1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276 |
- // SPDX-License-Identifier: GPL-2.0+
- /*
- * NXP FlexSPI(FSPI) controller driver.
- *
- * Copyright 2019-2020 NXP
- * Copyright 2020 Puresoftware Ltd.
- *
- * FlexSPI is a flexsible SPI host controller which supports two SPI
- * channels and up to 4 external devices. Each channel supports
- * Single/Dual/Quad/Octal mode data transfer (1/2/4/8 bidirectional
- * data lines).
- *
- * FlexSPI controller is driven by the LUT(Look-up Table) registers
- * LUT registers are a look-up-table for sequences of instructions.
- * A valid sequence consists of four LUT registers.
- * Maximum 32 LUT sequences can be programmed simultaneously.
- *
- * LUTs are being created at run-time based on the commands passed
- * from the spi-mem framework, thus using single LUT index.
- *
- * Software triggered Flash read/write access by IP Bus.
- *
- * Memory mapped read access by AHB Bus.
- *
- * Based on SPI MEM interface and spi-fsl-qspi.c driver.
- *
- * Author:
- * Yogesh Narayan Gaur <[email protected]>
- * Boris Brezillon <[email protected]>
- * Frieder Schrempf <[email protected]>
- */
- #include <linux/acpi.h>
- #include <linux/bitops.h>
- #include <linux/bitfield.h>
- #include <linux/clk.h>
- #include <linux/completion.h>
- #include <linux/delay.h>
- #include <linux/err.h>
- #include <linux/errno.h>
- #include <linux/interrupt.h>
- #include <linux/io.h>
- #include <linux/iopoll.h>
- #include <linux/jiffies.h>
- #include <linux/kernel.h>
- #include <linux/module.h>
- #include <linux/mutex.h>
- #include <linux/of.h>
- #include <linux/of_device.h>
- #include <linux/platform_device.h>
- #include <linux/pm_qos.h>
- #include <linux/regmap.h>
- #include <linux/sizes.h>
- #include <linux/sys_soc.h>
- #include <linux/mfd/syscon.h>
- #include <linux/spi/spi.h>
- #include <linux/spi/spi-mem.h>
- /*
- * The driver only uses one single LUT entry, that is updated on
- * each call of exec_op(). Index 0 is preset at boot with a basic
- * read operation, so let's use the last entry (31).
- */
- #define SEQID_LUT 31
- /* Registers used by the driver */
- #define FSPI_MCR0 0x00
- #define FSPI_MCR0_AHB_TIMEOUT(x) ((x) << 24)
- #define FSPI_MCR0_IP_TIMEOUT(x) ((x) << 16)
- #define FSPI_MCR0_LEARN_EN BIT(15)
- #define FSPI_MCR0_SCRFRUN_EN BIT(14)
- #define FSPI_MCR0_OCTCOMB_EN BIT(13)
- #define FSPI_MCR0_DOZE_EN BIT(12)
- #define FSPI_MCR0_HSEN BIT(11)
- #define FSPI_MCR0_SERCLKDIV BIT(8)
- #define FSPI_MCR0_ATDF_EN BIT(7)
- #define FSPI_MCR0_ARDF_EN BIT(6)
- #define FSPI_MCR0_RXCLKSRC(x) ((x) << 4)
- #define FSPI_MCR0_END_CFG(x) ((x) << 2)
- #define FSPI_MCR0_MDIS BIT(1)
- #define FSPI_MCR0_SWRST BIT(0)
- #define FSPI_MCR1 0x04
- #define FSPI_MCR1_SEQ_TIMEOUT(x) ((x) << 16)
- #define FSPI_MCR1_AHB_TIMEOUT(x) (x)
- #define FSPI_MCR2 0x08
- #define FSPI_MCR2_IDLE_WAIT(x) ((x) << 24)
- #define FSPI_MCR2_SAMEDEVICEEN BIT(15)
- #define FSPI_MCR2_CLRLRPHS BIT(14)
- #define FSPI_MCR2_ABRDATSZ BIT(8)
- #define FSPI_MCR2_ABRLEARN BIT(7)
- #define FSPI_MCR2_ABR_READ BIT(6)
- #define FSPI_MCR2_ABRWRITE BIT(5)
- #define FSPI_MCR2_ABRDUMMY BIT(4)
- #define FSPI_MCR2_ABR_MODE BIT(3)
- #define FSPI_MCR2_ABRCADDR BIT(2)
- #define FSPI_MCR2_ABRRADDR BIT(1)
- #define FSPI_MCR2_ABR_CMD BIT(0)
- #define FSPI_AHBCR 0x0c
- #define FSPI_AHBCR_RDADDROPT BIT(6)
- #define FSPI_AHBCR_PREF_EN BIT(5)
- #define FSPI_AHBCR_BUFF_EN BIT(4)
- #define FSPI_AHBCR_CACH_EN BIT(3)
- #define FSPI_AHBCR_CLRTXBUF BIT(2)
- #define FSPI_AHBCR_CLRRXBUF BIT(1)
- #define FSPI_AHBCR_PAR_EN BIT(0)
- #define FSPI_INTEN 0x10
- #define FSPI_INTEN_SCLKSBWR BIT(9)
- #define FSPI_INTEN_SCLKSBRD BIT(8)
- #define FSPI_INTEN_DATALRNFL BIT(7)
- #define FSPI_INTEN_IPTXWE BIT(6)
- #define FSPI_INTEN_IPRXWA BIT(5)
- #define FSPI_INTEN_AHBCMDERR BIT(4)
- #define FSPI_INTEN_IPCMDERR BIT(3)
