spi-rockchip.c 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Copyright (c) 2014, Fuzhou Rockchip Electronics Co., Ltd
  4. * Author: Addy Ke <[email protected]>
  5. */
  6. #include <linux/clk.h>
  7. #include <linux/dmaengine.h>
  8. #include <linux/interrupt.h>
  9. #include <linux/module.h>
  10. #include <linux/of.h>
  11. #include <linux/pinctrl/consumer.h>
  12. #include <linux/platform_device.h>
  13. #include <linux/spi/spi.h>
  14. #include <linux/pm_runtime.h>
  15. #include <linux/scatterlist.h>
  16. #define DRIVER_NAME "rockchip-spi"
  17. #define ROCKCHIP_SPI_CLR_BITS(reg, bits) \
  18. writel_relaxed(readl_relaxed(reg) & ~(bits), reg)
  19. #define ROCKCHIP_SPI_SET_BITS(reg, bits) \
  20. writel_relaxed(readl_relaxed(reg) | (bits), reg)
  21. /* SPI register offsets */
  22. #define ROCKCHIP_SPI_CTRLR0 0x0000
  23. #define ROCKCHIP_SPI_CTRLR1 0x0004
  24. #define ROCKCHIP_SPI_SSIENR 0x0008
  25. #define ROCKCHIP_SPI_SER 0x000c
  26. #define ROCKCHIP_SPI_BAUDR 0x0010
  27. #define ROCKCHIP_SPI_TXFTLR 0x0014
  28. #define ROCKCHIP_SPI_RXFTLR 0x0018
  29. #define ROCKCHIP_SPI_TXFLR 0x001c
  30. #define ROCKCHIP_SPI_RXFLR 0x0020
  31. #define ROCKCHIP_SPI_SR 0x0024
  32. #define ROCKCHIP_SPI_IPR 0x0028
  33. #define ROCKCHIP_SPI_IMR 0x002c
  34. #define ROCKCHIP_SPI_ISR 0x0030
  35. #define ROCKCHIP_SPI_RISR 0x0034
  36. #define ROCKCHIP_SPI_ICR 0x0038
  37. #define ROCKCHIP_SPI_DMACR 0x003c
  38. #define ROCKCHIP_SPI_DMATDLR 0x0040
  39. #define ROCKCHIP_SPI_DMARDLR 0x0044
  40. #define ROCKCHIP_SPI_VERSION 0x0048
  41. #define ROCKCHIP_SPI_TXDR 0x0400
  42. #define ROCKCHIP_SPI_RXDR 0x0800
  43. /* Bit fields in CTRLR0 */
  44. #define CR0_DFS_OFFSET 0
  45. #define CR0_DFS_4BIT 0x0
  46. #define CR0_DFS_8BIT 0x1
  47. #define CR0_DFS_16BIT 0x2
  48. #define CR0_CFS_OFFSET 2
  49. #define CR0_SCPH_OFFSET 6
  50. #define CR0_SCPOL_OFFSET 7
  51. #define CR0_CSM_OFFSET 8
  52. #define CR0_CSM_KEEP 0x0
  53. /* ss_n be high for half sclk_out cycles */
  54. #define CR0_CSM_HALF 0X1
  55. /* ss_n be high for one sclk_out cycle */
  56. #define CR0_CSM_ONE 0x2
  57. /* ss_n to sclk_out delay */
  58. #define CR0_SSD_OFFSET 10
  59. /*
  60. * The period between ss_n active and
  61. * sclk_out active is half sclk_out cycles
  62. */
  63. #define CR0_SSD_HALF 0x0
  64. /*
  65. * The period between ss_n active and
  66. * sclk_out active is one sclk_out cycle
  67. */
  68. #define CR0_SSD_ONE 0x1
  69. #define CR0_EM_OFFSET 11
  70. #define CR0_EM_LITTLE 0x0
  71. #define CR0_EM_BIG 0x1
  72. #define CR0_FBM_OFFSET 12
  73. #define CR0_FBM_MSB 0x0
  74. #define CR0_FBM_LSB 0x1
  75. #define CR0_BHT_OFFSET 13
  76. #define CR0_BHT_16BIT 0x0
  77. #define CR0_BHT_8BIT 0x1
  78. #define CR0_RSD_OFFSET 14
  79. #define CR0_RSD_MAX 0x3
  80. #define CR0_FRF_OFFSET 16
  81. #define CR0_FRF_SPI 0x0
  82. #define CR0_FRF_SSP 0x1
  83. #define CR0_FRF_MICROWIRE 0x2
  84. #define CR0_XFM_OFFSET 18
  85. #define CR0_XFM_MASK (0x03 << SPI_XFM_OFFSET)
  86. #define CR0_XFM_TR 0x0
  87. #define CR0_XFM_TO 0x1
  88. #define CR0_XFM_RO 0x2
  89. #define CR0_OPM_OFFSET 20
  90. #define CR0_OPM_MASTER 0x0
  91. #define CR0_OPM_SLAVE 0x1
  92. #define CR0_SOI_OFFSET 23
  93. #define CR0_MTM_OFFSET 0x21
  94. /* Bit fields in SER, 2bit */
  95. #define SER_MASK 0x3
  96. /* Bit fields in BAUDR */
  97. #define BAUDR_SCKDV_MIN 2
  98. #define BAUDR_SCKDV_MAX 65534
  99. /* Bit fields in SR, 6bit */
  100. #define SR_MASK 0x3f
  101. #define SR_BUSY (1 << 0)
  102. #define SR_TF_FULL (1 << 1)
  103. #define SR_TF_EMPTY (1 << 2)
  104. #define SR_RF_EMPTY (1 << 3)
  105. #define SR_RF_FULL (1 << 4)
  106. #define SR_SLAVE_TX_BUSY (1 << 5)
  107. /* Bit fields in ISR, IMR, ISR, RISR, 5bit */
  108. #define INT_MASK 0x1f
  109. #define INT_TF_EMPTY (1 << 0)
  110. #define INT_TF_OVERFLOW (1 << 1)
  111. #define INT_RF_UNDERFLOW (1 << 2)
  112. #define INT_RF_OVERFLOW (1 << 3)
  113. #define INT_RF_FULL (1 << 4)
  114. #define INT_CS_INACTIVE (1 << 6)
  115. /* Bit fields in ICR, 4bit */
  116. #define ICR_MASK 0x0f
  117. #define ICR_ALL (1 << 0)
  118. #define ICR_RF_UNDERFLOW (1 << 1)
  119. #define ICR_RF_OVERFLOW (1 << 2)
  120. #define ICR_TF_OVERFLOW (1 << 3)
  121. /* Bit fields in DMACR */
  122. #define RF_DMA_EN (1 << 0)
  123. #define TF_DMA_EN (1 << 1)
  124. /* Driver state flags */
  125. #define RXDMA (1 << 0)
  126. #define TXDMA (1 << 1)
  127. /* sclk_out: spi master internal logic in rk3x can support 50Mhz */
  128. #define MAX_SCLK_OUT 50000000U
  129. /*
  130. * SPI_CTRLR1 is 16-bits, so we should support lengths of 0xffff + 1. However,
  131. * the controller seems to hang when given 0x10000, so stick with this for now.
