xfer->len;
  676. unsigned int i, len;
  677. int ret;
  678. if (rspi->ctlr->can_dma && __rspi_can_dma(rspi, xfer)) {
  679. ret = rspi_dma_transfer(rspi, &xfer->tx_sg, NULL);
  680. if (ret != -EAGAIN)
  681. return ret;
  682. }
  683. while (n > 0) {
  684. len = qspi_set_send_trigger(rspi, n);
  685. ret = rspi_wait_for_tx_empty(rspi);
  686. if (ret < 0) {
  687. dev_err(&rspi->ctlr->dev, "transmit timeout\n");
  688. return ret;
  689. }
  690. for (i = 0; i < len; i++)
  691. rspi_write_data(rspi, *tx++);
  692. n -= len;
  693. }
  694. /* Wait for the last transmission */
  695. rspi_wait_for_tx_empty(rspi);
  696. return 0;
  697. }
  698. static int qspi_transfer_in(struct rspi_data *rspi, struct spi_transfer *xfer)
  699. {
  700. u8 *rx = xfer->rx_buf;
  701. unsigned int n = xfer->len;
  702. unsigned int i, len;
  703. int ret;
  704. if (rspi->ctlr->can_dma && __rspi_can_dma(rspi, xfer)) {
  705. ret = rspi_dma_transfer(rspi, NULL, &xfer->rx_sg);
  706. if (ret != -EAGAIN)
  707. return ret;
  708. }
  709. while (n > 0) {
  710. len = qspi_set_receive_trigger(rspi, n);
  711. ret = rspi_wait_for_rx_full(rspi);
  712. if (ret < 0) {
  713. dev_err(&rspi->ctlr->dev, "receive timeout\n");
  714. return ret;
  715. }
  716. for (i = 0; i < len; i++)
  717. *rx++ = rspi_read_data(rspi);
  718. n -= len;
  719. }
  720. return 0;
  721. }
  722. static int qspi_transfer_one(struct spi_controller *ctlr,
  723. struct spi_device *spi, struct spi_transfer *xfer)
  724. {
  725. struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
  726. xfer->effective_speed_hz = rspi->speed_hz;
  727. if (spi->mode & SPI_LOOP) {
  728. return qspi_transfer_out_in(rspi, xfer);
  729. } else if (xfer->tx_nbits > SPI_NBITS_SINGLE) {
  730. /* Quad or Dual SPI Write */
  731. return qspi_transfer_out(rspi, xfer);
  732. } else if (xfer->rx_nbits > SPI_NBITS_SINGLE) {
  733. /* Quad or Dual SPI Read */
  734. return qspi_transfer_in(rspi, xfer);
  735. } else {
  736. /* Single SPI Transfer */
  737. return qspi_transfer_out_in(rspi, xfer);
  738. }
  739. }
  740. static u16 qspi_transfer_mode(const struct spi_transfer *xfer)
  741. {
  742. if (xfer->tx_buf)
  743. switch (xfer->tx_nbits) {
  744. case SPI_NBITS_QUAD:
  745. return SPCMD_SPIMOD_QUAD;
  746. case SPI_NBITS_DUAL:
  747. return SPCMD_SPIMOD_DUAL;
  748. default:
  749. return 0;
  750. }
  751. if (xfer->rx_buf)
  752. switch (xfer->rx_nbits) {
  753. case SPI_NBITS_QUAD:
  754. return SPCMD_SPIMOD_QUAD | SPCMD_SPRW;
  755. case SPI_NBITS_DUAL:
  756. return SPCMD_SPIMOD_DUAL | SPCMD_SPRW;
  757. default:
  758. return 0;
  759. }
  760. return 0;
  761. }
  762. static int qspi_setup_sequencer(struct rspi_data *rspi,
  763. const struct spi_message *msg)
  764. {
  765. const struct spi_transfer *xfer;
  766. unsigned int i = 0, len = 0;
  767. u16 current_mode = 0xffff, mode;
  768. list_for_each_entry(xfer, &msg->transfers, transfer_list) {
  769. mode = qspi_transfer_mode(xfer);
  770. if (mode == current_mode) {
  771. len += xfer->len;
  772. continue;
  773. }
  774. /* Transfer mode change */
  775. if (i) {
  776. /* Set transfer data length of previous transfer */