- #define FSPI_INTEN_AHBCMDGE BIT(2)
- #define FSPI_INTEN_IPCMDGE BIT(1)
- #define FSPI_INTEN_IPCMDDONE BIT(0)
- #define FSPI_INTR 0x14
- #define FSPI_INTR_SCLKSBWR BIT(9)
- #define FSPI_INTR_SCLKSBRD BIT(8)
- #define FSPI_INTR_DATALRNFL BIT(7)
- #define FSPI_INTR_IPTXWE BIT(6)
- #define FSPI_INTR_IPRXWA BIT(5)
- #define FSPI_INTR_AHBCMDERR BIT(4)
- #define FSPI_INTR_IPCMDERR BIT(3)
- #define FSPI_INTR_AHBCMDGE BIT(2)
- #define FSPI_INTR_IPCMDGE BIT(1)
- #define FSPI_INTR_IPCMDDONE BIT(0)
- #define FSPI_LUTKEY 0x18
- #define FSPI_LUTKEY_VALUE 0x5AF05AF0
- #define FSPI_LCKCR 0x1C
- #define FSPI_LCKER_LOCK 0x1
- #define FSPI_LCKER_UNLOCK 0x2
- #define FSPI_BUFXCR_INVALID_MSTRID 0xE
- #define FSPI_AHBRX_BUF0CR0 0x20
- #define FSPI_AHBRX_BUF1CR0 0x24
- #define FSPI_AHBRX_BUF2CR0 0x28
- #define FSPI_AHBRX_BUF3CR0 0x2C
- #define FSPI_AHBRX_BUF4CR0 0x30
- #define FSPI_AHBRX_BUF5CR0 0x34
- #define FSPI_AHBRX_BUF6CR0 0x38
- #define FSPI_AHBRX_BUF7CR0 0x3C
- #define FSPI_AHBRXBUF0CR7_PREF BIT(31)
- #define FSPI_AHBRX_BUF0CR1 0x40
- #define FSPI_AHBRX_BUF1CR1 0x44
- #define FSPI_AHBRX_BUF2CR1 0x48
- #define FSPI_AHBRX_BUF3CR1 0x4C
- #define FSPI_AHBRX_BUF4CR1 0x50
- #define FSPI_AHBRX_BUF5CR1 0x54
- #define FSPI_AHBRX_BUF6CR1 0x58
- #define FSPI_AHBRX_BUF7CR1 0x5C
- #define FSPI_FLSHA1CR0 0x60
- #define FSPI_FLSHA2CR0 0x64
- #define FSPI_FLSHB1CR0 0x68
- #define FSPI_FLSHB2CR0 0x6C
- #define FSPI_FLSHXCR0_SZ_KB 10
- #define FSPI_FLSHXCR0_SZ(x) ((x) >> FSPI_FLSHXCR0_SZ_KB)
- #define FSPI_FLSHA1CR1 0x70
- #define FSPI_FLSHA2CR1 0x74
- #define FSPI_FLSHB1CR1 0x78
- #define FSPI_FLSHB2CR1 0x7C
- #define FSPI_FLSHXCR1_CSINTR(x) ((x) << 16)
- #define FSPI_FLSHXCR1_CAS(x) ((x) << 11)
- #define FSPI_FLSHXCR1_WA BIT(10)
- #define FSPI_FLSHXCR1_TCSH(x) ((x) << 5)
- #define FSPI_FLSHXCR1_TCSS(x) (x)
- #define FSPI_FLSHA1CR2 0x80
- #define FSPI_FLSHA2CR2 0x84
- #define FSPI_FLSHB1CR2 0x88
- #define FSPI_FLSHB2CR2 0x8C
- #define FSPI_FLSHXCR2_CLRINSP BIT(24)
- #define FSPI_FLSHXCR2_AWRWAIT BIT(16)
- #define FSPI_FLSHXCR2_AWRSEQN_SHIFT 13
- #define FSPI_FLSHXCR2_AWRSEQI_SHIFT 8
- #define FSPI_FLSHXCR2_ARDSEQN_SHIFT 5
- #define FSPI_FLSHXCR2_ARDSEQI_SHIFT 0
- #define FSPI_IPCR0 0xA0
- #define FSPI_IPCR1 0xA4
- #define FSPI_IPCR1_IPAREN BIT(31)
- #define FSPI_IPCR1_SEQNUM_SHIFT 24
- #define FSPI_IPCR1_SEQID_SHIFT 16
- #define FSPI_IPCR1_IDATSZ(x) (x)
- #define FSPI_IPCMD 0xB0
- #define FSPI_IPCMD_TRG BIT(0)
- #define FSPI_DLPR 0xB4
- #define FSPI_IPRXFCR 0xB8
- #define FSPI_IPRXFCR_CLR BIT(0)
- #define FSPI_IPRXFCR_DMA_EN BIT(1)
- #define FSPI_IPRXFCR_WMRK(x) ((x) << 2)
- #define FSPI_IPTXFCR 0xBC
- #define FSPI_IPTXFCR_CLR BIT(0)
- #define FSPI_IPTXFCR_DMA_EN BIT(1)
- #define FSPI_IPTXFCR_WMRK(x) ((x) << 2)
- #define FSPI_DLLACR 0xC0
- #define FSPI_DLLACR_OVRDEN BIT(8)
- #define FSPI_DLLBCR 0xC4
- #define FSPI_DLLBCR_OVRDEN BIT(8)
- #define FSPI_STS0 0xE0
- #define FSPI_STS0_DLPHB(x) ((x) << 8)
- #define FSPI_STS0_DLPHA(x) ((x) << 4)
- #define FSPI_STS0_CMD_SRC(x) ((x) << 2)
- #define FSPI_STS0_ARB_IDLE BIT(1)
- #define FSPI_STS0_SEQ_IDLE BIT(0)
- #define FSPI_STS1 0xE4
- #define FSPI_STS1_IP_ERRCD(x) ((x) << 24)
- #define FSPI_STS1_IP_ERRID(x) ((x) << 16)
- #define FSPI_STS1_AHB_ERRCD(x) ((x) << 8)
- #define FSPI_STS1_AHB_ERRID(x) (x)
- #define FSPI_AHBSPNST 0xEC
- #define FSPI_AHBSPNST_DATLFT(x) ((x) << 16)
- #define FSPI_AHBSPNST_BUFID(x) ((x) << 1)
- #define FSPI_AHBSPNST_ACTIVE BIT(0)
- #define FSPI_IPRXFSTS 0xF0
- #define FSPI_IPRXFSTS_RDCNTR(x) ((x) << 16)
- #define FSPI_IPRXFSTS_FILL(x) (x)
- #define FSPI_IPTXFSTS 0xF4
- #define FSPI_IPTXFSTS_WRCNTR(x) ((x) << 16)
- #define FSPI_IPTXFSTS_FILL(x) (x)
- #define FSPI_RFDR 0x100
- #define FSPI_TFDR 0x180
- #define FSPI_LUT_BASE 0x200
- #define FSPI_LUT_OFFSET (SEQID_LUT * 4 * 4)
- #define FSPI_LUT_REG(idx) \
- (FSPI_LUT_BASE + FSPI_LUT_OFFSET + (idx) * 4)