  132. */
  133. #define ROCKCHIP_SPI_MAX_TRANLEN 0xffff
  134. /* 2 for native cs, 2 for cs-gpio */
  135. #define ROCKCHIP_SPI_MAX_CS_NUM 4
  136. #define ROCKCHIP_SPI_VER2_TYPE1 0x05EC0002
  137. #define ROCKCHIP_SPI_VER2_TYPE2 0x00110002
  138. #define ROCKCHIP_AUTOSUSPEND_TIMEOUT 2000
  139. struct rockchip_spi {
  140. struct device *dev;
  141. struct clk *spiclk;
  142. struct clk *apb_pclk;
  143. void __iomem *regs;
  144. dma_addr_t dma_addr_rx;
  145. dma_addr_t dma_addr_tx;
  146. const void *tx;
  147. void *rx;
  148. unsigned int tx_left;
  149. unsigned int rx_left;
  150. atomic_t state;
  151. /*depth of the FIFO buffer */
  152. u32 fifo_len;
  153. /* frequency of spiclk */
  154. u32 freq;
  155. u8 n_bytes;
  156. u8 rsd;
  157. bool cs_asserted[ROCKCHIP_SPI_MAX_CS_NUM];
  158. bool slave_abort;
  159. bool cs_inactive; /* spi slave tansmition stop when cs inactive */
  160. bool cs_high_supported; /* native CS supports active-high polarity */
  161. struct spi_transfer *xfer; /* Store xfer temporarily */
  162. };
  163. static inline void spi_enable_chip(struct rockchip_spi *rs, bool enable)
  164. {
  165. writel_relaxed((enable ? 1U : 0U), rs->regs + ROCKCHIP_SPI_SSIENR);
  166. }
  167. static inline void wait_for_tx_idle(struct rockchip_spi *rs, bool slave_mode)
  168. {
  169. unsigned long timeout = jiffies + msecs_to_jiffies(5);
  170. do {
  171. if (slave_mode) {
  172. if (!(readl_relaxed(rs->regs + ROCKCHIP_SPI_SR) & SR_SLAVE_TX_BUSY) &&
  173. !((readl_relaxed(rs->regs + ROCKCHIP_SPI_SR) & SR_BUSY)))
  174. return;
  175. } else {
  176. if (!(readl_relaxed(rs->regs + ROCKCHIP_SPI_SR) & SR_BUSY))
  177. return;
  178. }
  179. } while (!time_after(jiffies, timeout));
  180. dev_warn(rs->dev, "spi controller is in busy state!\n");
  181. }
  182. static u32 get_fifo_len(struct rockchip_spi *rs)
  183. {
  184. u32 ver;
  185. ver = readl_relaxed(rs->regs + ROCKCHIP_SPI_VERSION);
  186. switch (ver) {
  187. case ROCKCHIP_SPI_VER2_TYPE1:
  188. case ROCKCHIP_SPI_VER2_TYPE2:
  189. return 64;
  190. default:
  191. return 32;
  192. }
  193. }
  194. static void rockchip_spi_set_cs(struct spi_device *spi, bool enable)
  195. {
  196. struct spi_controller *ctlr = spi->controller;
  197. struct rockchip_spi *rs = spi_controller_get_devdata(ctlr);
  198. bool cs_asserted = spi->mode & SPI_CS_HIGH ? enable : !enable;
  199. /* Return immediately for no-op */
  200. if (cs_asserted == rs->cs_asserted[spi->chip_select])
  201. return;
  202. if (cs_asserted) {
  203. /* Keep things powered as long as CS is asserted */
  204. pm_runtime_get_sync(rs->dev);
  205. if (spi->cs_gpiod)
  206. ROCKCHIP_SPI_SET_BITS(rs->regs + ROCKCHIP_SPI_SER, 1);
  207. else
  208. ROCKCHIP_SPI_SET_BITS(rs->regs + ROCKCHIP_SPI_SER, BIT(spi->chip_select));
  209. } else {
  210. if (spi->cs_gpiod)
  211. ROCKCHIP_SPI_CLR_BITS(rs->regs + ROCKCHIP_SPI_SER, 1);
  212. else
  213. ROCKCHIP_SPI_CLR_BITS(rs->regs + ROCKCHIP_SPI_SER, BIT(spi->chip_select));
  214. /* Drop reference from when we first asserted CS */
  215. pm_runtime_put(rs->dev);
  216. }
  217. rs->cs_asserted[spi->chip_select] = cs_asserted;
  218. }
  219. static void rockchip_spi_handle_err(struct spi_controller *ctlr,
  220. struct spi_message *msg)
  221. {
  222. struct rockchip_spi *rs = spi_controller_get_devdata(ctlr);
  223. /* stop running spi transfer
  224. * this also flushes both rx and tx fifos
  225. */
  226. spi_enable_chip(rs, false);
  227. /* make sure all interrupts are masked and status cleared */
  228. writel_relaxed(0, rs->regs + ROCKCHIP_SPI_IMR);
  229. writel_relaxed(0xffffffff, rs->regs + ROCKCHIP_SPI_ICR);
  230. if (atomic_read(&rs->state) & TXDMA)
  231. dmaengine_terminate_async(ctlr->dma_tx);
  232. if (atomic_read(&rs->state) & RXDMA)
  233. dmaengine_terminate_async(ctlr->dma_rx);
  234. }
  235. static void rockchip_spi_pio_writer(struct rockchip_spi *rs)
  236. {
  237. u32 tx_free = rs->fifo_len - readl_relaxed(rs->regs + ROCKCHIP_SPI_TXFLR);
