spi-qup.c 34 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Copyright (c) 2008-2014, The Linux foundation. All rights reserved.
  4. */
  5. #include <linux/clk.h>
  6. #include <linux/delay.h>
  7. #include <linux/err.h>
  8. #include <linux/interrupt.h>
  9. #include <linux/io.h>
  10. #include <linux/list.h>
  11. #include <linux/module.h>
  12. #include <linux/of.h>
  13. #include <linux/of_device.h>
  14. #include <linux/platform_device.h>
  15. #include <linux/pm_runtime.h>
  16. #include <linux/spi/spi.h>
  17. #include <linux/dmaengine.h>
  18. #include <linux/dma-mapping.h>
  19. #define QUP_CONFIG 0x0000
  20. #define QUP_STATE 0x0004
  21. #define QUP_IO_M_MODES 0x0008
  22. #define QUP_SW_RESET 0x000c
  23. #define QUP_OPERATIONAL 0x0018
  24. #define QUP_ERROR_FLAGS 0x001c
  25. #define QUP_ERROR_FLAGS_EN 0x0020
  26. #define QUP_OPERATIONAL_MASK 0x0028
  27. #define QUP_HW_VERSION 0x0030
  28. #define QUP_MX_OUTPUT_CNT 0x0100
  29. #define QUP_OUTPUT_FIFO 0x0110
  30. #define QUP_MX_WRITE_CNT 0x0150
  31. #define QUP_MX_INPUT_CNT 0x0200
  32. #define QUP_MX_READ_CNT 0x0208
  33. #define QUP_INPUT_FIFO 0x0218
  34. #define SPI_CONFIG 0x0300
  35. #define SPI_IO_CONTROL 0x0304
  36. #define SPI_ERROR_FLAGS 0x0308
  37. #define SPI_ERROR_FLAGS_EN 0x030c
  38. /* QUP_CONFIG fields */
  39. #define QUP_CONFIG_SPI_MODE (1 << 8)
  40. #define QUP_CONFIG_CLOCK_AUTO_GATE BIT(13)
  41. #define QUP_CONFIG_NO_INPUT BIT(7)
  42. #define QUP_CONFIG_NO_OUTPUT BIT(6)
  43. #define QUP_CONFIG_N 0x001f
  44. /* QUP_STATE fields */
  45. #define QUP_STATE_VALID BIT(2)
  46. #define QUP_STATE_RESET 0
  47. #define QUP_STATE_RUN 1
  48. #define QUP_STATE_PAUSE 3
  49. #define QUP_STATE_MASK 3
  50. #define QUP_STATE_CLEAR 2
  51. #define QUP_HW_VERSION_2_1_1 0x20010001
  52. /* QUP_IO_M_MODES fields */
  53. #define QUP_IO_M_PACK_EN BIT(15)
  54. #define QUP_IO_M_UNPACK_EN BIT(14)
  55. #define QUP_IO_M_INPUT_MODE_MASK_SHIFT 12
  56. #define QUP_IO_M_OUTPUT_MODE_MASK_SHIFT 10
  57. #define QUP_IO_M_INPUT_MODE_MASK (3 << QUP_IO_M_INPUT_MODE_MASK_SHIFT)
  58. #define QUP_IO_M_OUTPUT_MODE_MASK (3 << QUP_IO_M_OUTPUT_MODE_MASK_SHIFT)
  59. #define QUP_IO_M_OUTPUT_BLOCK_SIZE(x) (((x) & (0x03 << 0)) >> 0)
  60. #define QUP_IO_M_OUTPUT_FIFO_SIZE(x) (((x) & (0x07 << 2)) >> 2)
  61. #define QUP_IO_M_INPUT_BLOCK_SIZE(x) (((x) & (0x03 << 5)) >> 5)
  62. #define QUP_IO_M_INPUT_FIFO_SIZE(x) (((x) & (0x07 << 7)) >> 7)
  63. #define QUP_IO_M_MODE_FIFO 0
  64. #define QUP_IO_M_MODE_BLOCK 1
  65. #define QUP_IO_M_MODE_DMOV 2
  66. #define QUP_IO_M_MODE_BAM 3
  67. /* QUP_OPERATIONAL fields */
  68. #define QUP_OP_IN_BLOCK_READ_REQ BIT(13)
  69. #define QUP_OP_OUT_BLOCK_WRITE_REQ BIT(12)
  70. #define QUP_OP_MAX_INPUT_DONE_FLAG BIT(11)
  71. #define QUP_OP_MAX_OUTPUT_DONE_FLAG BIT(10)
  72. #define QUP_OP_IN_SERVICE_FLAG BIT(9)
  73. #define QUP_OP_OUT_SERVICE_FLAG BIT(8)
  74. #define QUP_OP_IN_FIFO_FULL BIT(7)
  75. #define QUP_OP_OUT_FIFO_FULL BIT(6)
  76. #define QUP_OP_IN_FIFO_NOT_EMPTY BIT(5)
  77. #define QUP_OP_OUT_FIFO_NOT_EMPTY BIT(4)
  78. /* QUP_ERROR_FLAGS and QUP_ERROR_FLAGS_EN fields */
  79. #define QUP_ERROR_OUTPUT_OVER_RUN BIT(5)
  80. #define QUP_ERROR_INPUT_UNDER_RUN BIT(4)
  81. #define QUP_ERROR_OUTPUT_UNDER_RUN BIT(3)
  82. #define QUP_ERROR_INPUT_OVER_RUN BIT(2)
  83. /* SPI_CONFIG fields */
  84. #define SPI_CONFIG_HS_MODE BIT(10)
  85. #define SPI_CONFIG_INPUT_FIRST BIT(9)
  86. #define SPI_CONFIG_LOOPBACK BIT(8)
  87. /* SPI_IO_CONTROL fields */
  88. #define SPI_IO_C_FORCE_CS BIT(11)
  89. #define SPI_IO_C_CLK_IDLE_HIGH BIT(10)
  90. #define SPI_IO_C_MX_CS_MODE BIT(8)
  91. #define SPI_IO_C_CS_N_POLARITY_0 BIT(4)
  92. #define SPI_IO_C_CS_SELECT(x) (((x) & 3) << 2)
  93. #define SPI_IO_C_CS_SELECT_MASK 0x000c
  94. #define SPI_IO_C_TRISTATE_CS BIT(1)
  95. #define SPI_IO_C_NO_TRI_STATE BIT(0)
  96. /* SPI_ERROR_FLAGS and SPI_ERROR_FLAGS_EN fields */
  97. #define SPI_ERROR_CLK_OVER_RUN BIT(1)
  98. #define SPI_ERROR_CLK_UNDER_RUN BIT(0)
  99. #define SPI_NUM_CHIPSELECTS 4
  100. #define SPI_MAX_XFER (SZ_64K - 64)
  101. /* high speed mode is when bus rate is greater then 26MHz */
  102. #define SPI_HS_MIN_RATE 26000000
  103. #define SPI_MAX_RATE 50000000
  104. #define SPI_DELAY_THRESHOLD 1
