rtc-s5m.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863
  1. // SPDX-License-Identifier: GPL-2.0+
  2. //
  3. // Copyright (c) 2013-2014 Samsung Electronics Co., Ltd
  4. // http://www.samsung.com
  5. //
  6. // Copyright (C) 2013 Google, Inc
  7. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  8. #include <linux/module.h>
  9. #include <linux/i2c.h>
  10. #include <linux/bcd.h>
  11. #include <linux/regmap.h>
  12. #include <linux/rtc.h>
  13. #include <linux/platform_device.h>
  14. #include <linux/mfd/samsung/core.h>
  15. #include <linux/mfd/samsung/irq.h>
  16. #include <linux/mfd/samsung/rtc.h>
  17. #include <linux/mfd/samsung/s2mps14.h>
  18. /*
  19. * Maximum number of retries for checking changes in UDR field
  20. * of S5M_RTC_UDR_CON register (to limit possible endless loop).
  21. *
  22. * After writing to RTC registers (setting time or alarm) read the UDR field
  23. * in S5M_RTC_UDR_CON register. UDR is auto-cleared when data have
  24. * been transferred.
  25. */
  26. #define UDR_READ_RETRY_CNT 5
  27. enum {
  28. RTC_SEC = 0,
  29. RTC_MIN,
  30. RTC_HOUR,
  31. RTC_WEEKDAY,
  32. RTC_DATE,
  33. RTC_MONTH,
  34. RTC_YEAR1,
  35. RTC_YEAR2,
  36. /* Make sure this is always the last enum name. */
  37. RTC_MAX_NUM_TIME_REGS
  38. };
  39. /*
  40. * Registers used by the driver which are different between chipsets.
  41. *
  42. * Operations like read time and write alarm/time require updating
  43. * specific fields in UDR register. These fields usually are auto-cleared
  44. * (with some exceptions).
  45. *
  46. * Table of operations per device:
  47. *
  48. * Device | Write time | Read time | Write alarm
  49. * =================================================
  50. * S5M8767 | UDR + TIME | | UDR
  51. * S2MPS11/14 | WUDR | RUDR | WUDR + RUDR
  52. * S2MPS13 | WUDR | RUDR | WUDR + AUDR
  53. * S2MPS15 | WUDR | RUDR | AUDR
  54. */
  55. struct s5m_rtc_reg_config {
  56. /* Number of registers used for setting time/alarm0/alarm1 */
  57. unsigned int regs_count;
  58. /* First register for time, seconds */
  59. unsigned int time;
  60. /* RTC control register */
  61. unsigned int ctrl;
  62. /* First register for alarm 0, seconds */
  63. unsigned int alarm0;
  64. /* First register for alarm 1, seconds */
  65. unsigned int alarm1;
  66. /*
  67. * Register for update flag (UDR). Typically setting UDR field to 1
  68. * will enable update of time or alarm register. Then it will be
  69. * auto-cleared after successful update.
  70. */
  71. unsigned int udr_update;
  72. /* Auto-cleared mask in UDR field for writing time and alarm */
  73. unsigned int autoclear_udr_mask;
  74. /*
  75. * Masks in UDR field for time and alarm operations.
  76. * The read time mask can be 0. Rest should not.