  238. u32 words = min(rs->tx_left, tx_free);
  239. rs->tx_left -= words;
  240. for (; words; words--) {
  241. u32 txw;
  242. if (rs->n_bytes == 1)
  243. txw = *(u8 *)rs->tx;
  244. else
  245. txw = *(u16 *)rs->tx;
  246. writel_relaxed(txw, rs->regs + ROCKCHIP_SPI_TXDR);
  247. rs->tx += rs->n_bytes;
  248. }
  249. }
  250. static void rockchip_spi_pio_reader(struct rockchip_spi *rs)
  251. {
  252. u32 words = readl_relaxed(rs->regs + ROCKCHIP_SPI_RXFLR);
  253. u32 rx_left = (rs->rx_left > words) ? rs->rx_left - words : 0;
  254. /* the hardware doesn't allow us to change fifo threshold
  255. * level while spi is enabled, so instead make sure to leave
  256. * enough words in the rx fifo to get the last interrupt
  257. * exactly when all words have been received
  258. */
  259. if (rx_left) {
  260. u32 ftl = readl_relaxed(rs->regs + ROCKCHIP_SPI_RXFTLR) + 1;
  261. if (rx_left < ftl) {
  262. rx_left = ftl;
  263. words = rs->rx_left - rx_left;
  264. }
  265. }
  266. rs->rx_left = rx_left;
  267. for (; words; words--) {
  268. u32 rxw = readl_relaxed(rs->regs + ROCKCHIP_SPI_RXDR);
  269. if (!rs->rx)
  270. continue;
  271. if (rs->n_bytes == 1)
  272. *(u8 *)rs->rx = (u8)rxw;
  273. else
  274. *(u16 *)rs->rx = (u16)rxw;
  275. rs->rx += rs->n_bytes;
  276. }
  277. }
  278. static irqreturn_t rockchip_spi_isr(int irq, void *dev_id)
  279. {
  280. struct spi_controller *ctlr = dev_id;
  281. struct rockchip_spi *rs = spi_controller_get_devdata(ctlr);
  282. /* When int_cs_inactive comes, spi slave abort */
  283. if (rs->cs_inactive && readl_relaxed(rs->regs + ROCKCHIP_SPI_IMR) & INT_CS_INACTIVE) {
  284. ctlr->slave_abort(ctlr);
  285. writel_relaxed(0, rs->regs + ROCKCHIP_SPI_IMR);
  286. writel_relaxed(0xffffffff, rs->regs + ROCKCHIP_SPI_ICR);
  287. return IRQ_HANDLED;
  288. }
  289. if (rs->tx_left)
  290. rockchip_spi_pio_writer(rs);
  291. rockchip_spi_pio_reader(rs);
  292. if (!rs->rx_left) {
  293. spi_enable_chip(rs, false);
  294. writel_relaxed(0, rs->regs + ROCKCHIP_SPI_IMR);
  295. writel_relaxed(0xffffffff, rs->regs + ROCKCHIP_SPI_ICR);
  296. spi_finalize_current_transfer(ctlr);
  297. }
  298. return IRQ_HANDLED;
  299. }
  300. static int rockchip_spi_prepare_irq(struct rockchip_spi *rs,
  301. struct spi_controller *ctlr,
  302. struct spi_transfer *xfer)
  303. {
  304. rs->tx = xfer->tx_buf;
  305. rs->rx = xfer->rx_buf;
  306. rs->tx_left = rs->tx ? xfer->len / rs->n_bytes : 0;
  307. rs->rx_left = xfer->len / rs->n_bytes;
  308. writel_relaxed(0xffffffff, rs->regs + ROCKCHIP_SPI_ICR);
  309. spi_enable_chip(rs, true);
  310. if (rs->tx_left)
  311. rockchip_spi_pio_writer(rs);
  312. if (rs->cs_inactive)
  313. writel_relaxed(INT_RF_FULL | INT_CS_INACTIVE, rs->regs + ROCKCHIP_SPI_IMR);
  314. else
  315. writel_relaxed(INT_RF_FULL, rs->regs + ROCKCHIP_SPI_IMR);
  316. /* 1 means the transfer is in progress */
  317. return 1;
  318. }
  319. static void rockchip_spi_dma_rxcb(void *data)
  320. {
  321. struct spi_controller *ctlr = data;
  322. struct rockchip_spi *rs = spi_controller_get_devdata(ctlr);
  323. int state = atomic_fetch_andnot(RXDMA, &rs->state);
  324. if (state & TXDMA && !rs->slave_abort)
  325. return;
  326. if (rs->cs_inactive)
  327. writel_relaxed(0, rs->regs + ROCKCHIP_SPI_IMR);
  328. spi_enable_chip(rs, false);
  329. spi_finalize_current_transfer(ctlr);
  330. }
  331. static void rockchip_spi_dma_txcb(void *data)
  332. {
  333. struct spi_controller *ctlr = data;
  334. struct rockchip_spi *rs = spi_controller_get_devdata(ctlr);
  335. int state = atomic_fetch_andnot(TXDMA, &rs->state);
  336. if (state & RXDMA && !rs->slave_abort)
  337. return;
  338. /* Wait until the FIFO data completely. */
  339. wait_for_tx_idle(rs, ctlr->slave);
  340. spi_enable_chip(rs, false);
  341. spi_finalize_current_transfer(ctlr);
  342. }
  343. static u32 rockchip_spi_calc_burst_size(u32 data_len)
  344. {
  345. u32 i;
  346. /* burst size: 1, 2, 4, 8 */
  347. for (i = 1; i < 8; i <<= 1) {