  105. #define SPI_DELAY_RETRY 10
  106. struct spi_qup {
  107. void __iomem *base;
  108. struct device *dev;
  109. struct clk *cclk; /* core clock */
  110. struct clk *iclk; /* interface clock */
  111. int irq;
  112. spinlock_t lock;
  113. int in_fifo_sz;
  114. int out_fifo_sz;
  115. int in_blk_sz;
  116. int out_blk_sz;
  117. struct spi_transfer *xfer;
  118. struct completion done;
  119. int error;
  120. int w_size; /* bytes per SPI word */
  121. int n_words;
  122. int tx_bytes;
  123. int rx_bytes;
  124. const u8 *tx_buf;
  125. u8 *rx_buf;
  126. int qup_v1;
  127. int mode;
  128. struct dma_slave_config rx_conf;
  129. struct dma_slave_config tx_conf;
  130. };
  131. static int spi_qup_io_config(struct spi_device *spi, struct spi_transfer *xfer);
  132. static inline bool spi_qup_is_flag_set(struct spi_qup *controller, u32 flag)
  133. {
  134. u32 opflag = readl_relaxed(controller->base + QUP_OPERATIONAL);
  135. return (opflag & flag) != 0;
  136. }
  137. static inline bool spi_qup_is_dma_xfer(int mode)
  138. {
  139. if (mode == QUP_IO_M_MODE_DMOV || mode == QUP_IO_M_MODE_BAM)
  140. return true;
  141. return false;
  142. }
  143. /* get's the transaction size length */
  144. static inline unsigned int spi_qup_len(struct spi_qup *controller)
  145. {
  146. return controller->n_words * controller->w_size;
  147. }
  148. static inline bool spi_qup_is_valid_state(struct spi_qup *controller)
  149. {
  150. u32 opstate = readl_relaxed(controller->base + QUP_STATE);
  151. return opstate & QUP_STATE_VALID;
  152. }
  153. static int spi_qup_set_state(struct spi_qup *controller, u32 state)
  154. {
  155. unsigned long loop;
  156. u32 cur_state;
  157. loop = 0;
  158. while (!spi_qup_is_valid_state(controller)) {
  159. usleep_range(SPI_DELAY_THRESHOLD, SPI_DELAY_THRESHOLD * 2);
  160. if (++loop > SPI_DELAY_RETRY)
  161. return -EIO;
  162. }
  163. if (loop)
  164. dev_dbg(controller->dev, "invalid state for %ld,us %d\n",
  165. loop, state);
  166. cur_state = readl_relaxed(controller->base + QUP_STATE);
  167. /*
  168. * Per spec: for PAUSE_STATE to RESET_STATE, two writes
  169. * of (b10) are required
  170. */
  171. if (((cur_state & QUP_STATE_MASK) == QUP_STATE_PAUSE) &&
  172. (state == QUP_STATE_RESET)) {
  173. writel_relaxed(QUP_STATE_CLEAR, controller->base + QUP_STATE);
  174. writel_relaxed(QUP_STATE_CLEAR, controller->base + QUP_STATE);
  175. } else {
  176. cur_state &= ~QUP_STATE_MASK;
  177. cur_state |= state;
  178. writel_relaxed(cur_state, controller->base + QUP_STATE);
  179. }
  180. loop = 0;
  181. while (!spi_qup_is_valid_state(controller)) {
  182. usleep_range(SPI_DELAY_THRESHOLD, SPI_DELAY_THRESHOLD * 2);
  183. if (++loop > SPI_DELAY_RETRY)
  184. return -EIO;
  185. }
  186. return 0;
  187. }
  188. static void spi_qup_read_from_fifo(struct spi_qup *controller, u32 num_words)
  189. {
  190. u8 *rx_buf = controller->rx_buf;
  191. int i, shift, num_bytes;
  192. u32 word;
  193. for (; num_words; num_words--) {
  194. word = readl_relaxed(controller->base + QUP_INPUT_FIFO);
  195. num_bytes = min_t(int, spi_qup_len(controller) -
  196. controller->rx_bytes,
  197. controller->w_size);
  198. if (!rx_buf) {
  199. controller->rx_bytes += num_bytes;
  200. continue;
  201. }
  202. for (i = 0; i < num_bytes; i++, controller->rx_bytes++) {
  203. /*
  204. * The data format depends on bytes per SPI word:
  205. * 4 bytes: 0x12345678
  206. * 2 bytes: 0x00001234
  207. * 1 byte : 0x00000012
  208. */
  209. shift = BITS_PER_BYTE;
  210. shift *= (controller->w_size - i - 1);
  211. rx_buf[controller->rx_bytes] = word >> shift;
  212. }
  213. }
  214. }
  215. static void spi_qup_read(struct spi_qup *controller, u32 *opflags)
  216. {
  217. u32 remainder, words_per_block, num_words;
  218. bool is_block_mode = controller->mode == QUP_IO_M_MODE_BLOCK;
  219. remainder = DIV_ROUND_UP(spi_qup_len(controller) - controller->rx_bytes,
  220. controller->w_size);
  221. words_per_block = controller->in_blk_sz >> 2;
  222. do {
  223. /* ACK by clearing service flag */
  224. writel_relaxed(QUP_OP_IN_SERVICE_FLAG,
  225. controller->base + QUP_OPERATIONAL);
  226. if (!remainder)
  227. goto exit;
  228. if (is_block_mode) {
  229. num_words = (remainder > words_per_block) ?