  777. rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
  778. }
  779. if (i >= QSPI_NUM_SPCMD) {
  780. dev_err(&msg->spi->dev,
  781. "Too many different transfer modes");
  782. return -EINVAL;
  783. }
  784. /* Program transfer mode for this transfer */
  785. rspi_write16(rspi, rspi->spcmd | mode, RSPI_SPCMD(i));
  786. current_mode = mode;
  787. len = xfer->len;
  788. i++;
  789. }
  790. if (i) {
  791. /* Set final transfer data length and sequence length */
  792. rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
  793. rspi_write8(rspi, i - 1, RSPI_SPSCR);
  794. }
  795. return 0;
  796. }
  797. static int rspi_setup(struct spi_device *spi)
  798. {
  799. struct rspi_data *rspi = spi_controller_get_devdata(spi->controller);
  800. u8 sslp;
  801. if (spi->cs_gpiod)
  802. return 0;
  803. pm_runtime_get_sync(&rspi->pdev->dev);
  804. spin_lock_irq(&rspi->lock);
  805. sslp = rspi_read8(rspi, RSPI_SSLP);
  806. if (spi->mode & SPI_CS_HIGH)
  807. sslp |= SSLP_SSLP(spi->chip_select);
  808. else
  809. sslp &= ~SSLP_SSLP(spi->chip_select);
  810. rspi_write8(rspi, sslp, RSPI_SSLP);
  811. spin_unlock_irq(&rspi->lock);
  812. pm_runtime_put(&rspi->pdev->dev);
  813. return 0;
  814. }
  815. static int rspi_prepare_message(struct spi_controller *ctlr,
  816. struct spi_message *msg)
  817. {
  818. struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
  819. struct spi_device *spi = msg->spi;
  820. const struct spi_transfer *xfer;
  821. int ret;
  822. /*
  823. * As the Bit Rate Register must not be changed while the device is
  824. * active, all transfers in a message must use the same bit rate.
  825. * In theory, the sequencer could be enabled, and each Command Register
  826. * could divide the base bit rate by a different value.
  827. * However, most RSPI variants do not have Transfer Data Length
  828. * Multiplier Setting Registers, so each sequence step would be limited
  829. * to a single word, making this feature unsuitable for large
  830. * transfers, which would gain most from it.
  831. */
  832. rspi->speed_hz = spi->max_speed_hz;
  833. list_for_each_entry(xfer, &msg->transfers, transfer_list) {
  834. if (xfer->speed_hz < rspi->speed_hz)
  835. rspi->speed_hz = xfer->speed_hz;
  836. }
  837. rspi->spcmd = SPCMD_SSLKP;
  838. if (spi->mode & SPI_CPOL)
  839. rspi->spcmd |= SPCMD_CPOL;
  840. if (spi->mode & SPI_CPHA)
  841. rspi->spcmd |= SPCMD_CPHA;
  842. if (spi->mode & SPI_LSB_FIRST)
  843. rspi->spcmd |= SPCMD_LSBF;
  844. /* Configure slave signal to assert */
  845. rspi->spcmd |= SPCMD_SSLA(spi->cs_gpiod ? rspi->ctlr->unused_native_cs
  846. : spi->chip_select);
  847. /* CMOS output mode and MOSI signal from previous transfer */
  848. rspi->sppcr = 0;
  849. if (spi->mode & SPI_LOOP)
  850. rspi->sppcr |= SPPCR_SPLP;
  851. rspi->ops->set_config_register(rspi, 8);
  852. if (msg->spi->mode &
  853. (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)) {
  854. /* Setup sequencer for messages with multiple transfer modes */
  855. ret = qspi_setup_sequencer(rspi, msg);
  856. if (ret < 0)
  857. return ret;
  858. }
  859. /* Enable SPI function in master mode */