  348. if (data_len & i)
  349. break;
  350. }
  351. return i;
  352. }
  353. static int rockchip_spi_prepare_dma(struct rockchip_spi *rs,
  354. struct spi_controller *ctlr, struct spi_transfer *xfer)
  355. {
  356. struct dma_async_tx_descriptor *rxdesc, *txdesc;
  357. atomic_set(&rs->state, 0);
  358. rs->tx = xfer->tx_buf;
  359. rs->rx = xfer->rx_buf;
  360. rxdesc = NULL;
  361. if (xfer->rx_buf) {
  362. struct dma_slave_config rxconf = {
  363. .direction = DMA_DEV_TO_MEM,
  364. .src_addr = rs->dma_addr_rx,
  365. .src_addr_width = rs->n_bytes,
  366. .src_maxburst = rockchip_spi_calc_burst_size(xfer->len / rs->n_bytes),
  367. };
  368. dmaengine_slave_config(ctlr->dma_rx, &rxconf);
  369. rxdesc = dmaengine_prep_slave_sg(
  370. ctlr->dma_rx,
  371. xfer->rx_sg.sgl, xfer->rx_sg.nents,
  372. DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT);
  373. if (!rxdesc)
  374. return -EINVAL;
  375. rxdesc->callback = rockchip_spi_dma_rxcb;
  376. rxdesc->callback_param = ctlr;
  377. }
  378. txdesc = NULL;
  379. if (xfer->tx_buf) {
  380. struct dma_slave_config txconf = {
  381. .direction = DMA_MEM_TO_DEV,
  382. .dst_addr = rs->dma_addr_tx,
  383. .dst_addr_width = rs->n_bytes,
  384. .dst_maxburst = rs->fifo_len / 4,
  385. };
  386. dmaengine_slave_config(ctlr->dma_tx, &txconf);
  387. txdesc = dmaengine_prep_slave_sg(
  388. ctlr->dma_tx,
  389. xfer->tx_sg.sgl, xfer->tx_sg.nents,
  390. DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT);
  391. if (!txdesc) {
  392. if (rxdesc)
  393. dmaengine_terminate_sync(ctlr->dma_rx);
  394. return -EINVAL;
  395. }
  396. txdesc->callback = rockchip_spi_dma_txcb;
  397. txdesc->callback_param = ctlr;
  398. }
  399. /* rx must be started before tx due to spi instinct */
  400. if (rxdesc) {
  401. atomic_or(RXDMA, &rs->state);
  402. ctlr->dma_rx->cookie = dmaengine_submit(rxdesc);
  403. dma_async_issue_pending(ctlr->dma_rx);
  404. }
  405. if (rs->cs_inactive)
  406. writel_relaxed(INT_CS_INACTIVE, rs->regs + ROCKCHIP_SPI_IMR);
  407. spi_enable_chip(rs, true);
  408. if (txdesc) {
  409. atomic_or(TXDMA, &rs->state);
  410. dmaengine_submit(txdesc);
  411. dma_async_issue_pending(ctlr->dma_tx);
  412. }
  413. /* 1 means the transfer is in progress */
  414. return 1;
  415. }
  416. static int rockchip_spi_config(struct rockchip_spi *rs,
  417. struct spi_device *spi, struct spi_transfer *xfer,
  418. bool use_dma, bool slave_mode)
  419. {
  420. u32 cr0 = CR0_FRF_SPI << CR0_FRF_OFFSET
  421. | CR0_BHT_8BIT << CR0_BHT_OFFSET
  422. | CR0_SSD_ONE << CR0_SSD_OFFSET
  423. | CR0_EM_BIG << CR0_EM_OFFSET;
  424. u32 cr1;
  425. u32 dmacr = 0;
  426. if (slave_mode)
  427. cr0 |= CR0_OPM_SLAVE << CR0_OPM_OFFSET;
  428. rs->slave_abort = false;
  429. cr0 |= rs->rsd << CR0_RSD_OFFSET;
  430. cr0 |= (spi->mode & 0x3U) << CR0_SCPH_OFFSET;
  431. if (spi->mode & SPI_LSB_FIRST)
  432. cr0 |= CR0_FBM_LSB << CR0_FBM_OFFSET;
  433. if (spi->mode & SPI_CS_HIGH)
  434. cr0 |= BIT(spi->chip_select) << CR0_SOI_OFFSET;
  435. if (xfer->rx_buf && xfer->tx_buf)
  436. cr0 |= CR0_XFM_TR << CR0_XFM_OFFSET;
  437. else if (xfer->rx_buf)
  438. cr0 |= CR0_XFM_RO << CR0_XFM_OFFSET;
  439. else if (use_dma)
  440. cr0 |= CR0_XFM_TO << CR0_XFM_OFFSET;
  441. switch (xfer->bits_per_word) {
  442. case 4:
  443. cr0 |= CR0_DFS_4BIT << CR0_DFS_OFFSET;
  444. cr1 = xfer->len - 1;
  445. break;
  446. case 8:
  447. cr0 |= CR0_DFS_8BIT << CR0_DFS_OFFSET;
  448. cr1 = xfer->len - 1;
  449. break;
  450. case 16:
  451. cr0 |= CR0_DFS_16BIT << CR0_DFS_OFFSET;
  452. cr1 = xfer->len / 2 - 1;
  453. break;
  454. default:
  455. /* we only whitelist 4, 8 and 16 bit words in
  456. * ctlr->bits_per_word_mask, so this shouldn't
  457. * happen
  458. */
  459. dev_err(rs->dev, "unknown bits per word: %d\n",
  460. xfer->bits_per_word);
  461. return -EINVAL;
  462. }
  463. if (use_dma) {
  464. if (xfer->tx_buf)
  465. dmacr |= TF_DMA_EN;
  466. if (xfer->rx_buf)
  467. dmacr |= RF_DMA_EN;