  230. words_per_block : remainder;
  231. } else {
  232. if (!spi_qup_is_flag_set(controller,
  233. QUP_OP_IN_FIFO_NOT_EMPTY))
  234. break;
  235. num_words = 1;
  236. }
  237. /* read up to the maximum transfer size available */
  238. spi_qup_read_from_fifo(controller, num_words);
  239. remainder -= num_words;
  240. /* if block mode, check to see if next block is available */
  241. if (is_block_mode && !spi_qup_is_flag_set(controller,
  242. QUP_OP_IN_BLOCK_READ_REQ))
  243. break;
  244. } while (remainder);
  245. /*
  246. * Due to extra stickiness of the QUP_OP_IN_SERVICE_FLAG during block
  247. * reads, it has to be cleared again at the very end. However, be sure
  248. * to refresh opflags value because MAX_INPUT_DONE_FLAG may now be
  249. * present and this is used to determine if transaction is complete
  250. */
  251. exit:
  252. if (!remainder) {
  253. *opflags = readl_relaxed(controller->base + QUP_OPERATIONAL);
  254. if (is_block_mode && *opflags & QUP_OP_MAX_INPUT_DONE_FLAG)
  255. writel_relaxed(QUP_OP_IN_SERVICE_FLAG,
  256. controller->base + QUP_OPERATIONAL);
  257. }
  258. }
  259. static void spi_qup_write_to_fifo(struct spi_qup *controller, u32 num_words)
  260. {
  261. const u8 *tx_buf = controller->tx_buf;
  262. int i, num_bytes;
  263. u32 word, data;
  264. for (; num_words; num_words--) {
  265. word = 0;
  266. num_bytes = min_t(int, spi_qup_len(controller) -
  267. controller->tx_bytes,
  268. controller->w_size);
  269. if (tx_buf)
  270. for (i = 0; i < num_bytes; i++) {
  271. data = tx_buf[controller->tx_bytes + i];
  272. word |= data << (BITS_PER_BYTE * (3 - i));
  273. }
  274. controller->tx_bytes += num_bytes;
  275. writel_relaxed(word, controller->base + QUP_OUTPUT_FIFO);
  276. }
  277. }
  278. static void spi_qup_dma_done(void *data)
  279. {
  280. struct spi_qup *qup = data;
  281. complete(&qup->done);
  282. }
  283. static void spi_qup_write(struct spi_qup *controller)
  284. {
  285. bool is_block_mode = controller->mode == QUP_IO_M_MODE_BLOCK;
  286. u32 remainder, words_per_block, num_words;
  287. remainder = DIV_ROUND_UP(spi_qup_len(controller) - controller->tx_bytes,
  288. controller->w_size);
  289. words_per_block = controller->out_blk_sz >> 2;
  290. do {
  291. /* ACK by clearing service flag */
  292. writel_relaxed(QUP_OP_OUT_SERVICE_FLAG,
  293. controller->base + QUP_OPERATIONAL);
  294. /* make sure the interrupt is valid */
  295. if (!remainder)
  296. return;
  297. if (is_block_mode) {
  298. num_words = (remainder > words_per_block) ?
  299. words_per_block : remainder;
  300. } else {
  301. if (spi_qup_is_flag_set(controller,
  302. QUP_OP_OUT_FIFO_FULL))
  303. break;
  304. num_words = 1;
  305. }
  306. spi_qup_write_to_fifo(controller, num_words);
  307. remainder -= num_words;
  308. /* if block mode, check to see if next block is available */
  309. if (is_block_mode && !spi_qup_is_flag_set(controller,
  310. QUP_OP_OUT_BLOCK_WRITE_REQ))
  311. break;
  312. } while (remainder);
  313. }
  314. static int spi_qup_prep_sg(struct spi_master *master, struct scatterlist *sgl,
  315. unsigned int nents, enum dma_transfer_direction dir,
  316. dma_async_tx_callback callback)
  317. {
  318. struct spi_qup *qup = spi_master_get_devdata(master);
  319. unsigned long flags = DMA_PREP_INTERRUPT | DMA_PREP_FENCE;
  320. struct dma_async_tx_descriptor *desc;
  321. struct dma_chan *chan;
  322. dma_cookie_t cookie;
  323. if (dir == DMA_MEM_TO_DEV)
  324. chan = master->dma_tx;
  325. else
  326. chan = master->dma_rx;
  327. desc = dmaengine_prep_slave_sg(chan, sgl, nents, dir, flags);
  328. if (IS_ERR_OR_NULL(desc))
  329. return desc ? PTR_ERR(desc) : -EINVAL;
  330. desc->callback = callback;
  331. desc->callback_param = qup;
  332. cookie = dmaengine_submit(desc);
  333. return dma_submit_error(cookie);
  334. }
  335. static void spi_qup_dma_terminate(struct spi_master *master,
  336. struct spi_transfer *xfer)
  337. {
  338. if (xfer->tx_buf)
  339. dmaengine_terminate_all(master->dma_tx);
  340. if (xfer->rx_buf)
  341. dmaengine_terminate_all(master->dma_rx);
  342. }
  343. static u32 spi_qup_sgl_get_nents_len(struct scatterlist *sgl, u32 max,
  344. u32 *nents)
  345. {
  346. struct scatterlist *sg;
  347. u32 total = 0;
  348. for (sg = sgl; sg; sg = sg_next(sg)) {
  349. unsigned int len = sg_dma_len(sg);
  350. /* check for overflow as well as limit */
  351. if (((total + len) < total) || ((total + len) > max))
  352. break;
  353. total += len;
  354. (*nents)++;
  355. }
  356. return total;
  357. }
  358. static int spi_qup_do_dma(struct spi_device *spi, struct spi_transfer *xfer,
  359. unsigned long timeout)
  360. {
  361. dma_async_tx_callback rx_done = NULL, tx_done = NULL;
  362. struct spi_master *master = spi->master;
  363. struct spi_qup *qup = spi_master_get_devdata(master);
  364. struct scatterlist *tx_sgl, *rx_sgl;
  365. int ret;
  366. if (xfer->rx_buf)
  367. rx_done = spi_qup_dma_done;
  368. else if (xfer->tx_buf)
  369. tx_done = spi_qup_dma_done;
  370. rx_sgl = xfer->rx_sg.sgl;
  371. tx_sgl = xfer->tx_sg.sgl;
  372. do {
  373. u32 rx_nents = 0, tx_nents = 0;
  374. if (rx_sgl)
  375. qup->n_words = spi_qup_sgl_get_nents_len(rx_sgl,