  860. rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_SPE, RSPI_SPCR);
  861. return 0;
  862. }
  863. static int rspi_unprepare_message(struct spi_controller *ctlr,
  864. struct spi_message *msg)
  865. {
  866. struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
  867. /* Disable SPI function */
  868. rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_SPE, RSPI_SPCR);
  869. /* Reset sequencer for Single SPI Transfers */
  870. rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
  871. rspi_write8(rspi, 0, RSPI_SPSCR);
  872. return 0;
  873. }
  874. static irqreturn_t rspi_irq_mux(int irq, void *_sr)
  875. {
  876. struct rspi_data *rspi = _sr;
  877. u8 spsr;
  878. irqreturn_t ret = IRQ_NONE;
  879. u8 disable_irq = 0;
  880. rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
  881. if (spsr & SPSR_SPRF)
  882. disable_irq |= SPCR_SPRIE;
  883. if (spsr & SPSR_SPTEF)
  884. disable_irq |= SPCR_SPTIE;
  885. if (disable_irq) {
  886. ret = IRQ_HANDLED;
  887. rspi_disable_irq(rspi, disable_irq);
  888. wake_up(&rspi->wait);
  889. }
  890. return ret;
  891. }
  892. static irqreturn_t rspi_irq_rx(int irq, void *_sr)
  893. {
  894. struct rspi_data *rspi = _sr;
  895. u8 spsr;
  896. rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
  897. if (spsr & SPSR_SPRF) {
  898. rspi_disable_irq(rspi, SPCR_SPRIE);
  899. wake_up(&rspi->wait);
  900. return IRQ_HANDLED;
  901. }
  902. return 0;
  903. }
  904. static irqreturn_t rspi_irq_tx(int irq, void *_sr)
  905. {
  906. struct rspi_data *rspi = _sr;
  907. u8 spsr;
  908. rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
  909. if (spsr & SPSR_SPTEF) {
  910. rspi_disable_irq(rspi, SPCR_SPTIE);
  911. wake_up(&rspi->wait);
  912. return IRQ_HANDLED;
  913. }
  914. return 0;
  915. }
  916. static struct dma_chan *rspi_request_dma_chan(struct device *dev,
  917. enum dma_transfer_direction dir,
  918. unsigned int id,
  919. dma_addr_t port_addr)
  920. {
  921. dma_cap_mask_t mask;
  922. struct dma_chan *chan;
  923. struct dma_slave_config cfg;
  924. int ret;
  925. dma_cap_zero(mask);
  926. dma_cap_set(DMA_SLAVE, mask);
  927. chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
  928. (void *)(unsigned long)id, dev,
  929. dir == DMA_MEM_TO_DEV ? "tx" : "rx");
  930. if (!chan) {
  931. dev_warn(dev, "dma_request_slave_channel_compat failed\n");
  932. return NULL;
  933. }
  934. memset(&cfg, 0, sizeof(cfg));
  935. cfg.dst_addr = port_addr + RSPI_SPDR;
  936. cfg.src_addr = port_addr + RSPI_SPDR;
  937. cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
  938. cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
  939. cfg.direction = dir;
  940. ret = dmaengine_slave_config(chan, &cfg);
  941. if (ret) {
  942. dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
  943. dma_release_channel(chan);
  944. return NULL;
  945. }
  946. return chan;
  947. }
  948. static int rspi_request_dma(struct device *dev, struct spi_controller *ctlr,
  949. const struct resource *res)
  950. {
  951. const struct rspi_plat_data *rspi_pd = dev_get_platdata(dev);
  952. unsigned int dma_tx_id, dma_rx_id;
  953. if (dev->of_node) {
  954. /* In the OF case we will get the slave IDs from the DT */