  468. }
  469. writel_relaxed(cr0, rs->regs + ROCKCHIP_SPI_CTRLR0);
  470. writel_relaxed(cr1, rs->regs + ROCKCHIP_SPI_CTRLR1);
  471. /* unfortunately setting the fifo threshold level to generate an
  472. * interrupt exactly when the fifo is full doesn't seem to work,
  473. * so we need the strict inequality here
  474. */
  475. if ((xfer->len / rs->n_bytes) < rs->fifo_len)
  476. writel_relaxed(xfer->len / rs->n_bytes - 1, rs->regs + ROCKCHIP_SPI_RXFTLR);
  477. else
  478. writel_relaxed(rs->fifo_len / 2 - 1, rs->regs + ROCKCHIP_SPI_RXFTLR);
  479. writel_relaxed(rs->fifo_len / 2 - 1, rs->regs + ROCKCHIP_SPI_DMATDLR);
  480. writel_relaxed(rockchip_spi_calc_burst_size(xfer->len / rs->n_bytes) - 1,
  481. rs->regs + ROCKCHIP_SPI_DMARDLR);
  482. writel_relaxed(dmacr, rs->regs + ROCKCHIP_SPI_DMACR);
  483. /* the hardware only supports an even clock divisor, so
  484. * round divisor = spiclk / speed up to nearest even number
  485. * so that the resulting speed is <= the requested speed
  486. */
  487. writel_relaxed(2 * DIV_ROUND_UP(rs->freq, 2 * xfer->speed_hz),
  488. rs->regs + ROCKCHIP_SPI_BAUDR);
  489. return 0;
  490. }
  491. static size_t rockchip_spi_max_transfer_size(struct spi_device *spi)
  492. {
  493. return ROCKCHIP_SPI_MAX_TRANLEN;
  494. }
  495. static int rockchip_spi_slave_abort(struct spi_controller *ctlr)
  496. {
  497. struct rockchip_spi *rs = spi_controller_get_devdata(ctlr);
  498. u32 rx_fifo_left;
  499. struct dma_tx_state state;
  500. enum dma_status status;
  501. /* Get current dma rx point */
  502. if (atomic_read(&rs->state) & RXDMA) {
  503. dmaengine_pause(ctlr->dma_rx);
  504. status = dmaengine_tx_status(ctlr->dma_rx, ctlr->dma_rx->cookie, &state);
  505. if (status == DMA_ERROR) {
  506. rs->rx = rs->xfer->rx_buf;
  507. rs->xfer->len = 0;
  508. rx_fifo_left = readl_relaxed(rs->regs + ROCKCHIP_SPI_RXFLR);
  509. for (; rx_fifo_left; rx_fifo_left--)
  510. readl_relaxed(rs->regs + ROCKCHIP_SPI_RXDR);
  511. goto out;
  512. } else {
  513. rs->rx += rs->xfer->len - rs->n_bytes * state.residue;
  514. }
  515. }
  516. /* Get the valid data left in rx fifo and set rs->xfer->len real rx size */
  517. if (rs->rx) {
  518. rx_fifo_left = readl_relaxed(rs->regs + ROCKCHIP_SPI_RXFLR);
  519. for (; rx_fifo_left; rx_fifo_left--) {
  520. u32 rxw = readl_relaxed(rs->regs + ROCKCHIP_SPI_RXDR);
  521. if (rs->n_bytes == 1)
  522. *(u8 *)rs->rx = (u8)rxw;
  523. else
  524. *(u16 *)rs->rx = (u16)rxw;
  525. rs->rx += rs->n_bytes;
  526. }
  527. rs->xfer->len = (unsigned int)(rs->rx - rs->xfer->rx_buf);
  528. }
  529. out:
  530. if (atomic_read(&rs->state) & RXDMA)
  531. dmaengine_terminate_sync(ctlr->dma_rx);
  532. if (atomic_read(&rs->state) & TXDMA)
  533. dmaengine_terminate_sync(ctlr->dma_tx);
  534. atomic_set(&rs->state, 0);
  535. spi_enable_chip(rs, false);
  536. rs->slave_abort = true;
  537. spi_finalize_current_transfer(ctlr);
  538. return 0;
  539. }
  540. static int rockchip_spi_transfer_one(
  541. struct spi_controller *ctlr,
  542. struct spi_device *spi,
  543. struct spi_transfer *xfer)
  544. {
  545. struct rockchip_spi *rs = spi_controller_get_devdata(ctlr);
  546. int ret;
  547. bool use_dma;
  548. /* Zero length transfers won't trigger an interrupt on completion */
  549. if (!xfer->len) {
  550. spi_finalize_current_transfer(ctlr);
  551. return 1;
  552. }
  553. WARN_ON(readl_relaxed(rs->regs + ROCKCHIP_SPI_SSIENR) &&
  554. (readl_relaxed(rs->regs + ROCKCHIP_SPI_SR) & SR_BUSY));
  555. if (!xfer->tx_buf && !xfer->rx_buf) {
  556. dev_err(rs->dev, "No buffer for transfer\n");
  557. return -EINVAL;
  558. }
  559. if (xfer->len > ROCKCHIP_SPI_MAX_TRANLEN) {
  560. dev_err(rs->dev, "Transfer is too long (%d)\n", xfer->len);
  561. return -EINVAL;
  562. }
  563. rs->n_bytes = xfer->bits_per_word <= 8 ? 1 : 2;
  564. rs->xfer = xfer;
  565. use_dma = ctlr->can_dma ? ctlr->can_dma(ctlr, spi, xfer) : false;
  566. ret = rockchip_spi_config(rs, spi, xfer, use_dma, ctlr->slave);