  376. SPI_MAX_XFER, &rx_nents) / qup->w_size;
  377. if (tx_sgl)
  378. qup->n_words = spi_qup_sgl_get_nents_len(tx_sgl,
  379. SPI_MAX_XFER, &tx_nents) / qup->w_size;
  380. if (!qup->n_words)
  381. return -EIO;
  382. ret = spi_qup_io_config(spi, xfer);
  383. if (ret)
  384. return ret;
  385. /* before issuing the descriptors, set the QUP to run */
  386. ret = spi_qup_set_state(qup, QUP_STATE_RUN);
  387. if (ret) {
  388. dev_warn(qup->dev, "cannot set RUN state\n");
  389. return ret;
  390. }
  391. if (rx_sgl) {
  392. ret = spi_qup_prep_sg(master, rx_sgl, rx_nents,
  393. DMA_DEV_TO_MEM, rx_done);
  394. if (ret)
  395. return ret;
  396. dma_async_issue_pending(master->dma_rx);
  397. }
  398. if (tx_sgl) {
  399. ret = spi_qup_prep_sg(master, tx_sgl, tx_nents,
  400. DMA_MEM_TO_DEV, tx_done);
  401. if (ret)
  402. return ret;
  403. dma_async_issue_pending(master->dma_tx);
  404. }
  405. if (!wait_for_completion_timeout(&qup->done, timeout))
  406. return -ETIMEDOUT;
  407. for (; rx_sgl && rx_nents--; rx_sgl = sg_next(rx_sgl))
  408. ;
  409. for (; tx_sgl && tx_nents--; tx_sgl = sg_next(tx_sgl))
  410. ;
  411. } while (rx_sgl || tx_sgl);
  412. return 0;
  413. }
  414. static int spi_qup_do_pio(struct spi_device *spi, struct spi_transfer *xfer,
  415. unsigned long timeout)
  416. {
  417. struct spi_master *master = spi->master;
  418. struct spi_qup *qup = spi_master_get_devdata(master);
  419. int ret, n_words, iterations, offset = 0;
  420. n_words = qup->n_words;
  421. iterations = n_words / SPI_MAX_XFER; /* round down */
  422. qup->rx_buf = xfer->rx_buf;
  423. qup->tx_buf = xfer->tx_buf;
  424. do {
  425. if (iterations)
  426. qup->n_words = SPI_MAX_XFER;
  427. else
  428. qup->n_words = n_words % SPI_MAX_XFER;
  429. if (qup->tx_buf && offset)
  430. qup->tx_buf = xfer->tx_buf + offset * SPI_MAX_XFER;
  431. if (qup->rx_buf && offset)
  432. qup->rx_buf = xfer->rx_buf + offset * SPI_MAX_XFER;
  433. /*
  434. * if the transaction is small enough, we need
  435. * to fallback to FIFO mode
  436. */
  437. if (qup->n_words <= (qup->in_fifo_sz / sizeof(u32)))
  438. qup->mode = QUP_IO_M_MODE_FIFO;
  439. ret = spi_qup_io_config(spi, xfer);
  440. if (ret)
  441. return ret;
  442. ret = spi_qup_set_state(qup, QUP_STATE_RUN);
  443. if (ret) {
  444. dev_warn(qup->dev, "cannot set RUN state\n");
  445. return ret;
  446. }
  447. ret = spi_qup_set_state(qup, QUP_STATE_PAUSE);
  448. if (ret) {
  449. dev_warn(qup->dev, "cannot set PAUSE state\n");
  450. return ret;
  451. }
  452. if (qup->mode == QUP_IO_M_MODE_FIFO)
  453. spi_qup_write(qup);
  454. ret = spi_qup_set_state(qup, QUP_STATE_RUN);
  455. if (ret) {
  456. dev_warn(qup->dev, "cannot set RUN state\n");
  457. return ret;
  458. }
  459. if (!wait_for_completion_timeout(&qup->done, timeout))
  460. return -ETIMEDOUT;
  461. offset++;
  462. } while (iterations--);
  463. return 0;
  464. }
  465. static bool spi_qup_data_pending(struct spi_qup *controller)
  466. {
  467. unsigned int remainder_tx, remainder_rx;
  468. remainder_tx = DIV_ROUND_UP(spi_qup_len(controller) -
  469. controller->tx_bytes, controller->w_size);
  470. remainder_rx = DIV_ROUND_UP(spi_qup_len(controller) -
  471. controller->rx_bytes, controller->w_size);
  472. return remainder_tx || remainder_rx;
  473. }
  474. static irqreturn_t spi_qup_qup_irq(int irq, void *dev_id)
  475. {
  476. struct spi_qup *controller = dev_id;
  477. u32 opflags, qup_err, spi_err;
  478. int error = 0;
  479. qup_err = readl_relaxed(controller->base + QUP_ERROR_FLAGS);
  480. spi_err = readl_relaxed(controller->base + SPI_ERROR_FLAGS);
  481. opflags = readl_relaxed(controller->base + QUP_OPERATIONAL);
  482. writel_relaxed(qup_err, controller->base + QUP_ERROR_FLAGS);
  483. writel_relaxed(spi_err, controller->base + SPI_ERROR_FLAGS);
  484. if (qup_err) {
  485. if (qup_err & QUP_ERROR_OUTPUT_OVER_RUN)
  486. dev_warn(controller->dev, "OUTPUT_OVER_RUN\n");
  487. if (qup_err & QUP_ERROR_INPUT_UNDER_RUN)
  488. dev_warn(controller->dev, "INPUT_UNDER_RUN\n");
  489. if (qup_err & QUP_ERROR_OUTPUT_UNDER_RUN)
  490. dev_warn(controller->dev, "OUTPUT_UNDER_RUN\n");
  491. if (qup_err & QUP_ERROR_INPUT_OVER_RUN)
  492. dev_warn(controller->dev, "INPUT_OVER_RUN\n");
  493. error = -EIO;
  494. }
  495. if (spi_err) {
  496. if (spi_err & SPI_ERROR_CLK_OVER_RUN)
  497. dev_warn(controller->dev, "CLK_OVER_RUN\n");
  498. if (spi_err & SPI_ERROR_CLK_UNDER_RUN)
  499. dev_warn(controller->dev, "CLK_UNDER_RUN\n");
  500. error = -EIO;
  501. }
  502. spin_lock(&controller->lock);
  503. if (!controller->error)
  504. controller->error = error;
  505. spin_unlock(&controller->lock);
  506. if (spi_qup_is_dma_xfer(controller->mode)) {
  507. writel_relaxed(opflags, controller->base + QUP_OPERATIONAL);
  508. } else {
  509. if (opflags & QUP_OP_IN_SERVICE_FLAG)
  510. spi_qup_read(controller, &opflags);
  511. if (opflags & QUP_OP_OUT_SERVICE_FLAG)
  512. spi_qup_write(controller);
  513. if (!spi_qup_data_pending(controller))
  514. complete(&controller->done);
  515. }
  516. if (error)
  517. complete(&controller->done);
  518. if (opflags & QUP_OP_MAX_INPUT_DONE_FLAG) {