  955. dma_tx_id = 0;
  956. dma_rx_id = 0;
  957. } else if (rspi_pd && rspi_pd->dma_tx_id && rspi_pd->dma_rx_id) {
  958. dma_tx_id = rspi_pd->dma_tx_id;
  959. dma_rx_id = rspi_pd->dma_rx_id;
  960. } else {
  961. /* The driver assumes no error. */
  962. return 0;
  963. }
  964. ctlr->dma_tx = rspi_request_dma_chan(dev, DMA_MEM_TO_DEV, dma_tx_id,
  965. res->start);
  966. if (!ctlr->dma_tx)
  967. return -ENODEV;
  968. ctlr->dma_rx = rspi_request_dma_chan(dev, DMA_DEV_TO_MEM, dma_rx_id,
  969. res->start);
  970. if (!ctlr->dma_rx) {
  971. dma_release_channel(ctlr->dma_tx);
  972. ctlr->dma_tx = NULL;
  973. return -ENODEV;
  974. }
  975. ctlr->can_dma = rspi_can_dma;
  976. dev_info(dev, "DMA available");
  977. return 0;
  978. }
  979. static void rspi_release_dma(struct spi_controller *ctlr)
  980. {
  981. if (ctlr->dma_tx)
  982. dma_release_channel(ctlr->dma_tx);
  983. if (ctlr->dma_rx)
  984. dma_release_channel(ctlr->dma_rx);
  985. }
  986. static int rspi_remove(struct platform_device *pdev)
  987. {
  988. struct rspi_data *rspi = platform_get_drvdata(pdev);
  989. rspi_release_dma(rspi->ctlr);
  990. pm_runtime_disable(&pdev->dev);
  991. return 0;
  992. }
  993. static const struct spi_ops rspi_ops = {
  994. .set_config_register = rspi_set_config_register,
  995. .transfer_one = rspi_transfer_one,
  996. .min_div = 2,
  997. .max_div = 4096,
  998. .flags = SPI_CONTROLLER_MUST_TX,
  999. .fifo_size = 8,
  1000. .num_hw_ss = 2,
  1001. };
  1002. static const struct spi_ops rspi_rz_ops = {
  1003. .set_config_register = rspi_rz_set_config_register,
  1004. .transfer_one = rspi_rz_transfer_one,
  1005. .min_div = 2,
  1006. .max_div = 4096,
  1007. .flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX,
  1008. .fifo_size = 8, /* 8 for TX, 32 for RX */
  1009. .num_hw_ss = 1,
  1010. };
  1011. static const struct spi_ops qspi_ops = {
  1012. .set_config_register = qspi_set_config_register,
  1013. .transfer_one = qspi_transfer_one,
  1014. .extra_mode_bits = SPI_TX_DUAL | SPI_TX_QUAD |
  1015. SPI_RX_DUAL | SPI_RX_QUAD,
  1016. .min_div = 1,
  1017. .max_div = 4080,
  1018. .flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX,
  1019. .fifo_size = 32,
  1020. .num_hw_ss = 1,
  1021. };
  1022. #ifdef CONFIG_OF
  1023. static const struct of_device_id rspi_of_match[] = {
  1024. /* RSPI on legacy SH */
  1025. { .compatible = "renesas,rspi", .data = &rspi_ops },
  1026. /* RSPI on RZ/A1H */
  1027. { .compatible = "renesas,rspi-rz", .data = &rspi_rz_ops },
  1028. /* QSPI on R-Car Gen2 */
  1029. { .compatible = "renesas,qspi", .data = &qspi_ops },
  1030. { /* sentinel */ }
  1031. };
  1032. MODULE_DEVICE_TABLE(of, rspi_of_match);
  1033. static void rspi_reset_control_assert(void *data)
  1034. {
  1035. reset_control_assert(data);
  1036. }
  1037. static int rspi_parse_dt(struct device *dev, struct spi_controller *ctlr)
  1038. {
  1039. struct reset_control *rstc;
  1040. u32 num_cs;
  1041. int error;
  1042. /* Parse DT properties */
  1043. error = of_property_read_u32(dev->of_node, "num-cs", &num_cs);
  1044. if (error) {
  1045. dev_err(dev, "of_property_read_u32 num-cs failed %d\n", error);