  77. */
  78. unsigned int read_time_udr_mask;
  79. unsigned int write_time_udr_mask;
  80. unsigned int write_alarm_udr_mask;
  81. };
  82. /* Register map for S5M8763 and S5M8767 */
  83. static const struct s5m_rtc_reg_config s5m_rtc_regs = {
  84. .regs_count = 8,
  85. .time = S5M_RTC_SEC,
  86. .ctrl = S5M_ALARM1_CONF,
  87. .alarm0 = S5M_ALARM0_SEC,
  88. .alarm1 = S5M_ALARM1_SEC,
  89. .udr_update = S5M_RTC_UDR_CON,
  90. .autoclear_udr_mask = S5M_RTC_UDR_MASK,
  91. .read_time_udr_mask = 0, /* Not needed */
  92. .write_time_udr_mask = S5M_RTC_UDR_MASK | S5M_RTC_TIME_EN_MASK,
  93. .write_alarm_udr_mask = S5M_RTC_UDR_MASK,
  94. };
  95. /* Register map for S2MPS13 */
  96. static const struct s5m_rtc_reg_config s2mps13_rtc_regs = {
  97. .regs_count = 7,
  98. .time = S2MPS_RTC_SEC,
  99. .ctrl = S2MPS_RTC_CTRL,
  100. .alarm0 = S2MPS_ALARM0_SEC,
  101. .alarm1 = S2MPS_ALARM1_SEC,
  102. .udr_update = S2MPS_RTC_UDR_CON,
  103. .autoclear_udr_mask = S2MPS_RTC_WUDR_MASK,
  104. .read_time_udr_mask = S2MPS_RTC_RUDR_MASK,
  105. .write_time_udr_mask = S2MPS_RTC_WUDR_MASK,
  106. .write_alarm_udr_mask = S2MPS_RTC_WUDR_MASK | S2MPS13_RTC_AUDR_MASK,
  107. };
  108. /* Register map for S2MPS11/14 */
  109. static const struct s5m_rtc_reg_config s2mps14_rtc_regs = {
  110. .regs_count = 7,
  111. .time = S2MPS_RTC_SEC,
  112. .ctrl = S2MPS_RTC_CTRL,
  113. .alarm0 = S2MPS_ALARM0_SEC,
  114. .alarm1 = S2MPS_ALARM1_SEC,
  115. .udr_update = S2MPS_RTC_UDR_CON,
  116. .autoclear_udr_mask = S2MPS_RTC_WUDR_MASK,
  117. .read_time_udr_mask = S2MPS_RTC_RUDR_MASK,
  118. .write_time_udr_mask = S2MPS_RTC_WUDR_MASK,
  119. .write_alarm_udr_mask = S2MPS_RTC_WUDR_MASK | S2MPS_RTC_RUDR_MASK,
  120. };
  121. /*
  122. * Register map for S2MPS15 - in comparison to S2MPS14 the WUDR and AUDR bits
  123. * are swapped.
  124. */
  125. static const struct s5m_rtc_reg_config s2mps15_rtc_regs = {
  126. .regs_count = 7,
  127. .time = S2MPS_RTC_SEC,
  128. .ctrl = S2MPS_RTC_CTRL,
  129. .alarm0 = S2MPS_ALARM0_SEC,
  130. .alarm1 = S2MPS_ALARM1_SEC,
  131. .udr_update = S2MPS_RTC_UDR_CON,
  132. .autoclear_udr_mask = S2MPS_RTC_WUDR_MASK,
  133. .read_time_udr_mask = S2MPS_RTC_RUDR_MASK,
  134. .write_time_udr_mask = S2MPS15_RTC_WUDR_MASK,
  135. .write_alarm_udr_mask = S2MPS15_RTC_AUDR_MASK,
  136. };
  137. struct s5m_rtc_info {
  138. struct device *dev;
  139. struct i2c_client *i2c;
  140. struct sec_pmic_dev *s5m87xx;
  141. struct regmap *regmap;
  142. struct rtc_device *rtc_dev;
  143. int irq;
  144. enum sec_device_type device_type;
  145. int rtc_24hr_mode;
  146. const struct s5m_rtc_reg_config *regs;
  147. };
  148. static const struct regmap_config s5m_rtc_regmap_config = {
  149. .reg_bits = 8,
  150. .val_bits = 8,
  151. .max_register = S5M_RTC_REG_MAX,
  152. };