  519. if (!spi_qup_is_dma_xfer(controller->mode)) {
  520. if (spi_qup_data_pending(controller))
  521. return IRQ_HANDLED;
  522. }
  523. complete(&controller->done);
  524. }
  525. return IRQ_HANDLED;
  526. }
  527. /* set clock freq ... bits per word, determine mode */
  528. static int spi_qup_io_prep(struct spi_device *spi, struct spi_transfer *xfer)
  529. {
  530. struct spi_qup *controller = spi_master_get_devdata(spi->master);
  531. int ret;
  532. if (spi->mode & SPI_LOOP && xfer->len > controller->in_fifo_sz) {
  533. dev_err(controller->dev, "too big size for loopback %d > %d\n",
  534. xfer->len, controller->in_fifo_sz);
  535. return -EIO;
  536. }
  537. ret = clk_set_rate(controller->cclk, xfer->speed_hz);
  538. if (ret) {
  539. dev_err(controller->dev, "fail to set frequency %d",
  540. xfer->speed_hz);
  541. return -EIO;
  542. }
  543. controller->w_size = DIV_ROUND_UP(xfer->bits_per_word, 8);
  544. controller->n_words = xfer->len / controller->w_size;
  545. if (controller->n_words <= (controller->in_fifo_sz / sizeof(u32)))
  546. controller->mode = QUP_IO_M_MODE_FIFO;
  547. else if (spi->master->can_dma &&
  548. spi->master->can_dma(spi->master, spi, xfer) &&
  549. spi->master->cur_msg_mapped)
  550. controller->mode = QUP_IO_M_MODE_BAM;
  551. else
  552. controller->mode = QUP_IO_M_MODE_BLOCK;
  553. return 0;
  554. }
  555. /* prep qup for another spi transaction of specific type */
  556. static int spi_qup_io_config(struct spi_device *spi, struct spi_transfer *xfer)
  557. {
  558. struct spi_qup *controller = spi_master_get_devdata(spi->master);
  559. u32 config, iomode, control;
  560. unsigned long flags;
  561. spin_lock_irqsave(&controller->lock, flags);
  562. controller->xfer = xfer;
  563. controller->error = 0;
  564. controller->rx_bytes = 0;
  565. controller->tx_bytes = 0;
  566. spin_unlock_irqrestore(&controller->lock, flags);
  567. if (spi_qup_set_state(controller, QUP_STATE_RESET)) {
  568. dev_err(controller->dev, "cannot set RESET state\n");
  569. return -EIO;
  570. }
  571. switch (controller->mode) {
  572. case QUP_IO_M_MODE_FIFO:
  573. writel_relaxed(controller->n_words,
  574. controller->base + QUP_MX_READ_CNT);
  575. writel_relaxed(controller->n_words,
  576. controller->base + QUP_MX_WRITE_CNT);
  577. /* must be zero for FIFO */
  578. writel_relaxed(0, controller->base + QUP_MX_INPUT_CNT);
  579. writel_relaxed(0, controller->base + QUP_MX_OUTPUT_CNT);
  580. break;
  581. case QUP_IO_M_MODE_BAM:
  582. writel_relaxed(controller->n_words,
  583. controller->base + QUP_MX_INPUT_CNT);
  584. writel_relaxed(controller->n_words,
  585. controller->base + QUP_MX_OUTPUT_CNT);
  586. /* must be zero for BLOCK and BAM */
  587. writel_relaxed(0, controller->base + QUP_MX_READ_CNT);
  588. writel_relaxed(0, controller->base + QUP_MX_WRITE_CNT);
  589. if (!controller->qup_v1) {
  590. void __iomem *input_cnt;
  591. input_cnt = controller->base + QUP_MX_INPUT_CNT;
  592. /*
  593. * for DMA transfers, both QUP_MX_INPUT_CNT and
  594. * QUP_MX_OUTPUT_CNT must be zero to all cases but one.
  595. * That case is a non-balanced transfer when there is
  596. * only a rx_buf.
  597. */
  598. if (xfer->tx_buf)
  599. writel_relaxed(0, input_cnt);
  600. else
  601. writel_relaxed(controller->n_words, input_cnt);
  602. writel_relaxed(0, controller->base + QUP_MX_OUTPUT_CNT);
  603. }
  604. break;
  605. case QUP_IO_M_MODE_BLOCK:
  606. reinit_completion(&controller->done);
  607. writel_relaxed(controller->n_words,
  608. controller->base + QUP_MX_INPUT_CNT);
  609. writel_relaxed(controller->n_words,
  610. controller->base + QUP_MX_OUTPUT_CNT);
  611. /* must be zero for BLOCK and BAM */
  612. writel_relaxed(0, controller->base + QUP_MX_READ_CNT);
  613. writel_relaxed(0, controller->base + QUP_MX_WRITE_CNT);
  614. break;
  615. default:
  616. dev_err(controller->dev, "unknown mode = %d\n",
  617. controller->mode);
  618. return -EIO;
  619. }
  620. iomode = readl_relaxed(controller->base + QUP_IO_M_MODES);
  621. /* Set input and output transfer mode */
  622. iomode &= ~(QUP_IO_M_INPUT_MODE_MASK | QUP_IO_M_OUTPUT_MODE_MASK);
  623. if (!spi_qup_is_dma_xfer(controller->mode))
  624. iomode &= ~(QUP_IO_M_PACK_EN | QUP_IO_M_UNPACK_EN);
  625. else
  626. iomode |= QUP_IO_M_PACK_EN | QUP_IO_M_UNPACK_EN;
  627. iomode |= (controller->mode << QUP_IO_M_OUTPUT_MODE_MASK_SHIFT);
  628. iomode |= (controller->mode << QUP_IO_M_INPUT_MODE_MASK_SHIFT);
  629. writel_relaxed(iomode, controller->base + QUP_IO_M_MODES);
  630. control = readl_relaxed(controller->base + SPI_IO_CONTROL);
  631. if (spi->mode & SPI_CPOL)
  632. control |= SPI_IO_C_CLK_IDLE_HIGH;
  633. else
  634. control &= ~SPI_IO_C_CLK_IDLE_HIGH;
  635. writel_relaxed(control, controller->base + SPI_IO_CONTROL);
  636. config = readl_relaxed(controller->base + SPI_CONFIG);
  637. if (spi->mode & SPI_LOOP)
  638. config |= SPI_CONFIG_LOOPBACK;
  639. else
  640. config &= ~SPI_CONFIG_LOOPBACK;
  641. if (spi->mode & SPI_CPHA)
  642. config &= ~SPI_CONFIG_INPUT_FIRST;
  643. else
  644. config |= SPI_CONFIG_INPUT_FIRST;
  645. /*
  646. * HS_MODE improves signal stability for spi-clk high rates,
  647. * but is invalid in loop back mode.