- /* register map end */
- /* Instruction set for the LUT register. */
- #define LUT_STOP 0x00
- #define LUT_CMD 0x01
- #define LUT_ADDR 0x02
- #define LUT_CADDR_SDR 0x03
- #define LUT_MODE 0x04
- #define LUT_MODE2 0x05
- #define LUT_MODE4 0x06
- #define LUT_MODE8 0x07
- #define LUT_NXP_WRITE 0x08
- #define LUT_NXP_READ 0x09
- #define LUT_LEARN_SDR 0x0A
- #define LUT_DATSZ_SDR 0x0B
- #define LUT_DUMMY 0x0C
- #define LUT_DUMMY_RWDS_SDR 0x0D
- #define LUT_JMP_ON_CS 0x1F
- #define LUT_CMD_DDR 0x21
- #define LUT_ADDR_DDR 0x22
- #define LUT_CADDR_DDR 0x23
- #define LUT_MODE_DDR 0x24
- #define LUT_MODE2_DDR 0x25
- #define LUT_MODE4_DDR 0x26
- #define LUT_MODE8_DDR 0x27
- #define LUT_WRITE_DDR 0x28
- #define LUT_READ_DDR 0x29
- #define LUT_LEARN_DDR 0x2A
- #define LUT_DATSZ_DDR 0x2B
- #define LUT_DUMMY_DDR 0x2C
- #define LUT_DUMMY_RWDS_DDR 0x2D
- /*
- * Calculate number of required PAD bits for LUT register.
- *
- * The pad stands for the number of IO lines [0:7].
- * For example, the octal read needs eight IO lines,
- * so you should use LUT_PAD(8). This macro
- * returns 3 i.e. use eight (2^3) IP lines for read.
- */
- #define LUT_PAD(x) (fls(x) - 1)
- /*
- * Macro for constructing the LUT entries with the following
- * register layout:
- *
- * ---------------------------------------------------
- * | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 |
- * ---------------------------------------------------
- */
- #define PAD_SHIFT 8
- #define INSTR_SHIFT 10
- #define OPRND_SHIFT 16
- /* Macros for constructing the LUT register. */
- #define LUT_DEF(idx, ins, pad, opr) \
- ((((ins) << INSTR_SHIFT) | ((pad) << PAD_SHIFT) | \
- (opr)) << (((idx) % 2) * OPRND_SHIFT))
- #define POLL_TOUT 5000
- #define NXP_FSPI_MAX_CHIPSELECT 4
- #define NXP_FSPI_MIN_IOMAP SZ_4M
- #define DCFG_RCWSR1 0x100
- #define SYS_PLL_RAT GENMASK(6, 2)
- /* Access flash memory using IP bus only */
- #define FSPI_QUIRK_USE_IP_ONLY BIT(0)
- struct nxp_fspi_devtype_data {
- unsigned int rxfifo;
- unsigned int txfifo;
- unsigned int ahb_buf_size;
- unsigned int quirks;
- bool little_endian;
- };
- static struct nxp_fspi_devtype_data lx2160a_data = {
- .rxfifo = SZ_512, /* (64 * 64 bits) */
- .txfifo = SZ_1K, /* (128 * 64 bits) */
- .ahb_buf_size = SZ_2K, /* (256 * 64 bits) */
- .quirks = 0,
- .little_endian = true, /* little-endian */
- };
- static struct nxp_fspi_devtype_data imx8mm_data = {
- .rxfifo = SZ_512, /* (64 * 64 bits) */
- .txfifo = SZ_1K, /* (128 * 64 bits) */
- .ahb_buf_size = SZ_2K, /* (256 * 64 bits) */
- .quirks = 0,
- .little_endian = true, /* little-endian */
- };
- static struct nxp_fspi_devtype_data imx8qxp_data = {
- .rxfifo = SZ_512, /* (64 * 64 bits) */
- .txfifo = SZ_1K, /* (128 * 64 bits) */
- .ahb_buf_size = SZ_2K, /* (256 * 64 bits) */
- .quirks = 0,
- .little_endian = true, /* little-endian */
- };
- static struct nxp_fspi_devtype_data imx8dxl_data = {
- .rxfifo = SZ_512, /* (64 * 64 bits) */
- .txfifo = SZ_1K, /* (128 * 64 bits) */
- .ahb_buf_size = SZ_2K, /* (256 * 64 bits) */
- .quirks = FSPI_QUIRK_USE_IP_ONLY,
- .little_endian = true, /* little-endian */
- };
- struct nxp_fspi {
- void __iomem *iobase;
- void __iomem *ahb_addr;
- u32 memmap_phy;
- u32 memmap_phy_size;
- u32 memmap_start;
- u32 memmap_len;
- struct clk *clk, *clk_en;
- struct device *dev;
- struct completion c;
- struct nxp_fspi_devtype_data *devtype_data;
- struct mutex lock;
- struct pm_qos_request pm_qos_req;
- int selected;
- };
- static inline int needs_ip_only(struct nxp_fspi *f)
- {
- return f->devtype_data->quirks & FSPI_QUIRK_USE_IP_ONLY;
- }
- /*
- * R/W functions for big- or little-endian registers:
- * The FSPI controller's endianness is independent of
- * the CPU core's endianness. So far, although the CPU
- * core is little-endian the FSPI controller can use
- * big-endian or little-endian.
