rtc-snvs.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446
  1. // SPDX-License-Identifier: GPL-2.0+
  2. //
  3. // Copyright (C) 2011-2012 Freescale Semiconductor, Inc.
  4. #include <linux/init.h>
  5. #include <linux/io.h>
  6. #include <linux/kernel.h>
  7. #include <linux/module.h>
  8. #include <linux/of.h>
  9. #include <linux/platform_device.h>
  10. #include <linux/pm_wakeirq.h>
  11. #include <linux/rtc.h>
  12. #include <linux/clk.h>
  13. #include <linux/mfd/syscon.h>
  14. #include <linux/regmap.h>
  15. #define SNVS_LPREGISTER_OFFSET 0x34
  16. /* These register offsets are relative to LP (Low Power) range */
  17. #define SNVS_LPCR 0x04
  18. #define SNVS_LPSR 0x18
  19. #define SNVS_LPSRTCMR 0x1c
  20. #define SNVS_LPSRTCLR 0x20
  21. #define SNVS_LPTAR 0x24
  22. #define SNVS_LPPGDR 0x30
  23. #define SNVS_LPCR_SRTC_ENV (1 << 0)
  24. #define SNVS_LPCR_LPTA_EN (1 << 1)
  25. #define SNVS_LPCR_LPWUI_EN (1 << 3)
  26. #define SNVS_LPSR_LPTA (1 << 0)
  27. #define SNVS_LPPGDR_INIT 0x41736166
  28. #define CNTR_TO_SECS_SH 15
  29. /* The maximum RTC clock cycles that are allowed to pass between two
  30. * consecutive clock counter register reads. If the values are corrupted a
  31. * bigger difference is expected. The RTC frequency is 32kHz. With 320 cycles
  32. * we end at 10ms which should be enough for most cases. If it once takes
  33. * longer than expected we do a retry.
  34. */
  35. #define MAX_RTC_READ_DIFF_CYCLES 320
  36. struct snvs_rtc_data {
  37. struct rtc_device *rtc;
  38. struct regmap *regmap;
  39. int offset;
  40. int irq;
  41. struct clk *clk;
  42. };
  43. /* Read 64 bit timer register, which could be in inconsistent state */
  44. static u64 rtc_read_lpsrt(struct snvs_rtc_data *data)
  45. {
  46. u32 msb, lsb;
  47. regmap_read(data->regmap, data->offset + SNVS_LPSRTCMR, &msb);
  48. regmap_read(data->regmap, data->offset + SNVS_LPSRTCLR, &lsb);
  49. return (u64)msb << 32 | lsb;
  50. }
  51. /* Read the secure real time counter, taking care to deal with the cases of the
  52. * counter updating while being read.
  53. */
  54. static u32 rtc_read_lp_counter(struct snvs_rtc_data *data)
  55. {
  56. u64 read1, read2;
  57. s64 diff;
  58. unsigned int timeout = 100;
  59. /* As expected, the registers might update between the read of the LSB
  60. * reg and the MSB reg. It's also possible that one register might be
  61. * in partially modified state as well.