  153. static const struct regmap_config s2mps14_rtc_regmap_config = {
  154. .reg_bits = 8,
  155. .val_bits = 8,
  156. .max_register = S2MPS_RTC_REG_MAX,
  157. };
  158. static void s5m8767_data_to_tm(u8 *data, struct rtc_time *tm,
  159. int rtc_24hr_mode)
  160. {
  161. tm->tm_sec = data[RTC_SEC] & 0x7f;
  162. tm->tm_min = data[RTC_MIN] & 0x7f;
  163. if (rtc_24hr_mode) {
  164. tm->tm_hour = data[RTC_HOUR] & 0x1f;
  165. } else {
  166. tm->tm_hour = data[RTC_HOUR] & 0x0f;
  167. if (data[RTC_HOUR] & HOUR_PM_MASK)
  168. tm->tm_hour += 12;
  169. }
  170. tm->tm_wday = ffs(data[RTC_WEEKDAY] & 0x7f);
  171. tm->tm_mday = data[RTC_DATE] & 0x1f;
  172. tm->tm_mon = (data[RTC_MONTH] & 0x0f) - 1;
  173. tm->tm_year = (data[RTC_YEAR1] & 0x7f) + 100;
  174. tm->tm_yday = 0;
  175. tm->tm_isdst = 0;
  176. }
  177. static int s5m8767_tm_to_data(struct rtc_time *tm, u8 *data)
  178. {
  179. data[RTC_SEC] = tm->tm_sec;
  180. data[RTC_MIN] = tm->tm_min;
  181. if (tm->tm_hour >= 12)
  182. data[RTC_HOUR] = tm->tm_hour | HOUR_PM_MASK;
  183. else
  184. data[RTC_HOUR] = tm->tm_hour & ~HOUR_PM_MASK;
  185. data[RTC_WEEKDAY] = 1 << tm->tm_wday;
  186. data[RTC_DATE] = tm->tm_mday;
  187. data[RTC_MONTH] = tm->tm_mon + 1;
  188. data[RTC_YEAR1] = tm->tm_year - 100;
  189. return 0;
  190. }
  191. /*
  192. * Read RTC_UDR_CON register and wait till UDR field is cleared.
  193. * This indicates that time/alarm update ended.
  194. */
  195. static int s5m8767_wait_for_udr_update(struct s5m_rtc_info *info)
  196. {
  197. int ret, retry = UDR_READ_RETRY_CNT;
  198. unsigned int data;
  199. do {
  200. ret = regmap_read(info->regmap, info->regs->udr_update, &data);
  201. } while (--retry && (data & info->regs->autoclear_udr_mask) && !ret);
  202. if (!retry)
  203. dev_err(info->dev, "waiting for UDR update, reached max number of retries\n");
  204. return ret;
  205. }
  206. static int s5m_check_peding_alarm_interrupt(struct s5m_rtc_info *info,
  207. struct rtc_wkalrm *alarm)
  208. {
  209. int ret;
  210. unsigned int val;
  211. switch (info->device_type) {
  212. case S5M8767X:
  213. case S5M8763X:
  214. ret = regmap_read(info->regmap, S5M_RTC_STATUS, &val);
  215. val &= S5M_ALARM0_STATUS;
  216. break;
  217. case S2MPS15X:
  218. case S2MPS14X:
  219. case S2MPS13X:
  220. ret = regmap_read(info->s5m87xx->regmap_pmic, S2MPS14_REG_ST2,
  221. &val);
  222. val &= S2MPS_ALARM0_STATUS;
  223. break;
  224. default:
  225. return -EINVAL;
  226. }
  227. if (ret < 0)
  228. return ret;
  229. if (val)
  230. alarm->pending = 1;
  231. else
  232. alarm->pending = 0;
  233. return 0;
  234. }
  235. static int s5m8767_rtc_set_time_reg(struct s5m_rtc_info *info)
  236. {
  237. int ret;
  238. unsigned int data;
  239. ret = regmap_read(info->regmap, info->regs->udr_update, &data);
  240. if (ret < 0) {