- */
- static void fspi_writel(struct nxp_fspi *f, u32 val, void __iomem *addr)
- {
- if (f->devtype_data->little_endian)
- iowrite32(val, addr);
- else
- iowrite32be(val, addr);
- }
- static u32 fspi_readl(struct nxp_fspi *f, void __iomem *addr)
- {
- if (f->devtype_data->little_endian)
- return ioread32(addr);
- else
- return ioread32be(addr);
- }
- static irqreturn_t nxp_fspi_irq_handler(int irq, void *dev_id)
- {
- struct nxp_fspi *f = dev_id;
- u32 reg;
- /* clear interrupt */
- reg = fspi_readl(f, f->iobase + FSPI_INTR);
- fspi_writel(f, FSPI_INTR_IPCMDDONE, f->iobase + FSPI_INTR);
- if (reg & FSPI_INTR_IPCMDDONE)
- complete(&f->c);
- return IRQ_HANDLED;
- }
- static int nxp_fspi_check_buswidth(struct nxp_fspi *f, u8 width)
- {
- switch (width) {
- case 1:
- case 2:
- case 4:
- case 8:
- return 0;
- }
- return -ENOTSUPP;
- }
- static bool nxp_fspi_supports_op(struct spi_mem *mem,
- const struct spi_mem_op *op)
- {
- struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master);
- int ret;
- ret = nxp_fspi_check_buswidth(f, op->cmd.buswidth);
- if (op->addr.nbytes)
- ret |= nxp_fspi_check_buswidth(f, op->addr.buswidth);
- if (op->dummy.nbytes)
- ret |= nxp_fspi_check_buswidth(f, op->dummy.buswidth);
- if (op->data.nbytes)
- ret |= nxp_fspi_check_buswidth(f, op->data.buswidth);
- if (ret)
- return false;
- /*
- * The number of address bytes should be equal to or less than 4 bytes.
- */
- if (op->addr.nbytes > 4)
- return false;
- /*
- * If requested address value is greater than controller assigned
- * memory mapped space, return error as it didn't fit in the range
- * of assigned address space.
- */
- if (op->addr.val >= f->memmap_phy_size)
- return false;
- /* Max 64 dummy clock cycles supported */
- if (op->dummy.buswidth &&
- (op->dummy.nbytes * 8 / op->dummy.buswidth > 64))
- return false;
- /* Max data length, check controller limits and alignment */
- if (op->data.dir == SPI_MEM_DATA_IN &&
- (op->data.nbytes > f->devtype_data->ahb_buf_size ||
- (op->data.nbytes > f->devtype_data->rxfifo - 4 &&
- !IS_ALIGNED(op->data.nbytes, 8))))
- return false;
- if (op->data.dir == SPI_MEM_DATA_OUT &&
- op->data.nbytes > f->devtype_data->txfifo)
- return false;
- return spi_mem_default_supports_op(mem, op);
- }
- /* Instead of busy looping invoke readl_poll_timeout functionality. */
- static int fspi_readl_poll_tout(struct nxp_fspi *f, void __iomem *base,
- u32 mask, u32 delay_us,
- u32 timeout_us, bool c)
- {
- u32 reg;
- if (!f->devtype_data->little_endian)
- mask = (u32)cpu_to_be32(mask);
- if (c)
- return readl_poll_timeout(base, reg, (reg & mask),
- delay_us, timeout_us);
- else
- return readl_poll_timeout(base, reg, !(reg & mask),
- delay_us, timeout_us);
- }
- /*
- * If the slave device content being changed by Write/Erase, need to
- * invalidate the AHB buffer. This can be achieved by doing the reset
- * of controller after setting MCR0[SWRESET] bit.
- */
- static inline void nxp_fspi_invalid(struct nxp_fspi *f)
- {
- u32 reg;
- int ret;
- reg = fspi_readl(f, f->iobase + FSPI_MCR0);
- fspi_writel(f, reg | FSPI_MCR0_SWRST, f->iobase + FSPI_MCR0);
- /* w1c register, wait unit clear */
- ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0,
- FSPI_MCR0_SWRST, 0, POLL_TOUT, false);
- WARN_ON(ret);
- }
- static void nxp_fspi_prepare_lut(struct nxp_fspi *f,
- const struct spi_mem_op *op)
- {
- void __iomem *base = f->iobase;
- u32 lutval[4] = {};
- int lutidx = 1, i;
- /* cmd */
- lutval[0] |= LUT_DEF(0, LUT_CMD, LUT_PAD(op->cmd.buswidth),
- op->cmd.opcode);
- /* addr bytes */
- if (op->addr.nbytes) {
- lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_ADDR,
- LUT_PAD(op->addr.buswidth),
- op->addr.nbytes * 8);
- lutidx++;
- }
- /* dummy bytes, if needed */
- if (op->dummy.nbytes) {
- lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_DUMMY,
- /*
- * Due to FlexSPI controller limitation number of PAD for dummy
- * buswidth needs to be programmed as equal to data buswidth.
- */
- LUT_PAD(op->data.buswidth),
- op->dummy.nbytes * 8 /
- op->dummy.buswidth);
- lutidx++;
- }
- /* read/write data bytes */
- if (op->data.nbytes) {
- lutval[lutidx / 2] |= LUT_DEF(lutidx,
- op->data.dir == SPI_MEM_DATA_IN ?