  62. */
  63. read1 = rtc_read_lpsrt(data);
  64. do {
  65. read2 = read1;
  66. read1 = rtc_read_lpsrt(data);
  67. diff = read1 - read2;
  68. } while (((diff < 0) || (diff > MAX_RTC_READ_DIFF_CYCLES)) && --timeout);
  69. if (!timeout)
  70. dev_err(&data->rtc->dev, "Timeout trying to get valid LPSRT Counter read\n");
  71. /* Convert 47-bit counter to 32-bit raw second count */
  72. return (u32) (read1 >> CNTR_TO_SECS_SH);
  73. }
  74. /* Just read the lsb from the counter, dealing with inconsistent state */
  75. static int rtc_read_lp_counter_lsb(struct snvs_rtc_data *data, u32 *lsb)
  76. {
  77. u32 count1, count2;
  78. s32 diff;
  79. unsigned int timeout = 100;
  80. regmap_read(data->regmap, data->offset + SNVS_LPSRTCLR, &count1);
  81. do {
  82. count2 = count1;
  83. regmap_read(data->regmap, data->offset + SNVS_LPSRTCLR, &count1);
  84. diff = count1 - count2;
  85. } while (((diff < 0) || (diff > MAX_RTC_READ_DIFF_CYCLES)) && --timeout);
  86. if (!timeout) {
  87. dev_err(&data->rtc->dev, "Timeout trying to get valid LPSRT Counter read\n");
  88. return -ETIMEDOUT;
  89. }
  90. *lsb = count1;
  91. return 0;
  92. }
  93. static int rtc_write_sync_lp(struct snvs_rtc_data *data)
  94. {
  95. u32 count1, count2;
  96. u32 elapsed;
  97. unsigned int timeout = 1000;
  98. int ret;
  99. ret = rtc_read_lp_counter_lsb(data, &count1);
  100. if (ret)
  101. return ret;
  102. /* Wait for 3 CKIL cycles, about 61.0-91.5 µs */
  103. do {
  104. ret = rtc_read_lp_counter_lsb(data, &count2);
  105. if (ret)
  106. return ret;
  107. elapsed = count2 - count1; /* wrap around _is_ handled! */
  108. } while (elapsed < 3 && --timeout);
  109. if (!timeout) {
  110. dev_err(&data->rtc->dev, "Timeout waiting for LPSRT Counter to change\n");
  111. return -ETIMEDOUT;
  112. }
  113. return 0;
  114. }
  115. static int snvs_rtc_enable(struct snvs_rtc_data *data, bool enable)
  116. {
  117. int timeout = 1000;
  118. u32 lpcr;
  119. regmap_update_bits(data->regmap, data->offset + SNVS_LPCR, SNVS_LPCR_SRTC_ENV,
  120. enable ? SNVS_LPCR_SRTC_ENV : 0);
  121. while (--timeout) {
  122. regmap_read(data->regmap, data->offset + SNVS_LPCR, &lpcr);
  123. if (enable) {
  124. if (lpcr & SNVS_LPCR_SRTC_ENV)
  125. break;
  126. } else {
  127. if (!(lpcr & SNVS_LPCR_SRTC_ENV))
  128. break;
  129. }
  130. }
  131. if (!timeout)
  132. return -ETIMEDOUT;
  133. return 0;
  134. }
  135. static int snvs_rtc_read_time(struct device *dev, struct rtc_time *tm)
  136. {
  137. struct snvs_rtc_data *data = dev_get_drvdata(dev);
  138. unsigned long time;
  139. int ret;
  140. ret = clk_enable(data->clk);
  141. if (ret)
  142. return ret;
  143. time = rtc_read_lp_counter(data);
  144. rtc_time64_to_tm(time, tm);
  145. clk_disable(data->clk);
  146. return 0;
  147. }
  148. static int snvs_rtc_set_time(struct device *dev, struct rtc_time *tm)
  149. {
  150. struct snvs_rtc_data *data = dev_get_drvdata(dev);
  151. unsigned long time = rtc_tm_to_time64(tm);
  152. int ret;
  153. ret = clk_enable(data->clk);
  154. if (ret)
  155. return ret;
  156. /* Disable RTC first */
  157. ret = snvs_rtc_enable(data, false);
  158. if (ret)
  159. return ret;
  160. /* Write 32-bit time to 47-bit timer, leaving 15 LSBs blank */
  161. regmap_write(data->regmap, data->offset + SNVS_LPSRTCLR, time << CNTR_TO_SECS_SH);
  162. regmap_write(data->regmap, data->offset + SNVS_LPSRTCMR, time >> (32 - CNTR_TO_SECS_SH));