  567. if (ret)
  568. return ret;
  569. if (use_dma)
  570. return rockchip_spi_prepare_dma(rs, ctlr, xfer);
  571. return rockchip_spi_prepare_irq(rs, ctlr, xfer);
  572. }
  573. static bool rockchip_spi_can_dma(struct spi_controller *ctlr,
  574. struct spi_device *spi,
  575. struct spi_transfer *xfer)
  576. {
  577. struct rockchip_spi *rs = spi_controller_get_devdata(ctlr);
  578. unsigned int bytes_per_word = xfer->bits_per_word <= 8 ? 1 : 2;
  579. /* if the numbor of spi words to transfer is less than the fifo
  580. * length we can just fill the fifo and wait for a single irq,
  581. * so don't bother setting up dma
  582. */
  583. return xfer->len / bytes_per_word >= rs->fifo_len;
  584. }
  585. static int rockchip_spi_setup(struct spi_device *spi)
  586. {
  587. struct rockchip_spi *rs = spi_controller_get_devdata(spi->controller);
  588. u32 cr0;
  589. if (!spi->cs_gpiod && (spi->mode & SPI_CS_HIGH) && !rs->cs_high_supported) {
  590. dev_warn(&spi->dev, "setup: non GPIO CS can't be active-high\n");
  591. return -EINVAL;
  592. }
  593. pm_runtime_get_sync(rs->dev);
  594. cr0 = readl_relaxed(rs->regs + ROCKCHIP_SPI_CTRLR0);
  595. cr0 &= ~(0x3 << CR0_SCPH_OFFSET);
  596. cr0 |= ((spi->mode & 0x3) << CR0_SCPH_OFFSET);
  597. if (spi->mode & SPI_CS_HIGH && spi->chip_select <= 1)
  598. cr0 |= BIT(spi->chip_select) << CR0_SOI_OFFSET;
  599. else if (spi->chip_select <= 1)
  600. cr0 &= ~(BIT(spi->chip_select) << CR0_SOI_OFFSET);
  601. writel_relaxed(cr0, rs->regs + ROCKCHIP_SPI_CTRLR0);
  602. pm_runtime_put(rs->dev);
  603. return 0;
  604. }
  605. static int rockchip_spi_probe(struct platform_device *pdev)
  606. {
  607. int ret;
  608. struct rockchip_spi *rs;
  609. struct spi_controller *ctlr;
  610. struct resource *mem;
  611. struct device_node *np = pdev->dev.of_node;
  612. u32 rsd_nsecs, num_cs;
  613. bool slave_mode;
  614. slave_mode = of_property_read_bool(np, "spi-slave");
  615. if (slave_mode)
  616. ctlr = spi_alloc_slave(&pdev->dev,
  617. sizeof(struct rockchip_spi));
  618. else
  619. ctlr = spi_alloc_master(&pdev->dev,
  620. sizeof(struct rockchip_spi));
  621. if (!ctlr)
  622. return -ENOMEM;
  623. platform_set_drvdata(pdev, ctlr);
  624. rs = spi_controller_get_devdata(ctlr);
  625. ctlr->slave = slave_mode;
  626. /* Get basic io resource and map it */
  627. mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  628. rs->regs = devm_ioremap_resource(&pdev->dev, mem);
  629. if (IS_ERR(rs->regs)) {
  630. ret = PTR_ERR(rs->regs);
  631. goto err_put_ctlr;
  632. }
  633. rs->apb_pclk = devm_clk_get(&pdev->dev, "apb_pclk");
  634. if (IS_ERR(rs->apb_pclk)) {
  635. dev_err(&pdev->dev, "Failed to get apb_pclk\n");
  636. ret = PTR_ERR(rs->apb_pclk);
  637. goto err_put_ctlr;
  638. }
  639. rs->spiclk = devm_clk_get(&pdev->dev, "spiclk");
  640. if (IS_ERR(rs->spiclk)) {
  641. dev_err(&pdev->dev, "Failed to get spi_pclk\n");
  642. ret = PTR_ERR(rs->spiclk);
  643. goto err_put_ctlr;
  644. }
  645. ret = clk_prepare_enable(rs->apb_pclk);
  646. if (ret < 0) {
  647. dev_err(&pdev->dev, "Failed to enable apb_pclk\n");
  648. goto err_put_ctlr;
  649. }
  650. ret = clk_prepare_enable(rs->spiclk);
  651. if (ret < 0) {
  652. dev_err(&pdev->dev, "Failed to enable spi_clk\n");
  653. goto err_disable_apbclk;
  654. }
  655. spi_enable_chip(rs, false);
  656. ret = platform_get_irq(pdev, 0);
  657. if (ret < 0)
  658. goto err_disable_spiclk;
  659. ret = devm_request_threaded_irq(&pdev->dev, ret, rockchip_spi_isr, NULL,
  660. IRQF_ONESHOT, dev_name(&pdev->dev), ctlr);
  661. if (ret)
  662. goto err_disable_spiclk;
  663. rs->dev = &pdev->dev;
  664. rs->freq = clk_get_rate(rs->spiclk);
  665. if (!of_property_read_u32(pdev->dev.of_node, "rx-sample-delay-ns",
  666. &rsd_nsecs)) {
  667. /* rx sample delay is expressed in parent clock cycles (max 3) */
  668. u32 rsd = DIV_ROUND_CLOSEST(rsd_nsecs * (rs->freq >> 8),
  669. 1000000000 >> 8);
  670. if (!rsd) {