  1046. return error;
  1047. }
  1048. ctlr->num_chipselect = num_cs;
  1049. rstc = devm_reset_control_get_optional_exclusive(dev, NULL);
  1050. if (IS_ERR(rstc))
  1051. return dev_err_probe(dev, PTR_ERR(rstc),
  1052. "failed to get reset ctrl\n");
  1053. error = reset_control_deassert(rstc);
  1054. if (error) {
  1055. dev_err(dev, "failed to deassert reset %d\n", error);
  1056. return error;
  1057. }
  1058. error = devm_add_action_or_reset(dev, rspi_reset_control_assert, rstc);
  1059. if (error) {
  1060. dev_err(dev, "failed to register assert devm action, %d\n", error);
  1061. return error;
  1062. }
  1063. return 0;
  1064. }
  1065. #else
  1066. #define rspi_of_match NULL
  1067. static inline int rspi_parse_dt(struct device *dev, struct spi_controller *ctlr)
  1068. {
  1069. return -EINVAL;
  1070. }
  1071. #endif /* CONFIG_OF */
  1072. static int rspi_request_irq(struct device *dev, unsigned int irq,
  1073. irq_handler_t handler, const char *suffix,
  1074. void *dev_id)
  1075. {
  1076. const char *name = devm_kasprintf(dev, GFP_KERNEL, "%s:%s",
  1077. dev_name(dev), suffix);
  1078. if (!name)
  1079. return -ENOMEM;
  1080. return devm_request_irq(dev, irq, handler, 0, name, dev_id);
  1081. }
  1082. static int rspi_probe(struct platform_device *pdev)
  1083. {
  1084. struct resource *res;
  1085. struct spi_controller *ctlr;
  1086. struct rspi_data *rspi;
  1087. int ret;
  1088. const struct rspi_plat_data *rspi_pd;
  1089. const struct spi_ops *ops;
  1090. unsigned long clksrc;
  1091. ctlr = spi_alloc_master(&pdev->dev, sizeof(struct rspi_data));
  1092. if (ctlr == NULL)
  1093. return -ENOMEM;
  1094. ops = of_device_get_match_data(&pdev->dev);
  1095. if (ops) {
  1096. ret = rspi_parse_dt(&pdev->dev, ctlr);
  1097. if (ret)
  1098. goto error1;
  1099. } else {
  1100. ops = (struct spi_ops *)pdev->id_entry->driver_data;
  1101. rspi_pd = dev_get_platdata(&pdev->dev);
  1102. if (rspi_pd && rspi_pd->num_chipselect)
  1103. ctlr->num_chipselect = rspi_pd->num_chipselect;
  1104. else
  1105. ctlr->num_chipselect = 2; /* default */
  1106. }
  1107. rspi = spi_controller_get_devdata(ctlr);
  1108. platform_set_drvdata(pdev, rspi);
  1109. rspi->ops = ops;
  1110. rspi->ctlr = ctlr;
  1111. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1112. rspi->addr = devm_ioremap_resource(&pdev->dev, res);
  1113. if (IS_ERR(rspi->addr)) {
  1114. ret = PTR_ERR(rspi->addr);
  1115. goto error1;
  1116. }
  1117. rspi->clk = devm_clk_get(&pdev->dev, NULL);
  1118. if (IS_ERR(rspi->clk)) {
  1119. dev_err(&pdev->dev, "cannot get clock\n");
  1120. ret = PTR_ERR(rspi->clk);
  1121. goto error1;
  1122. }
  1123. rspi->pdev = pdev;
  1124. pm_runtime_enable(&pdev->dev);
  1125. init_waitqueue_head(&rspi->wait);
  1126. spin_lock_init(&rspi->lock);
  1127. ctlr->bus_num = pdev->id;
  1128. ctlr->setup = rspi_setup;
  1129. ctlr->auto_runtime_pm = true;
  1130. ctlr->transfer_one = ops->transfer_one;
  1131. ctlr->prepare_message = rspi_prepare_message;
  1132. ctlr->unprepare_message = rspi_unprepare_message;
  1133. ctlr->mode_bits = SPI_CPHA | SPI_CPOL | SPI_CS_HIGH | SPI_LSB_FIRST |