  648. */
  649. if ((xfer->speed_hz >= SPI_HS_MIN_RATE) && !(spi->mode & SPI_LOOP))
  650. config |= SPI_CONFIG_HS_MODE;
  651. else
  652. config &= ~SPI_CONFIG_HS_MODE;
  653. writel_relaxed(config, controller->base + SPI_CONFIG);
  654. config = readl_relaxed(controller->base + QUP_CONFIG);
  655. config &= ~(QUP_CONFIG_NO_INPUT | QUP_CONFIG_NO_OUTPUT | QUP_CONFIG_N);
  656. config |= xfer->bits_per_word - 1;
  657. config |= QUP_CONFIG_SPI_MODE;
  658. if (spi_qup_is_dma_xfer(controller->mode)) {
  659. if (!xfer->tx_buf)
  660. config |= QUP_CONFIG_NO_OUTPUT;
  661. if (!xfer->rx_buf)
  662. config |= QUP_CONFIG_NO_INPUT;
  663. }
  664. writel_relaxed(config, controller->base + QUP_CONFIG);
  665. /* only write to OPERATIONAL_MASK when register is present */
  666. if (!controller->qup_v1) {
  667. u32 mask = 0;
  668. /*
  669. * mask INPUT and OUTPUT service flags to prevent IRQs on FIFO
  670. * status change in BAM mode
  671. */
  672. if (spi_qup_is_dma_xfer(controller->mode))
  673. mask = QUP_OP_IN_SERVICE_FLAG | QUP_OP_OUT_SERVICE_FLAG;
  674. writel_relaxed(mask, controller->base + QUP_OPERATIONAL_MASK);
  675. }
  676. return 0;
  677. }
  678. static int spi_qup_transfer_one(struct spi_master *master,
  679. struct spi_device *spi,
  680. struct spi_transfer *xfer)
  681. {
  682. struct spi_qup *controller = spi_master_get_devdata(master);
  683. unsigned long timeout, flags;
  684. int ret;
  685. ret = spi_qup_io_prep(spi, xfer);
  686. if (ret)
  687. return ret;
  688. timeout = DIV_ROUND_UP(xfer->speed_hz, MSEC_PER_SEC);
  689. timeout = DIV_ROUND_UP(min_t(unsigned long, SPI_MAX_XFER,
  690. xfer->len) * 8, timeout);
  691. timeout = 100 * msecs_to_jiffies(timeout);
  692. reinit_completion(&controller->done);
  693. spin_lock_irqsave(&controller->lock, flags);
  694. controller->xfer = xfer;
  695. controller->error = 0;
  696. controller->rx_bytes = 0;
  697. controller->tx_bytes = 0;
  698. spin_unlock_irqrestore(&controller->lock, flags);
  699. if (spi_qup_is_dma_xfer(controller->mode))
  700. ret = spi_qup_do_dma(spi, xfer, timeout);
  701. else
  702. ret = spi_qup_do_pio(spi, xfer, timeout);
  703. spi_qup_set_state(controller, QUP_STATE_RESET);
  704. spin_lock_irqsave(&controller->lock, flags);
  705. if (!ret)
  706. ret = controller->error;
  707. spin_unlock_irqrestore(&controller->lock, flags);
  708. if (ret && spi_qup_is_dma_xfer(controller->mode))
  709. spi_qup_dma_terminate(master, xfer);
  710. return ret;
  711. }
  712. static bool spi_qup_can_dma(struct spi_master *master, struct spi_device *spi,
  713. struct spi_transfer *xfer)
  714. {
  715. struct spi_qup *qup = spi_master_get_devdata(master);
  716. size_t dma_align = dma_get_cache_alignment();
  717. int n_words;
  718. if (xfer->rx_buf) {
  719. if (!IS_ALIGNED((size_t)xfer->rx_buf, dma_align) ||
  720. IS_ERR_OR_NULL(master->dma_rx))
  721. return false;
  722. if (qup->qup_v1 && (xfer->len % qup->in_blk_sz))
  723. return false;
  724. }
  725. if (xfer->tx_buf) {
  726. if (!IS_ALIGNED((size_t)xfer->tx_buf, dma_align) ||
  727. IS_ERR_OR_NULL(master->dma_tx))
  728. return false;
  729. if (qup->qup_v1 && (xfer->len % qup->out_blk_sz))
  730. return false;
  731. }
  732. n_words = xfer->len / DIV_ROUND_UP(xfer->bits_per_word, 8);
  733. if (n_words <= (qup->in_fifo_sz / sizeof(u32)))
  734. return false;
  735. return true;
  736. }
  737. static void spi_qup_release_dma(struct spi_master *master)
  738. {
  739. if (!IS_ERR_OR_NULL(master->dma_rx))
  740. dma_release_channel(master->dma_rx);
  741. if (!IS_ERR_OR_NULL(master->dma_tx))
  742. dma_release_channel(master->dma_tx);
  743. }
  744. static int spi_qup_init_dma(struct spi_master *master, resource_size_t base)
  745. {
  746. struct spi_qup *spi = spi_master_get_devdata(master);
  747. struct dma_slave_config *rx_conf = &spi->rx_conf,
  748. *tx_conf = &spi->tx_conf;
  749. struct device *dev = spi->dev;
  750. int ret;
  751. /* allocate dma resources, if available */
  752. master->dma_rx = dma_request_chan(dev, "rx");
  753. if (IS_ERR(master->dma_rx))
  754. return PTR_ERR(master->dma_rx);
  755. master->dma_tx = dma_request_chan(dev, "tx");
  756. if (IS_ERR(master->dma_tx)) {
  757. ret = PTR_ERR(master->dma_tx);
  758. goto err_tx;
  759. }
  760. /* set DMA parameters */
  761. rx_conf->direction = DMA_DEV_TO_MEM;
  762. rx_conf->device_fc = 1;
  763. rx_conf->src_addr = base + QUP_INPUT_FIFO;
  764. rx_conf->src_maxburst = spi->in_blk_sz;
  765. tx_conf->direction = DMA_MEM_TO_DEV;
  766. tx_conf->device_fc = 1;
  767. tx_conf->dst_addr = base + QUP_OUTPUT_FIFO;
  768. tx_conf->dst_maxburst = spi->out_blk_sz;
  769. ret = dmaengine_slave_config(master->dma_rx, rx_conf);
  770. if (ret) {
  771. dev_err(dev, "failed to configure RX channel\n");
  772. goto err;
  773. }
  774. ret = dmaengine_slave_config(master->dma_tx, tx_conf);
  775. if (ret) {
  776. dev_err(dev, "failed to configure TX channel\n");
  777. goto err;
  778. }
  779. return 0;
  780. err:
  781. dma_release_channel(master->dma_tx);
  782. err_tx:
  783. dma_release_channel(master->dma_rx);
  784. return ret;
  785. }
  786. static void spi_qup_set_cs(struct spi_device *spi, bool val)
