libsrp.c 9.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418
  1. // SPDX-License-Identifier: GPL-2.0-or-later
  2. /*******************************************************************************
  3. * SCSI RDMA Protocol lib functions
  4. *
  5. * Copyright (C) 2006 FUJITA Tomonori <[email protected]>
  6. * Copyright (C) 2016 Bryant G. Ly <[email protected]> IBM Corp.
  7. *
  8. ***********************************************************************/
  9. #define pr_fmt(fmt) "libsrp: " fmt
  10. #include <linux/printk.h>
  11. #include <linux/err.h>
  12. #include <linux/slab.h>
  13. #include <linux/kfifo.h>
  14. #include <linux/scatterlist.h>
  15. #include <linux/dma-mapping.h>
  16. #include <linux/module.h>
  17. #include <scsi/srp.h>
  18. #include <target/target_core_base.h>
  19. #include "libsrp.h"
  20. #include "ibmvscsi_tgt.h"
  21. static int srp_iu_pool_alloc(struct srp_queue *q, size_t max,
  22. struct srp_buf **ring)
  23. {
  24. struct iu_entry *iue;
  25. int i;
  26. q->pool = kcalloc(max, sizeof(struct iu_entry *), GFP_KERNEL);
  27. if (!q->pool)
  28. return -ENOMEM;
  29. q->items = kcalloc(max, sizeof(struct iu_entry), GFP_KERNEL);
  30. if (!q->items)
  31. goto free_pool;
  32. spin_lock_init(&q->lock);
  33. kfifo_init(&q->queue, (void *)q->pool, max * sizeof(void *));
  34. for (i = 0, iue = q->items; i < max; i++) {
  35. kfifo_in(&q->queue, (void *)&iue, sizeof(void *));
  36. iue->sbuf = ring[i];
  37. iue++;
  38. }
  39. return 0;
  40. free_pool:
  41. kfree(q->pool);
  42. return -ENOMEM;
  43. }
  44. static void srp_iu_pool_free(struct srp_queue *q)
  45. {
  46. kfree(q->items);
  47. kfree(q->pool);
  48. }
  49. static struct srp_buf **srp_ring_alloc(struct device *dev,
  50. size_t max, size_t size)
  51. {
  52. struct srp_buf **ring;
  53. int i;
  54. ring = kcalloc(max, sizeof(struct srp_buf *), GFP_KERNEL);
  55. if (!ring)
  56. return NULL;
  57. for (i = 0; i < max; i++) {
  58. ring[i] = kzalloc(sizeof(*ring[i]), GFP_KERNEL);
  59. if (!ring[i])
  60. goto out;
  61. ring[i]->buf = dma_alloc_coherent(dev, size, &ring[i]->dma,
  62. GFP_KERNEL);
  63. if (!ring[i]->buf)
  64. goto out;
  65. }
  66. return ring;
  67. out:
  68. for (i = 0; i < max && ring[i]; i++) {
  69. if (ring[i]->buf) {
  70. dma_free_coherent(dev, size, ring[i]->buf,
  71. ring[i]->dma);
  72. }
  73. kfree(ring[i]);
  74. }
  75. kfree(ring);
  76. return NULL;
  77. }
  78. static void srp_ring_free(struct device *dev, struct srp_buf **ring,
  79. size_t max, size_t size)
  80. {
  81. int i;
  82. for (i = 0; i < max; i++) {
  83. dma_free_coherent(dev, size, ring[i]->buf, ring[i]->dma);
  84. kfree(ring[i]);
  85. }
  86. kfree(ring);