  671. dev_warn(rs->dev, "%u Hz are too slow to express %u ns delay\n",
  672. rs->freq, rsd_nsecs);
  673. } else if (rsd > CR0_RSD_MAX) {
  674. rsd = CR0_RSD_MAX;
  675. dev_warn(rs->dev, "%u Hz are too fast to express %u ns delay, clamping at %u ns\n",
  676. rs->freq, rsd_nsecs,
  677. CR0_RSD_MAX * 1000000000U / rs->freq);
  678. }
  679. rs->rsd = rsd;
  680. }
  681. rs->fifo_len = get_fifo_len(rs);
  682. if (!rs->fifo_len) {
  683. dev_err(&pdev->dev, "Failed to get fifo length\n");
  684. ret = -EINVAL;
  685. goto err_disable_spiclk;
  686. }
  687. pm_runtime_set_autosuspend_delay(&pdev->dev, ROCKCHIP_AUTOSUSPEND_TIMEOUT);
  688. pm_runtime_use_autosuspend(&pdev->dev);
  689. pm_runtime_set_active(&pdev->dev);
  690. pm_runtime_enable(&pdev->dev);
  691. ctlr->auto_runtime_pm = true;
  692. ctlr->bus_num = pdev->id;
  693. ctlr->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LOOP | SPI_LSB_FIRST;
  694. if (slave_mode) {
  695. ctlr->mode_bits |= SPI_NO_CS;
  696. ctlr->slave_abort = rockchip_spi_slave_abort;
  697. } else {
  698. ctlr->flags = SPI_MASTER_GPIO_SS;
  699. ctlr->max_native_cs = ROCKCHIP_SPI_MAX_CS_NUM;
  700. /*
  701. * rk spi0 has two native cs, spi1..5 one cs only
  702. * if num-cs is missing in the dts, default to 1
  703. */
  704. if (of_property_read_u32(np, "num-cs", &num_cs))
  705. num_cs = 1;
  706. ctlr->num_chipselect = num_cs;
  707. ctlr->use_gpio_descriptors = true;
  708. }
  709. ctlr->dev.of_node = pdev->dev.of_node;
  710. ctlr->bits_per_word_mask = SPI_BPW_MASK(16) | SPI_BPW_MASK(8) | SPI_BPW_MASK(4);
  711. ctlr->min_speed_hz = rs->freq / BAUDR_SCKDV_MAX;
  712. ctlr->max_speed_hz = min(rs->freq / BAUDR_SCKDV_MIN, MAX_SCLK_OUT);
  713. ctlr->setup = rockchip_spi_setup;
  714. ctlr->set_cs = rockchip_spi_set_cs;
  715. ctlr->transfer_one = rockchip_spi_transfer_one;
  716. ctlr->max_transfer_size = rockchip_spi_max_transfer_size;
  717. ctlr->handle_err = rockchip_spi_handle_err;
  718. ctlr->dma_tx = dma_request_chan(rs->dev, "tx");
  719. if (IS_ERR(ctlr->dma_tx)) {
  720. /* Check tx to see if we need defer probing driver */
  721. if (PTR_ERR(ctlr->dma_tx) == -EPROBE_DEFER) {
  722. ret = -EPROBE_DEFER;
  723. goto err_disable_pm_runtime;
  724. }
  725. dev_warn(rs->dev, "Failed to request TX DMA channel\n");
  726. ctlr->dma_tx = NULL;
  727. }
  728. ctlr->dma_rx = dma_request_chan(rs->dev, "rx");
  729. if (IS_ERR(ctlr->dma_rx)) {
  730. if (PTR_ERR(ctlr->dma_rx) == -EPROBE_DEFER) {
  731. ret = -EPROBE_DEFER;
  732. goto err_free_dma_tx;
  733. }
  734. dev_warn(rs->dev, "Failed to request RX DMA channel\n");
  735. ctlr->dma_rx = NULL;
  736. }
  737. if (ctlr->dma_tx && ctlr->dma_rx) {
  738. rs->dma_addr_tx = mem->start + ROCKCHIP_SPI_TXDR;
  739. rs->dma_addr_rx = mem->start + ROCKCHIP_SPI_RXDR;
  740. ctlr->can_dma = rockchip_spi_can_dma;
  741. }
  742. switch (readl_relaxed(rs->regs + ROCKCHIP_SPI_VERSION)) {
  743. case ROCKCHIP_SPI_VER2_TYPE2:
  744. rs->cs_high_supported = true;
  745. ctlr->mode_bits |= SPI_CS_HIGH;
  746. if (ctlr->can_dma && slave_mode)
  747. rs->cs_inactive = true;
  748. else
  749. rs->cs_inactive = false;
  750. break;
  751. default:
  752. rs->cs_inactive = false;
  753. break;
  754. }
  755. ret = devm_spi_register_controller(&pdev->dev, ctlr);
  756. if (ret < 0) {
  757. dev_err(&pdev->dev, "Failed to register controller\n");
  758. goto err_free_dma_rx;
  759. }
  760. return 0;
  761. err_free_dma_rx:
  762. if (ctlr->dma_rx)
  763. dma_release_channel(ctlr->dma_rx);
  764. err_free_dma_tx:
  765. if (ctlr->dma_tx)
  766. dma_release_channel(ctlr->dma_tx);
  767. err_disable_pm_runtime:
  768. pm_runtime_disable(&pdev->dev);
  769. err_disable_spiclk:
  770. clk_disable_unprepare(rs->spiclk);
  771. err_disable_apbclk:
  772. clk_disable_unprepare(rs->apb_pclk);
  773. err_put_ctlr:
  774. spi_controller_put(ctlr);
  775. return ret;
  776. }
  777. static int rockchip_spi_remove(struct platform_device *pdev)
  778. {