  787. {
  788. struct spi_qup *controller;
  789. u32 spi_ioc;
  790. u32 spi_ioc_orig;
  791. controller = spi_master_get_devdata(spi->master);
  792. spi_ioc = readl_relaxed(controller->base + SPI_IO_CONTROL);
  793. spi_ioc_orig = spi_ioc;
  794. if (!val)
  795. spi_ioc |= SPI_IO_C_FORCE_CS;
  796. else
  797. spi_ioc &= ~SPI_IO_C_FORCE_CS;
  798. if (spi_ioc != spi_ioc_orig)
  799. writel_relaxed(spi_ioc, controller->base + SPI_IO_CONTROL);
  800. }
  801. static int spi_qup_probe(struct platform_device *pdev)
  802. {
  803. struct spi_master *master;
  804. struct clk *iclk, *cclk;
  805. struct spi_qup *controller;
  806. struct resource *res;
  807. struct device *dev;
  808. void __iomem *base;
  809. u32 max_freq, iomode, num_cs;
  810. int ret, irq, size;
  811. dev = &pdev->dev;
  812. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  813. base = devm_ioremap_resource(dev, res);
  814. if (IS_ERR(base))
  815. return PTR_ERR(base);
  816. irq = platform_get_irq(pdev, 0);
  817. if (irq < 0)
  818. return irq;
  819. cclk = devm_clk_get(dev, "core");
  820. if (IS_ERR(cclk))
  821. return PTR_ERR(cclk);
  822. iclk = devm_clk_get(dev, "iface");
  823. if (IS_ERR(iclk))
  824. return PTR_ERR(iclk);
  825. /* This is optional parameter */
  826. if (of_property_read_u32(dev->of_node, "spi-max-frequency", &max_freq))
  827. max_freq = SPI_MAX_RATE;
  828. if (!max_freq || max_freq > SPI_MAX_RATE) {
  829. dev_err(dev, "invalid clock frequency %d\n", max_freq);
  830. return -ENXIO;
  831. }
  832. master = spi_alloc_master(dev, sizeof(struct spi_qup));
  833. if (!master) {
  834. dev_err(dev, "cannot allocate master\n");
  835. return -ENOMEM;
  836. }
  837. /* use num-cs unless not present or out of range */
  838. if (of_property_read_u32(dev->of_node, "num-cs", &num_cs) ||
  839. num_cs > SPI_NUM_CHIPSELECTS)
  840. master->num_chipselect = SPI_NUM_CHIPSELECTS;
  841. else
  842. master->num_chipselect = num_cs;
  843. master->use_gpio_descriptors = true;
  844. master->max_native_cs = SPI_NUM_CHIPSELECTS;
  845. master->bus_num = pdev->id;
  846. master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
  847. master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
  848. master->max_speed_hz = max_freq;
  849. master->transfer_one = spi_qup_transfer_one;
  850. master->dev.of_node = pdev->dev.of_node;
  851. master->auto_runtime_pm = true;
  852. master->dma_alignment = dma_get_cache_alignment();
  853. master->max_dma_len = SPI_MAX_XFER;
  854. platform_set_drvdata(pdev, master);
  855. controller = spi_master_get_devdata(master);
  856. controller->dev = dev;
  857. controller->base = base;
  858. controller->iclk = iclk;
  859. controller->cclk = cclk;
  860. controller->irq = irq;
  861. ret = spi_qup_init_dma(master, res->start);
  862. if (ret == -EPROBE_DEFER)
  863. goto error;
  864. else if (!ret)
  865. master->can_dma = spi_qup_can_dma;
  866. controller->qup_v1 = (uintptr_t)of_device_get_match_data(dev);
  867. if (!controller->qup_v1)
  868. master->set_cs = spi_qup_set_cs;
  869. spin_lock_init(&controller->lock);
  870. init_completion(&controller->done);
  871. ret = clk_prepare_enable(cclk);
  872. if (ret) {
  873. dev_err(dev, "cannot enable core clock\n");
  874. goto error_dma;
  875. }
  876. ret = clk_prepare_enable(iclk);
  877. if (ret) {
  878. clk_disable_unprepare(cclk);
  879. dev_err(dev, "cannot enable iface clock\n");
  880. goto error_dma;
  881. }
  882. iomode = readl_relaxed(base + QUP_IO_M_MODES);
  883. size = QUP_IO_M_OUTPUT_BLOCK_SIZE(iomode);
  884. if (size)
  885. controller->out_blk_sz = size * 16;
  886. else
  887. controller->out_blk_sz = 4;
  888. size = QUP_IO_M_INPUT_BLOCK_SIZE(iomode);
  889. if (size)
  890. controller->in_blk_sz = size * 16;
  891. else
  892. controller->in_blk_sz = 4;
  893. size = QUP_IO_M_OUTPUT_FIFO_SIZE(iomode);
  894. controller->out_fifo_sz = controller->out_blk_sz * (2 << size);
  895. size = QUP_IO_M_INPUT_FIFO_SIZE(iomode);
  896. controller->in_fifo_sz = controller->in_blk_sz * (2 << size);
  897. dev_info(dev, "IN:block:%d, fifo:%d, OUT:block:%d, fifo:%d\n",
  898. controller->in_blk_sz, controller->in_fifo_sz,
  899. controller->out_blk_sz, controller->out_fifo_sz);
  900. writel_relaxed(1, base + QUP_SW_RESET);
  901. ret = spi_qup_set_state(controller, QUP_STATE_RESET);
  902. if (ret) {
  903. dev_err(dev, "cannot set RESET state\n");
  904. goto error_clk;
  905. }
  906. writel_relaxed(0, base + QUP_OPERATIONAL);
  907. writel_relaxed(0, base + QUP_IO_M_MODES);
  908. if (!controller->qup_v1)
  909. writel_relaxed(0, base + QUP_OPERATIONAL_MASK);
  910. writel_relaxed(SPI_ERROR_CLK_UNDER_RUN | SPI_ERROR_CLK_OVER_RUN,
  911. base + SPI_ERROR_FLAGS_EN);
  912. /* if earlier version of the QUP, disable INPUT_OVERRUN */
  913. if (controller->qup_v1)
  914. writel_relaxed(QUP_ERROR_OUTPUT_OVER_RUN |
  915. QUP_ERROR_INPUT_UNDER_RUN | QUP_ERROR_OUTPUT_UNDER_RUN,
  916. base + QUP_ERROR_FLAGS_EN);
  917. writel_relaxed(0, base + SPI_CONFIG);
  918. writel_relaxed(SPI_IO_C_NO_TRI_STATE, base + SPI_IO_CONTROL);
  919. ret = devm_request_irq(dev, irq, spi_qup_qup_irq,
  920. IRQF_TRIGGER_HIGH, pdev->name, controller);