- LUT_NXP_READ : LUT_NXP_WRITE,
- LUT_PAD(op->data.buswidth),
- 0);
- lutidx++;
- }
- /* stop condition. */
- lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_STOP, 0, 0);
- /* unlock LUT */
- fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY);
- fspi_writel(f, FSPI_LCKER_UNLOCK, f->iobase + FSPI_LCKCR);
- /* fill LUT */
- for (i = 0; i < ARRAY_SIZE(lutval); i++)
- fspi_writel(f, lutval[i], base + FSPI_LUT_REG(i));
- dev_dbg(f->dev, "CMD[%x] lutval[0:%x \t 1:%x \t 2:%x \t 3:%x], size: 0x%08x\n",
- op->cmd.opcode, lutval[0], lutval[1], lutval[2], lutval[3], op->data.nbytes);
- /* lock LUT */
- fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY);
- fspi_writel(f, FSPI_LCKER_LOCK, f->iobase + FSPI_LCKCR);
- }
- static int nxp_fspi_clk_prep_enable(struct nxp_fspi *f)
- {
- int ret;
- if (is_acpi_node(dev_fwnode(f->dev)))
- return 0;
- ret = clk_prepare_enable(f->clk_en);
- if (ret)
- return ret;
- ret = clk_prepare_enable(f->clk);
- if (ret) {
- clk_disable_unprepare(f->clk_en);
- return ret;
- }
- return 0;
- }
- static int nxp_fspi_clk_disable_unprep(struct nxp_fspi *f)
- {
- if (is_acpi_node(dev_fwnode(f->dev)))
- return 0;
- clk_disable_unprepare(f->clk);
- clk_disable_unprepare(f->clk_en);
- return 0;
- }
- /*
- * In FlexSPI controller, flash access is based on value of FSPI_FLSHXXCR0
- * register and start base address of the slave device.
- *
- * (Higher address)
- * -------- <-- FLSHB2CR0
- * | B2 |
- * | |
- * B2 start address --> -------- <-- FLSHB1CR0
- * | B1 |
- * | |
- * B1 start address --> -------- <-- FLSHA2CR0
- * | A2 |
- * | |
- * A2 start address --> -------- <-- FLSHA1CR0
- * | A1 |
- * | |
- * A1 start address --> -------- (Lower address)
- *
- *
- * Start base address defines the starting address range for given CS and
- * FSPI_FLSHXXCR0 defines the size of the slave device connected at given CS.
- *
- * But, different targets are having different combinations of number of CS,
- * some targets only have single CS or two CS covering controller's full
- * memory mapped space area.
- * Thus, implementation is being done as independent of the size and number
- * of the connected slave device.
- * Assign controller memory mapped space size as the size to the connected
- * slave device.
- * Mark FLSHxxCR0 as zero initially and then assign value only to the selected
- * chip-select Flash configuration register.
- *
- * For e.g. to access CS2 (B1), FLSHB1CR0 register would be equal to the
- * memory mapped size of the controller.
- * Value for rest of the CS FLSHxxCR0 register would be zero.
- *
- */
- static void nxp_fspi_select_mem(struct nxp_fspi *f, struct spi_device *spi)
- {
- unsigned long rate = spi->max_speed_hz;
- int ret;
- uint64_t size_kb;
- /*
- * Return, if previously selected slave device is same as current
- * requested slave device.
- */
- if (f->selected == spi->chip_select)
- return;
- /* Reset FLSHxxCR0 registers */
- fspi_writel(f, 0, f->iobase + FSPI_FLSHA1CR0);
- fspi_writel(f, 0, f->iobase + FSPI_FLSHA2CR0);
- fspi_writel(f, 0, f->iobase + FSPI_FLSHB1CR0);
- fspi_writel(f, 0, f->iobase + FSPI_FLSHB2CR0);
- /* Assign controller memory mapped space as size, KBytes, of flash. */
- size_kb = FSPI_FLSHXCR0_SZ(f->memmap_phy_size);
- fspi_writel(f, size_kb, f->iobase + FSPI_FLSHA1CR0 +
- 4 * spi->chip_select);
- dev_dbg(f->dev, "Slave device [CS:%x] selected\n", spi->chip_select);
- nxp_fspi_clk_disable_unprep(f);
- ret = clk_set_rate(f->clk, rate);
- if (ret)
- return;
- ret = nxp_fspi_clk_prep_enable(f);
- if (ret)
- return;
- f->selected = spi->chip_select;
- }
- static int nxp_fspi_read_ahb(struct nxp_fspi *f, const struct spi_mem_op *op)
- {
- u32 start = op->addr.val;
- u32 len = op->data.nbytes;
- /* if necessary, ioremap before AHB read */
- if ((!f->ahb_addr) || start < f->memmap_start ||
- start + len > f->memmap_start + f->memmap_len) {
- if (f->ahb_addr)
- iounmap(f->ahb_addr);
- f->memmap_start = start;
- f->memmap_len = len > NXP_FSPI_MIN_IOMAP ?
- len : NXP_FSPI_MIN_IOMAP;
- f->ahb_addr = ioremap(f->memmap_phy + f->memmap_start,
- f->memmap_len);
- if (!f->ahb_addr) {
- dev_err(f->dev, "failed to alloc memory\n");
- return -ENOMEM;
- }
- }
- /* Read out the data directly from the AHB buffer. */
- memcpy_fromio(op->data.buf.in,
- f->ahb_addr + start - f->memmap_start, len);
- return 0;
- }
- static void nxp_fspi_fill_txfifo(struct nxp_fspi *f,
- const struct spi_mem_op *op)
- {
- void __iomem *base = f->iobase;
- int i, ret;
- u8 *buf = (u8 *) op->data.buf.out;
- /* clear the TX FIFO. */
- fspi_writel(f, FSPI_IPTXFCR_CLR, base + FSPI_IPTXFCR);
- /*
- * Default value of water mark level is 8 bytes, hence in single
- * write request controller can write max 8 bytes of data.
- */
- for (i = 0; i < ALIGN_DOWN(op->data.nbytes, 8); i += 8) {
- /* Wait for TXFIFO empty */
- ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
- FSPI_INTR_IPTXWE, 0,
- POLL_TOUT, true);
- WARN_ON(ret);
- fspi_writel(f, *(u32 *) (buf + i), base + FSPI_TFDR);
- fspi_writel(f, *(u32 *) (buf + i + 4), base + FSPI_TFDR + 4);
- fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR);
- }
- if (i < op->data.nbytes) {
- u32 data = 0;
- int j;
- /* Wait for TXFIFO empty */
- ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
- FSPI_INTR_IPTXWE, 0,
- POLL_TOUT, true);
- WARN_ON(ret);
- for (j = 0; j < ALIGN(op->data.nbytes - i, 4); j += 4) {
- memcpy(&data, buf + i + j, 4);
- fspi_writel(f, data, base + FSPI_TFDR + j);
- }
- fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR);
- }
- }
- static void nxp_fspi_read_rxfifo(struct nxp_fspi *f,
- const struct spi_mem_op *op)
- {
- void __iomem *base = f->iobase;
- int i, ret;
- int len = op->data.nbytes;
- u8 *buf = (u8 *) op->data.buf.in;
- /*
- * Default value of water mark level is 8 bytes, hence in single
- * read request controller can read max 8 bytes of data.