  87. }
  88. int srp_target_alloc(struct srp_target *target, struct device *dev,
  89. size_t nr, size_t iu_size)
  90. {
  91. int err;
  92. spin_lock_init(&target->lock);
  93. target->dev = dev;
  94. target->srp_iu_size = iu_size;
  95. target->rx_ring_size = nr;
  96. target->rx_ring = srp_ring_alloc(target->dev, nr, iu_size);
  97. if (!target->rx_ring)
  98. return -ENOMEM;
  99. err = srp_iu_pool_alloc(&target->iu_queue, nr, target->rx_ring);
  100. if (err)
  101. goto free_ring;
  102. dev_set_drvdata(target->dev, target);
  103. return 0;
  104. free_ring:
  105. srp_ring_free(target->dev, target->rx_ring, nr, iu_size);
  106. return -ENOMEM;
  107. }
  108. void srp_target_free(struct srp_target *target)
  109. {
  110. dev_set_drvdata(target->dev, NULL);
  111. srp_ring_free(target->dev, target->rx_ring, target->rx_ring_size,
  112. target->srp_iu_size);
  113. srp_iu_pool_free(&target->iu_queue);
  114. }
  115. struct iu_entry *srp_iu_get(struct srp_target *target)
  116. {
  117. struct iu_entry *iue = NULL;
  118. if (kfifo_out_locked(&target->iu_queue.queue, (void *)&iue,
  119. sizeof(void *),
  120. &target->iu_queue.lock) != sizeof(void *)) {
  121. WARN_ONCE(1, "unexpected fifo state");
  122. return NULL;
  123. }
  124. if (!iue)
  125. return iue;
  126. iue->target = target;
  127. iue->flags = 0;
  128. return iue;
  129. }
  130. void srp_iu_put(struct iu_entry *iue)
  131. {
  132. kfifo_in_locked(&iue->target->iu_queue.queue, (void *)&iue,
  133. sizeof(void *), &iue->target->iu_queue.lock);
  134. }
  135. static int srp_direct_data(struct ibmvscsis_cmd *cmd, struct srp_direct_buf *md,
  136. enum dma_data_direction dir, srp_rdma_t rdma_io,
  137. int dma_map, int ext_desc)
  138. {
  139. struct iu_entry *iue = NULL;
  140. struct scatterlist *sg = NULL;
  141. int err, nsg = 0, len;
  142. if (dma_map) {
  143. iue = cmd->iue;
  144. sg = cmd->se_cmd.t_data_sg;
  145. nsg = dma_map_sg(iue->target->dev, sg, cmd->se_cmd.t_data_nents,
  146. DMA_BIDIRECTIONAL);
  147. if (!nsg) {
  148. pr_err("fail to map %p %d\n", iue,
  149. cmd->se_cmd.t_data_nents);
  150. return 0;
  151. }
  152. len = min(cmd->se_cmd.data_length, be32_to_cpu(md->len));
  153. } else {
  154. len = be32_to_cpu(md->len);
  155. }
  156. err = rdma_io(cmd, sg, nsg, md, 1, dir, len);
  157. if (dma_map)
  158. dma_unmap_sg(iue->target->dev, sg, nsg, DMA_BIDIRECTIONAL);
  159. return err;
  160. }
  161. static int srp_indirect_data(struct ibmvscsis_cmd *cmd, struct srp_cmd *srp_cmd,
  162. struct srp_indirect_buf *id,
  163. enum dma_data_direction dir, srp_rdma_t rdma_io,
  164. int dma_map, int ext_desc)
  165. {
  166. struct iu_entry *iue = NULL;
  167. struct srp_direct_buf *md = NULL;