  779. struct spi_controller *ctlr = spi_controller_get(platform_get_drvdata(pdev));
  780. struct rockchip_spi *rs = spi_controller_get_devdata(ctlr);
  781. pm_runtime_get_sync(&pdev->dev);
  782. clk_disable_unprepare(rs->spiclk);
  783. clk_disable_unprepare(rs->apb_pclk);
  784. pm_runtime_put_noidle(&pdev->dev);
  785. pm_runtime_disable(&pdev->dev);
  786. pm_runtime_set_suspended(&pdev->dev);
  787. if (ctlr->dma_tx)
  788. dma_release_channel(ctlr->dma_tx);
  789. if (ctlr->dma_rx)
  790. dma_release_channel(ctlr->dma_rx);
  791. spi_controller_put(ctlr);
  792. return 0;
  793. }
  794. #ifdef CONFIG_PM_SLEEP
  795. static int rockchip_spi_suspend(struct device *dev)
  796. {
  797. int ret;
  798. struct spi_controller *ctlr = dev_get_drvdata(dev);
  799. struct rockchip_spi *rs = spi_controller_get_devdata(ctlr);
  800. ret = spi_controller_suspend(ctlr);
  801. if (ret < 0)
  802. return ret;
  803. clk_disable_unprepare(rs->spiclk);
  804. clk_disable_unprepare(rs->apb_pclk);
  805. pinctrl_pm_select_sleep_state(dev);
  806. return 0;
  807. }
  808. static int rockchip_spi_resume(struct device *dev)
  809. {
  810. int ret;
  811. struct spi_controller *ctlr = dev_get_drvdata(dev);
  812. struct rockchip_spi *rs = spi_controller_get_devdata(ctlr);
  813. pinctrl_pm_select_default_state(dev);
  814. ret = clk_prepare_enable(rs->apb_pclk);
  815. if (ret < 0)
  816. return ret;
  817. ret = clk_prepare_enable(rs->spiclk);
  818. if (ret < 0)
  819. clk_disable_unprepare(rs->apb_pclk);
  820. ret = spi_controller_resume(ctlr);
  821. if (ret < 0) {
  822. clk_disable_unprepare(rs->spiclk);
  823. clk_disable_unprepare(rs->apb_pclk);
  824. }
  825. return 0;
  826. }
  827. #endif /* CONFIG_PM_SLEEP */
  828. #ifdef CONFIG_PM
  829. static int rockchip_spi_runtime_suspend(struct device *dev)
  830. {
  831. struct spi_controller *ctlr = dev_get_drvdata(dev);
  832. struct rockchip_spi *rs = spi_controller_get_devdata(ctlr);
  833. clk_disable_unprepare(rs->spiclk);
  834. clk_disable_unprepare(rs->apb_pclk);
  835. return 0;
  836. }
  837. static int rockchip_spi_runtime_resume(struct device *dev)
  838. {
  839. int ret;
  840. struct spi_controller *ctlr = dev_get_drvdata(dev);
  841. struct rockchip_spi *rs = spi_controller_get_devdata(ctlr);
  842. ret = clk_prepare_enable(rs->apb_pclk);
  843. if (ret < 0)
  844. return ret;
  845. ret = clk_prepare_enable(rs->spiclk);
  846. if (ret < 0)
  847. clk_disable_unprepare(rs->apb_pclk);
  848. return 0;
  849. }
  850. #endif /* CONFIG_PM */
  851. static const struct dev_pm_ops rockchip_spi_pm = {
  852. SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(rockchip_spi_suspend, rockchip_spi_resume)
  853. SET_RUNTIME_PM_OPS(rockchip_spi_runtime_suspend,
  854. rockchip_spi_runtime_resume, NULL)
  855. };
  856. static const struct of_device_id rockchip_spi_dt_match[] = {
  857. { .compatible = "rockchip,px30-spi", },
  858. { .compatible = "rockchip,rk3036-spi", },
  859. { .compatible = "rockchip,rk3066-spi", },
  860. { .compatible = "rockchip,rk3188-spi", },
  861. { .compatible = "rockchip,rk3228-spi", },
  862. { .compatible = "rockchip,rk3288-spi", },
  863. { .compatible = "rockchip,rk3308-spi", },
  864. { .compatible = "rockchip,rk3328-spi", },
  865. { .compatible = "rockchip,rk3368-spi", },
  866. { .compatible = "rockchip,rk3399-spi", },
  867. { .compatible = "rockchip,rv1108-spi", },
  868. { .compatible = "rockchip,rv1126-spi", },
  869. { },
  870. };
  871. MODULE_DEVICE_TABLE(of, rockchip_spi_dt_match);
  872. static struct platform_driver rockchip_spi_driver = {
  873. .driver = {
  874. .name = DRIVER_NAME,
  875. .pm = &rockchip_spi_pm,
  876. .of_match_table = of_match_ptr(rockchip_spi_dt_match),
  877. },
  878. .probe = rockchip_spi_probe,
  879. .remove = rockchip_spi_remove,
  880. };
  881. module_platform_driver(rockchip_spi_driver);
  882. MODULE_AUTHOR("Addy Ke <[email protected]>");
  883. MODULE_DESCRIPTION("ROCKCHIP SPI Controller Driver");
  884. MODULE_LICENSE("GPL v2");