  163. /* Enable RTC again */
  164. ret = snvs_rtc_enable(data, true);
  165. clk_disable(data->clk);
  166. return ret;
  167. }
  168. static int snvs_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
  169. {
  170. struct snvs_rtc_data *data = dev_get_drvdata(dev);
  171. u32 lptar, lpsr;
  172. int ret;
  173. ret = clk_enable(data->clk);
  174. if (ret)
  175. return ret;
  176. regmap_read(data->regmap, data->offset + SNVS_LPTAR, &lptar);
  177. rtc_time64_to_tm(lptar, &alrm->time);
  178. regmap_read(data->regmap, data->offset + SNVS_LPSR, &lpsr);
  179. alrm->pending = (lpsr & SNVS_LPSR_LPTA) ? 1 : 0;
  180. clk_disable(data->clk);
  181. return 0;
  182. }
  183. static int snvs_rtc_alarm_irq_enable(struct device *dev, unsigned int enable)
  184. {
  185. struct snvs_rtc_data *data = dev_get_drvdata(dev);
  186. int ret;
  187. ret = clk_enable(data->clk);
  188. if (ret)
  189. return ret;
  190. regmap_update_bits(data->regmap, data->offset + SNVS_LPCR,
  191. (SNVS_LPCR_LPTA_EN | SNVS_LPCR_LPWUI_EN),
  192. enable ? (SNVS_LPCR_LPTA_EN | SNVS_LPCR_LPWUI_EN) : 0);
  193. ret = rtc_write_sync_lp(data);
  194. clk_disable(data->clk);
  195. return ret;
  196. }
  197. static int snvs_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
  198. {
  199. struct snvs_rtc_data *data = dev_get_drvdata(dev);
  200. unsigned long time = rtc_tm_to_time64(&alrm->time);
  201. int ret;
  202. ret = clk_enable(data->clk);
  203. if (ret)
  204. return ret;
  205. regmap_update_bits(data->regmap, data->offset + SNVS_LPCR, SNVS_LPCR_LPTA_EN, 0);
  206. ret = rtc_write_sync_lp(data);
  207. if (ret)
  208. return ret;
  209. regmap_write(data->regmap, data->offset + SNVS_LPTAR, time);
  210. /* Clear alarm interrupt status bit */
  211. regmap_write(data->regmap, data->offset + SNVS_LPSR, SNVS_LPSR_LPTA);
  212. clk_disable(data->clk);
  213. return snvs_rtc_alarm_irq_enable(dev, alrm->enabled);
  214. }
  215. static const struct rtc_class_ops snvs_rtc_ops = {
  216. .read_time = snvs_rtc_read_time,
  217. .set_time = snvs_rtc_set_time,
  218. .read_alarm = snvs_rtc_read_alarm,
  219. .set_alarm = snvs_rtc_set_alarm,
  220. .alarm_irq_enable = snvs_rtc_alarm_irq_enable,
  221. };
  222. static irqreturn_t snvs_rtc_irq_handler(int irq, void *dev_id)
  223. {
  224. struct device *dev = dev_id;
  225. struct snvs_rtc_data *data = dev_get_drvdata(dev);
  226. u32 lpsr;
  227. u32 events = 0;
  228. clk_enable(data->clk);
  229. regmap_read(data->regmap, data->offset + SNVS_LPSR, &lpsr);
  230. if (lpsr & SNVS_LPSR_LPTA) {
  231. events |= (RTC_AF | RTC_IRQF);
  232. /* RTC alarm should be one-shot */
  233. snvs_rtc_alarm_irq_enable(dev, 0);
  234. rtc_update_irq(data->rtc, 1, events);
  235. }
  236. /* clear interrupt status */
  237. regmap_write(data->regmap, data->offset + SNVS_LPSR, lpsr);
  238. clk_disable(data->clk);
  239. return events ? IRQ_HANDLED : IRQ_NONE;
  240. }
  241. static const struct regmap_config snvs_rtc_config = {
  242. .reg_bits = 32,
  243. .val_bits = 32,
  244. .reg_stride = 4,
  245. };
  246. static void snvs_rtc_action(void *data)
  247. {
  248. clk_disable_unprepare(data);
  249. }
  250. static int snvs_rtc_probe(struct platform_device *pdev)
  251. {
  252. struct snvs_rtc_data *data;
  253. int ret;
  254. void __iomem *mmio;
  255. data = devm_kzalloc(&pdev->dev, sizeof(*data), GFP_KERNEL);
  256. if (!data)
  257. return -ENOMEM;
  258. data->rtc = devm_rtc_allocate_device(&pdev->dev);