  241. dev_err(info->dev, "failed to read update reg(%d)\n", ret);
  242. return ret;
  243. }
  244. data |= info->regs->write_time_udr_mask;
  245. ret = regmap_write(info->regmap, info->regs->udr_update, data);
  246. if (ret < 0) {
  247. dev_err(info->dev, "failed to write update reg(%d)\n", ret);
  248. return ret;
  249. }
  250. ret = s5m8767_wait_for_udr_update(info);
  251. return ret;
  252. }
  253. static int s5m8767_rtc_set_alarm_reg(struct s5m_rtc_info *info)
  254. {
  255. int ret;
  256. unsigned int data;
  257. ret = regmap_read(info->regmap, info->regs->udr_update, &data);
  258. if (ret < 0) {
  259. dev_err(info->dev, "%s: fail to read update reg(%d)\n",
  260. __func__, ret);
  261. return ret;
  262. }
  263. data |= info->regs->write_alarm_udr_mask;
  264. switch (info->device_type) {
  265. case S5M8763X:
  266. case S5M8767X:
  267. data &= ~S5M_RTC_TIME_EN_MASK;
  268. break;
  269. case S2MPS15X:
  270. case S2MPS14X:
  271. case S2MPS13X:
  272. /* No exceptions needed */
  273. break;
  274. default:
  275. return -EINVAL;
  276. }
  277. ret = regmap_write(info->regmap, info->regs->udr_update, data);
  278. if (ret < 0) {
  279. dev_err(info->dev, "%s: fail to write update reg(%d)\n",
  280. __func__, ret);
  281. return ret;
  282. }
  283. ret = s5m8767_wait_for_udr_update(info);
  284. /* On S2MPS13 the AUDR is not auto-cleared */
  285. if (info->device_type == S2MPS13X)
  286. regmap_update_bits(info->regmap, info->regs->udr_update,
  287. S2MPS13_RTC_AUDR_MASK, 0);
  288. return ret;
  289. }
  290. static void s5m8763_data_to_tm(u8 *data, struct rtc_time *tm)
  291. {
  292. tm->tm_sec = bcd2bin(data[RTC_SEC]);
  293. tm->tm_min = bcd2bin(data[RTC_MIN]);
  294. if (data[RTC_HOUR] & HOUR_12) {
  295. tm->tm_hour = bcd2bin(data[RTC_HOUR] & 0x1f);
  296. if (data[RTC_HOUR] & HOUR_PM)
  297. tm->tm_hour += 12;
  298. } else {
  299. tm->tm_hour = bcd2bin(data[RTC_HOUR] & 0x3f);
  300. }
  301. tm->tm_wday = data[RTC_WEEKDAY] & 0x07;
  302. tm->tm_mday = bcd2bin(data[RTC_DATE]);
  303. tm->tm_mon = bcd2bin(data[RTC_MONTH]);
  304. tm->tm_year = bcd2bin(data[RTC_YEAR1]) + bcd2bin(data[RTC_YEAR2]) * 100;
  305. tm->tm_year -= 1900;
  306. }
  307. static void s5m8763_tm_to_data(struct rtc_time *tm, u8 *data)
  308. {
  309. data[RTC_SEC] = bin2bcd(tm->tm_sec);
  310. data[RTC_MIN] = bin2bcd(tm->tm_min);
  311. data[RTC_HOUR] = bin2bcd(tm->tm_hour);
  312. data[RTC_WEEKDAY] = tm->tm_wday;
  313. data[RTC_DATE] = bin2bcd(tm->tm_mday);
  314. data[RTC_MONTH] = bin2bcd(tm->tm_mon);
  315. data[RTC_YEAR1] = bin2bcd(tm->tm_year % 100);
  316. data[RTC_YEAR2] = bin2bcd((tm->tm_year + 1900) / 100);
  317. }
  318. static int s5m_rtc_read_time(struct device *dev, struct rtc_time *tm)
  319. {
  320. struct s5m_rtc_info *info = dev_get_drvdata(dev);
  321. u8 data[RTC_MAX_NUM_TIME_REGS];