  168. struct scatterlist dummy, *sg = NULL;
  169. dma_addr_t token = 0;
  170. int err = 0;
  171. int nmd, nsg = 0, len;
  172. if (dma_map || ext_desc) {
  173. iue = cmd->iue;
  174. sg = cmd->se_cmd.t_data_sg;
  175. }
  176. nmd = be32_to_cpu(id->table_desc.len) / sizeof(struct srp_direct_buf);
  177. if ((dir == DMA_FROM_DEVICE && nmd == srp_cmd->data_in_desc_cnt) ||
  178. (dir == DMA_TO_DEVICE && nmd == srp_cmd->data_out_desc_cnt)) {
  179. md = &id->desc_list[0];
  180. goto rdma;
  181. }
  182. if (ext_desc && dma_map) {
  183. md = dma_alloc_coherent(iue->target->dev,
  184. be32_to_cpu(id->table_desc.len),
  185. &token, GFP_KERNEL);
  186. if (!md) {
  187. pr_err("Can't get dma memory %u\n",
  188. be32_to_cpu(id->table_desc.len));
  189. return -ENOMEM;
  190. }
  191. sg_init_one(&dummy, md, be32_to_cpu(id->table_desc.len));
  192. sg_dma_address(&dummy) = token;
  193. sg_dma_len(&dummy) = be32_to_cpu(id->table_desc.len);
  194. err = rdma_io(cmd, &dummy, 1, &id->table_desc, 1, DMA_TO_DEVICE,
  195. be32_to_cpu(id->table_desc.len));
  196. if (err) {
  197. pr_err("Error copying indirect table %d\n", err);
  198. goto free_mem;
  199. }
  200. } else {
  201. pr_err("This command uses external indirect buffer\n");
  202. return -EINVAL;
  203. }
  204. rdma:
  205. if (dma_map) {
  206. nsg = dma_map_sg(iue->target->dev, sg, cmd->se_cmd.t_data_nents,
  207. DMA_BIDIRECTIONAL);
  208. if (!nsg) {
  209. pr_err("fail to map %p %d\n", iue,
  210. cmd->se_cmd.t_data_nents);
  211. err = -EIO;
  212. goto free_mem;
  213. }
  214. len = min(cmd->se_cmd.data_length, be32_to_cpu(id->len));
  215. } else {
  216. len = be32_to_cpu(id->len);
  217. }
  218. err = rdma_io(cmd, sg, nsg, md, nmd, dir, len);
  219. if (dma_map)
  220. dma_unmap_sg(iue->target->dev, sg, nsg, DMA_BIDIRECTIONAL);
  221. free_mem:
  222. if (token && dma_map) {
  223. dma_free_coherent(iue->target->dev,
  224. be32_to_cpu(id->table_desc.len), md, token);
  225. }
  226. return err;
  227. }
  228. static int data_out_desc_size(struct srp_cmd *cmd)
  229. {
  230. int size = 0;
  231. u8 fmt = cmd->buf_fmt >> 4;
  232. switch (fmt) {
  233. case SRP_NO_DATA_DESC:
  234. break;
  235. case SRP_DATA_DESC_DIRECT:
  236. size = sizeof(struct srp_direct_buf);
  237. break;
  238. case SRP_DATA_DESC_INDIRECT:
  239. size = sizeof(struct srp_indirect_buf) +
  240. sizeof(struct srp_direct_buf) * cmd->data_out_desc_cnt;
  241. break;
  242. default:
  243. pr_err("client error. Invalid data_out_format %x\n", fmt);
  244. break;
  245. }
  246. return size;
  247. }
  248. /*
  249. * TODO: this can be called multiple times for a single command if it
  250. * has very long data.