- */
- for (i = 0; i < ALIGN_DOWN(len, 8); i += 8) {
- /* Wait for RXFIFO available */
- ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
- FSPI_INTR_IPRXWA, 0,
- POLL_TOUT, true);
- WARN_ON(ret);
- *(u32 *)(buf + i) = fspi_readl(f, base + FSPI_RFDR);
- *(u32 *)(buf + i + 4) = fspi_readl(f, base + FSPI_RFDR + 4);
- /* move the FIFO pointer */
- fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR);
- }
- if (i < len) {
- u32 tmp;
- int size, j;
- buf = op->data.buf.in + i;
- /* Wait for RXFIFO available */
- ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
- FSPI_INTR_IPRXWA, 0,
- POLL_TOUT, true);
- WARN_ON(ret);
- len = op->data.nbytes - i;
- for (j = 0; j < op->data.nbytes - i; j += 4) {
- tmp = fspi_readl(f, base + FSPI_RFDR + j);
- size = min(len, 4);
- memcpy(buf + j, &tmp, size);
- len -= size;
- }
- }
- /* invalid the RXFIFO */
- fspi_writel(f, FSPI_IPRXFCR_CLR, base + FSPI_IPRXFCR);
- /* move the FIFO pointer */
- fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR);
- }
- static int nxp_fspi_do_op(struct nxp_fspi *f, const struct spi_mem_op *op)
- {
- void __iomem *base = f->iobase;
- int seqnum = 0;
- int err = 0;
- u32 reg;
- reg = fspi_readl(f, base + FSPI_IPRXFCR);
- /* invalid RXFIFO first */
- reg &= ~FSPI_IPRXFCR_DMA_EN;
- reg = reg | FSPI_IPRXFCR_CLR;
- fspi_writel(f, reg, base + FSPI_IPRXFCR);
- init_completion(&f->c);
- fspi_writel(f, op->addr.val, base + FSPI_IPCR0);
- /*
- * Always start the sequence at the same index since we update
- * the LUT at each exec_op() call. And also specify the DATA
- * length, since it's has not been specified in the LUT.
- */
- fspi_writel(f, op->data.nbytes |
- (SEQID_LUT << FSPI_IPCR1_SEQID_SHIFT) |
- (seqnum << FSPI_IPCR1_SEQNUM_SHIFT),
- base + FSPI_IPCR1);
- /* Trigger the LUT now. */
- fspi_writel(f, FSPI_IPCMD_TRG, base + FSPI_IPCMD);
- /* Wait for the interrupt. */
- if (!wait_for_completion_timeout(&f->c, msecs_to_jiffies(1000)))
- err = -ETIMEDOUT;
- /* Invoke IP data read, if request is of data read. */
- if (!err && op->data.nbytes && op->data.dir == SPI_MEM_DATA_IN)
- nxp_fspi_read_rxfifo(f, op);
- return err;
- }
- static int nxp_fspi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
- {
- struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master);
- int err = 0;
- mutex_lock(&f->lock);
- /* Wait for controller being ready. */
- err = fspi_readl_poll_tout(f, f->iobase + FSPI_STS0,
- FSPI_STS0_ARB_IDLE, 1, POLL_TOUT, true);
- WARN_ON(err);
- nxp_fspi_select_mem(f, mem->spi);
- nxp_fspi_prepare_lut(f, op);
- /*
- * If we have large chunks of data, we read them through the AHB bus by
- * accessing the mapped memory. In all other cases we use IP commands
- * to access the flash. Read via AHB bus may be corrupted due to
- * existence of an errata and therefore discard AHB read in such cases.
- */
- if (op->data.nbytes > (f->devtype_data->rxfifo - 4) &&
- op->data.dir == SPI_MEM_DATA_IN &&
- !needs_ip_only(f)) {
- err = nxp_fspi_read_ahb(f, op);
- } else {
- if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT)
- nxp_fspi_fill_txfifo(f, op);
- err = nxp_fspi_do_op(f, op);
- }
- /* Invalidate the data in the AHB buffer. */
- nxp_fspi_invalid(f);
- mutex_unlock(&f->lock);
- return err;
- }
- static int nxp_fspi_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
- {
- struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master);
- if (op->data.dir == SPI_MEM_DATA_OUT) {
- if (op->data.nbytes > f->devtype_data->txfifo)
- op->data.nbytes = f->devtype_data->txfifo;
- } else {
- if (op->data.nbytes > f->devtype_data->ahb_buf_size)
- op->data.nbytes = f->devtype_data->ahb_buf_size;
- else if (op->data.nbytes > (f->devtype_data->rxfifo - 4))
- op->data.nbytes = ALIGN_DOWN(op->data.nbytes, 8);
- }
- /* Limit data bytes to RX FIFO in case of IP read only */
- if (op->data.dir == SPI_MEM_DATA_IN &&
- needs_ip_only(f) &&
- op->data.nbytes > f->devtype_data->rxfifo)
- op->data.nbytes = f->devtype_data->rxfifo;
- return 0;
- }
- static void erratum_err050568(struct nxp_fspi *f)
- {
- const struct soc_device_attribute ls1028a_soc_attr[] = {
- { .family = "QorIQ LS1028A" },
- { /* sentinel */ }
- };
- struct regmap *map;
- u32 val, sys_pll_ratio;
- int ret;
- /* Check for LS1028A family */
- if (!soc_device_match(ls1028a_soc_attr)) {
- dev_dbg(f->dev, "Errata applicable only for LS1028A\n");
- return;
- }
- map = syscon_regmap_lookup_by_compatible("fsl,ls1028a-dcfg");
- if (IS_ERR(map)) {
- dev_err(f->dev, "No syscon regmap\n");
- goto err;
- }
- ret = regmap_read(map, DCFG_RCWSR1, &val);
- if (ret < 0)
- goto err;
- sys_pll_ratio = FIELD_GET(SYS_PLL_RAT, val);
- dev_dbg(f->dev, "val: 0x%08x, sys_pll_ratio: %d\n", val, sys_pll_ratio);
- /* Use IP bus only if platform clock is 300MHz */
- if (sys_pll_ratio == 3)
- f->devtype_data->quirks |= FSPI_QUIRK_USE_IP_ONLY;
- return;
- err:
- dev_err(f->dev, "Errata cannot be executed. Read via IP bus may not work\n");
- }
- static int nxp_fspi_default_setup(struct nxp_fspi *f)
- {
- void __iomem *base = f->iobase;
- int ret, i;
- u32 reg;
- /* disable and unprepare clock to avoid glitch pass to controller */
- nxp_fspi_clk_disable_unprep(f);
- /* the default frequency, we will change it later if necessary. */
- ret = clk_set_rate(f->clk, 20000000);
- if (ret)
- return ret;
- ret = nxp_fspi_clk_prep_enable(f);
- if (ret)
- return ret;
- /*
- * ERR050568: Flash access by FlexSPI AHB command may not work with
- * platform frequency equal to 300 MHz on LS1028A.