  1134. SPI_LOOP | ops->extra_mode_bits;
  1135. clksrc = clk_get_rate(rspi->clk);
  1136. ctlr->min_speed_hz = DIV_ROUND_UP(clksrc, ops->max_div);
  1137. ctlr->max_speed_hz = DIV_ROUND_UP(clksrc, ops->min_div);
  1138. ctlr->flags = ops->flags;
  1139. ctlr->dev.of_node = pdev->dev.of_node;
  1140. ctlr->use_gpio_descriptors = true;
  1141. ctlr->max_native_cs = rspi->ops->num_hw_ss;
  1142. ret = platform_get_irq_byname_optional(pdev, "rx");
  1143. if (ret < 0) {
  1144. ret = platform_get_irq_byname_optional(pdev, "mux");
  1145. if (ret < 0)
  1146. ret = platform_get_irq(pdev, 0);
  1147. if (ret >= 0)
  1148. rspi->rx_irq = rspi->tx_irq = ret;
  1149. } else {
  1150. rspi->rx_irq = ret;
  1151. ret = platform_get_irq_byname(pdev, "tx");
  1152. if (ret >= 0)
  1153. rspi->tx_irq = ret;
  1154. }
  1155. if (rspi->rx_irq == rspi->tx_irq) {
  1156. /* Single multiplexed interrupt */
  1157. ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_mux,
  1158. "mux", rspi);
  1159. } else {
  1160. /* Multi-interrupt mode, only SPRI and SPTI are used */
  1161. ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_rx,
  1162. "rx", rspi);
  1163. if (!ret)
  1164. ret = rspi_request_irq(&pdev->dev, rspi->tx_irq,
  1165. rspi_irq_tx, "tx", rspi);
  1166. }
  1167. if (ret < 0) {
  1168. dev_err(&pdev->dev, "request_irq error\n");
  1169. goto error2;
  1170. }
  1171. ret = rspi_request_dma(&pdev->dev, ctlr, res);
  1172. if (ret < 0)
  1173. dev_warn(&pdev->dev, "DMA not available, using PIO\n");
  1174. ret = devm_spi_register_controller(&pdev->dev, ctlr);
  1175. if (ret < 0) {
  1176. dev_err(&pdev->dev, "devm_spi_register_controller error.\n");
  1177. goto error3;
  1178. }
  1179. dev_info(&pdev->dev, "probed\n");
  1180. return 0;
  1181. error3:
  1182. rspi_release_dma(ctlr);
  1183. error2:
  1184. pm_runtime_disable(&pdev->dev);
  1185. error1:
  1186. spi_controller_put(ctlr);
  1187. return ret;
  1188. }
  1189. static const struct platform_device_id spi_driver_ids[] = {
  1190. { "rspi", (kernel_ulong_t)&rspi_ops },
  1191. {},
  1192. };
  1193. MODULE_DEVICE_TABLE(platform, spi_driver_ids);
  1194. #ifdef CONFIG_PM_SLEEP
  1195. static int rspi_suspend(struct device *dev)
  1196. {
  1197. struct rspi_data *rspi = dev_get_drvdata(dev);
  1198. return spi_controller_suspend(rspi->ctlr);
  1199. }
  1200. static int rspi_resume(struct device *dev)
  1201. {
  1202. struct rspi_data *rspi = dev_get_drvdata(dev);
  1203. return spi_controller_resume(rspi->ctlr);
  1204. }
  1205. static SIMPLE_DEV_PM_OPS(rspi_pm_ops, rspi_suspend, rspi_resume);
  1206. #define DEV_PM_OPS &rspi_pm_ops
  1207. #else
  1208. #define DEV_PM_OPS NULL
  1209. #endif /* CONFIG_PM_SLEEP */
  1210. static struct platform_driver rspi_driver = {
  1211. .probe = rspi_probe,
  1212. .remove = rspi_remove,
  1213. .id_table = spi_driver_ids,
  1214. .driver = {
  1215. .name = "renesas_spi",
  1216. .pm = DEV_PM_OPS,
  1217. .of_match_table = of_match_ptr(rspi_of_match),
  1218. },
  1219. };
  1220. module_platform_driver(rspi_driver);
  1221. MODULE_DESCRIPTION("Renesas RSPI bus driver");
  1222. MODULE_LICENSE("GPL v2");
  1223. MODULE_AUTHOR("Yoshihiro Shimoda");