  259. if (IS_ERR(data->rtc))
  260. return PTR_ERR(data->rtc);
  261. data->regmap = syscon_regmap_lookup_by_phandle(pdev->dev.of_node, "regmap");
  262. if (IS_ERR(data->regmap)) {
  263. dev_warn(&pdev->dev, "snvs rtc: you use old dts file, please update it\n");
  264. mmio = devm_platform_ioremap_resource(pdev, 0);
  265. if (IS_ERR(mmio))
  266. return PTR_ERR(mmio);
  267. data->regmap = devm_regmap_init_mmio(&pdev->dev, mmio, &snvs_rtc_config);
  268. } else {
  269. data->offset = SNVS_LPREGISTER_OFFSET;
  270. of_property_read_u32(pdev->dev.of_node, "offset", &data->offset);
  271. }
  272. if (IS_ERR(data->regmap)) {
  273. dev_err(&pdev->dev, "Can't find snvs syscon\n");
  274. return -ENODEV;
  275. }
  276. data->irq = platform_get_irq(pdev, 0);
  277. if (data->irq < 0)
  278. return data->irq;
  279. data->clk = devm_clk_get(&pdev->dev, "snvs-rtc");
  280. if (IS_ERR(data->clk)) {
  281. data->clk = NULL;
  282. } else {
  283. ret = clk_prepare_enable(data->clk);
  284. if (ret) {
  285. dev_err(&pdev->dev,
  286. "Could not prepare or enable the snvs clock\n");
  287. return ret;
  288. }
  289. }
  290. ret = devm_add_action_or_reset(&pdev->dev, snvs_rtc_action, data->clk);
  291. if (ret)
  292. return ret;
  293. platform_set_drvdata(pdev, data);
  294. /* Initialize glitch detect */
  295. regmap_write(data->regmap, data->offset + SNVS_LPPGDR, SNVS_LPPGDR_INIT);
  296. /* Clear interrupt status */
  297. regmap_write(data->regmap, data->offset + SNVS_LPSR, 0xffffffff);
  298. /* Enable RTC */
  299. ret = snvs_rtc_enable(data, true);
  300. if (ret) {
  301. dev_err(&pdev->dev, "failed to enable rtc %d\n", ret);
  302. return ret;
  303. }
  304. device_init_wakeup(&pdev->dev, true);
  305. ret = dev_pm_set_wake_irq(&pdev->dev, data->irq);
  306. if (ret)
  307. dev_err(&pdev->dev, "failed to enable irq wake\n");
  308. ret = devm_request_irq(&pdev->dev, data->irq, snvs_rtc_irq_handler,
  309. IRQF_SHARED, "rtc alarm", &pdev->dev);
  310. if (ret) {
  311. dev_err(&pdev->dev, "failed to request irq %d: %d\n",
  312. data->irq, ret);
  313. return ret;
  314. }
  315. data->rtc->ops = &snvs_rtc_ops;
  316. data->rtc->range_max = U32_MAX;
  317. return devm_rtc_register_device(data->rtc);
  318. }
  319. static int __maybe_unused snvs_rtc_suspend_noirq(struct device *dev)
  320. {
  321. struct snvs_rtc_data *data = dev_get_drvdata(dev);
  322. clk_disable(data->clk);
  323. return 0;
  324. }
  325. static int __maybe_unused snvs_rtc_resume_noirq(struct device *dev)
  326. {
  327. struct snvs_rtc_data *data = dev_get_drvdata(dev);
  328. if (data->clk)
  329. return clk_enable(data->clk);
  330. return 0;
  331. }
  332. static const struct dev_pm_ops snvs_rtc_pm_ops = {
  333. SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(snvs_rtc_suspend_noirq, snvs_rtc_resume_noirq)
  334. };
  335. static const struct of_device_id snvs_dt_ids[] = {
  336. { .compatible = "fsl,sec-v4.0-mon-rtc-lp", },
  337. { /* sentinel */ }
  338. };
  339. MODULE_DEVICE_TABLE(of, snvs_dt_ids);
  340. static struct platform_driver snvs_rtc_driver = {
  341. .driver = {
  342. .name = "snvs_rtc",
  343. .pm = &snvs_rtc_pm_ops,
  344. .of_match_table = snvs_dt_ids,
  345. },
  346. .probe = snvs_rtc_probe,
  347. };
  348. module_platform_driver(snvs_rtc_driver);
  349. MODULE_AUTHOR("Freescale Semiconductor, Inc.");
  350. MODULE_DESCRIPTION("Freescale SNVS RTC Driver");
  351. MODULE_LICENSE("GPL");