- * LS1028A reuses LX2160A compatible entry. Make errata applicable for
- * Layerscape LS1028A platform.
- */
- if (of_device_is_compatible(f->dev->of_node, "nxp,lx2160a-fspi"))
- erratum_err050568(f);
- /* Reset the module */
- /* w1c register, wait unit clear */
- ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0,
- FSPI_MCR0_SWRST, 0, POLL_TOUT, false);
- WARN_ON(ret);
- /* Disable the module */
- fspi_writel(f, FSPI_MCR0_MDIS, base + FSPI_MCR0);
- /* Reset the DLL register to default value */
- fspi_writel(f, FSPI_DLLACR_OVRDEN, base + FSPI_DLLACR);
- fspi_writel(f, FSPI_DLLBCR_OVRDEN, base + FSPI_DLLBCR);
- /* enable module */
- fspi_writel(f, FSPI_MCR0_AHB_TIMEOUT(0xFF) |
- FSPI_MCR0_IP_TIMEOUT(0xFF) | (u32) FSPI_MCR0_OCTCOMB_EN,
- base + FSPI_MCR0);
- /*
- * Disable same device enable bit and configure all slave devices
- * independently.
- */
- reg = fspi_readl(f, f->iobase + FSPI_MCR2);
- reg = reg & ~(FSPI_MCR2_SAMEDEVICEEN);
- fspi_writel(f, reg, base + FSPI_MCR2);
- /* AHB configuration for access buffer 0~7. */
- for (i = 0; i < 7; i++)
- fspi_writel(f, 0, base + FSPI_AHBRX_BUF0CR0 + 4 * i);
- /*
- * Set ADATSZ with the maximum AHB buffer size to improve the read
- * performance.
- */
- fspi_writel(f, (f->devtype_data->ahb_buf_size / 8 |
- FSPI_AHBRXBUF0CR7_PREF), base + FSPI_AHBRX_BUF7CR0);
- /* prefetch and no start address alignment limitation */
- fspi_writel(f, FSPI_AHBCR_PREF_EN | FSPI_AHBCR_RDADDROPT,
- base + FSPI_AHBCR);
- /* Reset the FLSHxCR1 registers. */
- reg = FSPI_FLSHXCR1_TCSH(0x3) | FSPI_FLSHXCR1_TCSS(0x3);
- fspi_writel(f, reg, base + FSPI_FLSHA1CR1);
- fspi_writel(f, reg, base + FSPI_FLSHA2CR1);
- fspi_writel(f, reg, base + FSPI_FLSHB1CR1);
- fspi_writel(f, reg, base + FSPI_FLSHB2CR1);
- /* AHB Read - Set lut sequence ID for all CS. */
- fspi_writel(f, SEQID_LUT, base + FSPI_FLSHA1CR2);
- fspi_writel(f, SEQID_LUT, base + FSPI_FLSHA2CR2);
- fspi_writel(f, SEQID_LUT, base + FSPI_FLSHB1CR2);
- fspi_writel(f, SEQID_LUT, base + FSPI_FLSHB2CR2);
- f->selected = -1;
- /* enable the interrupt */
- fspi_writel(f, FSPI_INTEN_IPCMDDONE, base + FSPI_INTEN);
- return 0;
- }
- static const char *nxp_fspi_get_name(struct spi_mem *mem)
- {
- struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master);
- struct device *dev = &mem->spi->dev;
- const char *name;
- // Set custom name derived from the platform_device of the controller.