  251. */
  252. int srp_transfer_data(struct ibmvscsis_cmd *cmd, struct srp_cmd *srp_cmd,
  253. srp_rdma_t rdma_io, int dma_map, int ext_desc)
  254. {
  255. struct srp_direct_buf *md;
  256. struct srp_indirect_buf *id;
  257. enum dma_data_direction dir;
  258. int offset, err = 0;
  259. u8 format;
  260. if (!cmd->se_cmd.t_data_nents)
  261. return 0;
  262. offset = srp_cmd->add_cdb_len & ~3;
  263. dir = srp_cmd_direction(srp_cmd);
  264. if (dir == DMA_FROM_DEVICE)
  265. offset += data_out_desc_size(srp_cmd);
  266. if (dir == DMA_TO_DEVICE)
  267. format = srp_cmd->buf_fmt >> 4;
  268. else
  269. format = srp_cmd->buf_fmt & ((1U << 4) - 1);
  270. switch (format) {
  271. case SRP_NO_DATA_DESC:
  272. break;
  273. case SRP_DATA_DESC_DIRECT:
  274. md = (struct srp_direct_buf *)(srp_cmd->add_data + offset);
  275. err = srp_direct_data(cmd, md, dir, rdma_io, dma_map, ext_desc);
  276. break;
  277. case SRP_DATA_DESC_INDIRECT:
  278. id = (struct srp_indirect_buf *)(srp_cmd->add_data + offset);
  279. err = srp_indirect_data(cmd, srp_cmd, id, dir, rdma_io, dma_map,
  280. ext_desc);
  281. break;
  282. default:
  283. pr_err("Unknown format %d %x\n", dir, format);
  284. err = -EINVAL;
  285. }
  286. return err;
  287. }
  288. u64 srp_data_length(struct srp_cmd *cmd, enum dma_data_direction dir)
  289. {
  290. struct srp_direct_buf *md;
  291. struct srp_indirect_buf *id;
  292. u64 len = 0;
  293. uint offset = cmd->add_cdb_len & ~3;
  294. u8 fmt;
  295. if (dir == DMA_TO_DEVICE) {
  296. fmt = cmd->buf_fmt >> 4;
  297. } else {
  298. fmt = cmd->buf_fmt & ((1U << 4) - 1);
  299. offset += data_out_desc_size(cmd);
  300. }
  301. switch (fmt) {
  302. case SRP_NO_DATA_DESC:
  303. break;
  304. case SRP_DATA_DESC_DIRECT:
  305. md = (struct srp_direct_buf *)(cmd->add_data + offset);
  306. len = be32_to_cpu(md->len);
  307. break;
  308. case SRP_DATA_DESC_INDIRECT:
  309. id = (struct srp_indirect_buf *)(cmd->add_data + offset);
  310. len = be32_to_cpu(id->len);
  311. break;
  312. default:
  313. pr_err("invalid data format %x\n", fmt);
  314. break;
  315. }
  316. return len;
  317. }
  318. int srp_get_desc_table(struct srp_cmd *srp_cmd, enum dma_data_direction *dir,
  319. u64 *data_len)
  320. {
  321. struct srp_indirect_buf *idb;
  322. struct srp_direct_buf *db;
  323. uint add_cdb_offset;
  324. int rc;
  325. /*
  326. * The pointer computations below will only be compiled correctly
  327. * if srp_cmd::add_data is declared as s8*, u8*, s8[] or u8[], so check
  328. * whether srp_cmd::add_data has been declared as a byte pointer.
  329. */
  330. BUILD_BUG_ON(!__same_type(srp_cmd->add_data[0], (s8)0)
  331. && !__same_type(srp_cmd->add_data[0], (u8)0));
  332. BUG_ON(!dir);
  333. BUG_ON(!data_len);
  334. rc = 0;
  335. *data_len = 0;
  336. *dir = DMA_NONE;
  337. if (srp_cmd->buf_fmt & 0xf)
  338. *dir = DMA_FROM_DEVICE;
  339. else if (srp_cmd->buf_fmt >> 4)
  340. *dir = DMA_TO_DEVICE;
  341. add_cdb_offset = srp_cmd->add_cdb_len & ~3;
  342. if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_DIRECT) ||
  343. ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_DIRECT)) {
  344. db = (struct srp_direct_buf *)(srp_cmd->add_data
  345. + add_cdb_offset);
  346. *data_len = be32_to_cpu(db->len);
  347. } else if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_INDIRECT) ||
  348. ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_INDIRECT)) {
  349. idb = (struct srp_indirect_buf *)(srp_cmd->add_data
  350. + add_cdb_offset);
  351. *data_len = be32_to_cpu(idb->len);
  352. }
  353. return rc;
  354. }
  355. MODULE_DESCRIPTION("SCSI RDMA Protocol lib functions");
  356. MODULE_AUTHOR("FUJITA Tomonori");
  357. MODULE_LICENSE("GPL");