  921. if (ret)
  922. goto error_clk;
  923. pm_runtime_set_autosuspend_delay(dev, MSEC_PER_SEC);
  924. pm_runtime_use_autosuspend(dev);
  925. pm_runtime_set_active(dev);
  926. pm_runtime_enable(dev);
  927. ret = devm_spi_register_master(dev, master);
  928. if (ret)
  929. goto disable_pm;
  930. return 0;
  931. disable_pm:
  932. pm_runtime_disable(&pdev->dev);
  933. error_clk:
  934. clk_disable_unprepare(cclk);
  935. clk_disable_unprepare(iclk);
  936. error_dma:
  937. spi_qup_release_dma(master);
  938. error:
  939. spi_master_put(master);
  940. return ret;
  941. }
  942. #ifdef CONFIG_PM
  943. static int spi_qup_pm_suspend_runtime(struct device *device)
  944. {
  945. struct spi_master *master = dev_get_drvdata(device);
  946. struct spi_qup *controller = spi_master_get_devdata(master);
  947. u32 config;
  948. /* Enable clocks auto gaiting */
  949. config = readl(controller->base + QUP_CONFIG);
  950. config |= QUP_CONFIG_CLOCK_AUTO_GATE;
  951. writel_relaxed(config, controller->base + QUP_CONFIG);
  952. clk_disable_unprepare(controller->cclk);
  953. clk_disable_unprepare(controller->iclk);
  954. return 0;
  955. }
  956. static int spi_qup_pm_resume_runtime(struct device *device)
  957. {
  958. struct spi_master *master = dev_get_drvdata(device);
  959. struct spi_qup *controller = spi_master_get_devdata(master);
  960. u32 config;
  961. int ret;
  962. ret = clk_prepare_enable(controller->iclk);
  963. if (ret)
  964. return ret;
  965. ret = clk_prepare_enable(controller->cclk);
  966. if (ret) {
  967. clk_disable_unprepare(controller->iclk);
  968. return ret;
  969. }
  970. /* Disable clocks auto gaiting */
  971. config = readl_relaxed(controller->base + QUP_CONFIG);
  972. config &= ~QUP_CONFIG_CLOCK_AUTO_GATE;
  973. writel_relaxed(config, controller->base + QUP_CONFIG);
  974. return 0;
  975. }
  976. #endif /* CONFIG_PM */
  977. #ifdef CONFIG_PM_SLEEP
  978. static int spi_qup_suspend(struct device *device)
  979. {
  980. struct spi_master *master = dev_get_drvdata(device);
  981. struct spi_qup *controller = spi_master_get_devdata(master);
  982. int ret;
  983. if (pm_runtime_suspended(device)) {
  984. ret = spi_qup_pm_resume_runtime(device);
  985. if (ret)
  986. return ret;
  987. }
  988. ret = spi_master_suspend(master);
  989. if (ret)
  990. return ret;
  991. ret = spi_qup_set_state(controller, QUP_STATE_RESET);
  992. if (ret)
  993. return ret;
  994. clk_disable_unprepare(controller->cclk);
  995. clk_disable_unprepare(controller->iclk);
  996. return 0;
  997. }
  998. static int spi_qup_resume(struct device *device)
  999. {
  1000. struct spi_master *master = dev_get_drvdata(device);
  1001. struct spi_qup *controller = spi_master_get_devdata(master);
  1002. int ret;
  1003. ret = clk_prepare_enable(controller->iclk);
  1004. if (ret)
  1005. return ret;
  1006. ret = clk_prepare_enable(controller->cclk);
  1007. if (ret) {
  1008. clk_disable_unprepare(controller->iclk);
  1009. return ret;
  1010. }
  1011. ret = spi_qup_set_state(controller, QUP_STATE_RESET);
  1012. if (ret)
  1013. goto disable_clk;
  1014. ret = spi_master_resume(master);
  1015. if (ret)
  1016. goto disable_clk;
  1017. return 0;
  1018. disable_clk:
  1019. clk_disable_unprepare(controller->cclk);
  1020. clk_disable_unprepare(controller->iclk);
  1021. return ret;
  1022. }
  1023. #endif /* CONFIG_PM_SLEEP */
  1024. static int spi_qup_remove(struct platform_device *pdev)
  1025. {
  1026. struct spi_master *master = dev_get_drvdata(&pdev->dev);
  1027. struct spi_qup *controller = spi_master_get_devdata(master);
  1028. int ret;
  1029. ret = pm_runtime_get_sync(&pdev->dev);
  1030. if (ret >= 0) {
  1031. ret = spi_qup_set_state(controller, QUP_STATE_RESET);
  1032. if (ret)
  1033. dev_warn(&pdev->dev, "failed to reset controller (%pe)\n",
  1034. ERR_PTR(ret));
  1035. clk_disable_unprepare(controller->cclk);
  1036. clk_disable_unprepare(controller->iclk);
  1037. } else {
  1038. dev_warn(&pdev->dev, "failed to resume, skip hw disable (%pe)\n",
  1039. ERR_PTR(ret));
  1040. }
  1041. spi_qup_release_dma(master);
  1042. pm_runtime_put_noidle(&pdev->dev);
  1043. pm_runtime_disable(&pdev->dev);
  1044. return 0;
  1045. }
  1046. static const struct of_device_id spi_qup_dt_match[] = {
  1047. { .compatible = "qcom,spi-qup-v1.1.1", .data = (void *)1, },
  1048. { .compatible = "qcom,spi-qup-v2.1.1", },
  1049. { .compatible = "qcom,spi-qup-v2.2.1", },
  1050. { }
  1051. };
  1052. MODULE_DEVICE_TABLE(of, spi_qup_dt_match);
  1053. static const struct dev_pm_ops spi_qup_dev_pm_ops = {
  1054. SET_SYSTEM_SLEEP_PM_OPS(spi_qup_suspend, spi_qup_resume)
  1055. SET_RUNTIME_PM_OPS(spi_qup_pm_suspend_runtime,
  1056. spi_qup_pm_resume_runtime,
  1057. NULL)
  1058. };
  1059. static struct platform_driver spi_qup_driver = {
  1060. .driver = {
  1061. .name = "spi_qup",
  1062. .pm = &spi_qup_dev_pm_ops,
  1063. .of_match_table = spi_qup_dt_match,
  1064. },
  1065. .probe = spi_qup_probe,
  1066. .remove = spi_qup_remove,
  1067. };
  1068. module_platform_driver(spi_qup_driver);
  1069. MODULE_LICENSE("GPL v2");
  1070. MODULE_ALIAS("platform:spi_qup");