- if (of_get_available_child_count(f->dev->of_node) == 1)
- return dev_name(f->dev);
- name = devm_kasprintf(dev, GFP_KERNEL,
- "%s-%d", dev_name(f->dev),
- mem->spi->chip_select);
- if (!name) {
- dev_err(dev, "failed to get memory for custom flash name\n");
- return ERR_PTR(-ENOMEM);
- }
- return name;
- }
- static const struct spi_controller_mem_ops nxp_fspi_mem_ops = {
- .adjust_op_size = nxp_fspi_adjust_op_size,
- .supports_op = nxp_fspi_supports_op,
- .exec_op = nxp_fspi_exec_op,
- .get_name = nxp_fspi_get_name,
- };
- static int nxp_fspi_probe(struct platform_device *pdev)
- {
- struct spi_controller *ctlr;
- struct device *dev = &pdev->dev;
- struct device_node *np = dev->of_node;
- struct resource *res;
- struct nxp_fspi *f;
- int ret;
- u32 reg;
- ctlr = spi_alloc_master(&pdev->dev, sizeof(*f));
- if (!ctlr)
- return -ENOMEM;
- ctlr->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL |
- SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL;
- f = spi_controller_get_devdata(ctlr);
- f->dev = dev;
- f->devtype_data = (struct nxp_fspi_devtype_data *)device_get_match_data(dev);
- if (!f->devtype_data) {
- ret = -ENODEV;
- goto err_put_ctrl;
- }
- platform_set_drvdata(pdev, f);
- /* find the resources - configuration register address space */
- if (is_acpi_node(dev_fwnode(f->dev)))
- res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
- else
- res = platform_get_resource_byname(pdev,
- IORESOURCE_MEM, "fspi_base");
- f->iobase = devm_ioremap_resource(dev, res);
- if (IS_ERR(f->iobase)) {
- ret = PTR_ERR(f->iobase);
- goto err_put_ctrl;
- }
- /* find the resources - controller memory mapped space */
- if (is_acpi_node(dev_fwnode(f->dev)))
- res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
- else
- res = platform_get_resource_byname(pdev,
- IORESOURCE_MEM, "fspi_mmap");
- if (!res) {
- ret = -ENODEV;
- goto err_put_ctrl;
- }
- /* assign memory mapped starting address and mapped size. */
- f->memmap_phy = res->start;
- f->memmap_phy_size = resource_size(res);
- /* find the clocks */
- if (dev_of_node(&pdev->dev)) {
- f->clk_en = devm_clk_get(dev, "fspi_en");
- if (IS_ERR(f->clk_en)) {
- ret = PTR_ERR(f->clk_en);
- goto err_put_ctrl;
- }
- f->clk = devm_clk_get(dev, "fspi");
- if (IS_ERR(f->clk)) {
- ret = PTR_ERR(f->clk);
- goto err_put_ctrl;
- }
- ret = nxp_fspi_clk_prep_enable(f);
- if (ret) {
- dev_err(dev, "can not enable the clock\n");
- goto err_put_ctrl;
- }
- }
- /* Clear potential interrupts */
- reg = fspi_readl(f, f->iobase + FSPI_INTR);
- if (reg)
- fspi_writel(f, reg, f->iobase + FSPI_INTR);
- /* find the irq */
- ret = platform_get_irq(pdev, 0);
- if (ret < 0)
- goto err_disable_clk;
- ret = devm_request_irq(dev, ret,
- nxp_fspi_irq_handler, 0, pdev->name, f);
- if (ret) {
- dev_err(dev, "failed to request irq: %d\n", ret);
- goto err_disable_clk;
- }
- mutex_init(&f->lock);
- ctlr->bus_num = -1;
- ctlr->num_chipselect = NXP_FSPI_MAX_CHIPSELECT;
- ctlr->mem_ops = &nxp_fspi_mem_ops;
- nxp_fspi_default_setup(f);
- ctlr->dev.of_node = np;
- ret = devm_spi_register_controller(&pdev->dev, ctlr);
- if (ret)
- goto err_destroy_mutex;
- return 0;
- err_destroy_mutex:
- mutex_destroy(&f->lock);
- err_disable_clk:
- nxp_fspi_clk_disable_unprep(f);
- err_put_ctrl:
- spi_controller_put(ctlr);
- dev_err(dev, "NXP FSPI probe failed\n");
- return ret;
- }
- static int nxp_fspi_remove(struct platform_device *pdev)
- {
- struct nxp_fspi *f = platform_get_drvdata(pdev);
- /* disable the hardware */
- fspi_writel(f, FSPI_MCR0_MDIS, f->iobase + FSPI_MCR0);
- nxp_fspi_clk_disable_unprep(f);
- mutex_destroy(&f->lock);
- if (f->ahb_addr)
- iounmap(f->ahb_addr);
- return 0;
- }
- static int nxp_fspi_suspend(struct device *dev)
- {
- return 0;
- }
- static int nxp_fspi_resume(struct device *dev)
- {
- struct nxp_fspi *f = dev_get_drvdata(dev);
- nxp_fspi_default_setup(f);
- return 0;
- }
- static const struct of_device_id nxp_fspi_dt_ids[] = {
- { .compatible = "nxp,lx2160a-fspi", .data = (void *)&lx2160a_data, },
- { .compatible = "nxp,imx8mm-fspi", .data = (void *)&imx8mm_data, },
- { .compatible = "nxp,imx8mp-fspi", .data = (void *)&imx8mm_data, },
- { .compatible = "nxp,imx8qxp-fspi", .data = (void *)&imx8qxp_data, },
- { .compatible = "nxp,imx8dxl-fspi", .data = (void *)&imx8dxl_data, },
- { /* sentinel */ }
- };
- MODULE_DEVICE_TABLE(of, nxp_fspi_dt_ids);
- #ifdef CONFIG_ACPI
- static const struct acpi_device_id nxp_fspi_acpi_ids[] = {
- { "NXP0009", .driver_data = (kernel_ulong_t)&lx2160a_data, },
- {}
- };
- MODULE_DEVICE_TABLE(acpi, nxp_fspi_acpi_ids);
- #endif
- static const struct dev_pm_ops nxp_fspi_pm_ops = {
- .suspend = nxp_fspi_suspend,
- .resume = nxp_fspi_resume,
- };
- static struct platform_driver nxp_fspi_driver = {
- .driver = {
- .name = "nxp-fspi",
- .of_match_table = nxp_fspi_dt_ids,
- .acpi_match_table = ACPI_PTR(nxp_fspi_acpi_ids),
- .pm = &nxp_fspi_pm_ops,
- },
- .probe = nxp_fspi_probe,
- .remove = nxp_fspi_remove,
- };
- module_platform_driver(nxp_fspi_driver);
- MODULE_DESCRIPTION("NXP FSPI Controller Driver");
- MODULE_AUTHOR("NXP Semiconductor");
- MODULE_AUTHOR("Yogesh Narayan Gaur <[email protected]>");
- MODULE_AUTHOR("Boris Brezillon <[email protected]>");
- MODULE_AUTHOR("Frieder Schrempf <[email protected]>");
- MODULE_LICENSE("GPL v2");
|