  322. int ret;
  323. if (info->regs->read_time_udr_mask) {
  324. ret = regmap_update_bits(info->regmap,
  325. info->regs->udr_update,
  326. info->regs->read_time_udr_mask,
  327. info->regs->read_time_udr_mask);
  328. if (ret) {
  329. dev_err(dev,
  330. "Failed to prepare registers for time reading: %d\n",
  331. ret);
  332. return ret;
  333. }
  334. }
  335. ret = regmap_bulk_read(info->regmap, info->regs->time, data,
  336. info->regs->regs_count);
  337. if (ret < 0)
  338. return ret;
  339. switch (info->device_type) {
  340. case S5M8763X:
  341. s5m8763_data_to_tm(data, tm);
  342. break;
  343. case S5M8767X:
  344. case S2MPS15X:
  345. case S2MPS14X:
  346. case S2MPS13X:
  347. s5m8767_data_to_tm(data, tm, info->rtc_24hr_mode);
  348. break;
  349. default:
  350. return -EINVAL;
  351. }
  352. dev_dbg(dev, "%s: %ptR(%d)\n", __func__, tm, tm->tm_wday);
  353. return 0;
  354. }
  355. static int s5m_rtc_set_time(struct device *dev, struct rtc_time *tm)
  356. {
  357. struct s5m_rtc_info *info = dev_get_drvdata(dev);
  358. u8 data[RTC_MAX_NUM_TIME_REGS];
  359. int ret = 0;
  360. switch (info->device_type) {
  361. case S5M8763X:
  362. s5m8763_tm_to_data(tm, data);
  363. break;
  364. case S5M8767X:
  365. case S2MPS15X:
  366. case S2MPS14X:
  367. case S2MPS13X:
  368. ret = s5m8767_tm_to_data(tm, data);
  369. break;
  370. default:
  371. return -EINVAL;
  372. }
  373. if (ret < 0)
  374. return ret;
  375. dev_dbg(dev, "%s: %ptR(%d)\n", __func__, tm, tm->tm_wday);
  376. ret = regmap_raw_write(info->regmap, info->regs->time, data,
  377. info->regs->regs_count);
  378. if (ret < 0)
  379. return ret;
  380. ret = s5m8767_rtc_set_time_reg(info);
  381. return ret;
  382. }
  383. static int s5m_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
  384. {
  385. struct s5m_rtc_info *info = dev_get_drvdata(dev);
  386. u8 data[RTC_MAX_NUM_TIME_REGS];
  387. unsigned int val;
  388. int ret, i;
  389. ret = regmap_bulk_read(info->regmap, info->regs->alarm0, data,
  390. info->regs->regs_count);
  391. if (ret < 0)
  392. return ret;
  393. switch (info->device_type) {
  394. case S5M8763X:
  395. s5m8763_data_to_tm(data, &alrm->time);
  396. ret = regmap_read(info->regmap, S5M_ALARM0_CONF, &val);
  397. if (ret < 0)
  398. return ret;
  399. alrm->enabled = !!val;
  400. break;
  401. case S5M8767X:
  402. case S2MPS15X:
  403. case S2MPS14X:
  404. case S2MPS13X:
  405. s5m8767_data_to_tm(data, &alrm->time, info->rtc_24hr_mode);
  406. alrm->enabled = 0;
  407. for (i = 0; i < info->regs->regs_count; i++) {
  408. if (data[i] & ALARM_ENABLE_MASK) {
  409. alrm->enabled = 1;
  410. break;
  411. }
  412. }
  413. break;
  414. default:
  415. return -EINVAL;
  416. }
  417. dev_dbg(dev, "%s: %ptR(%d)\n", __func__, &alrm->time, alrm->time.tm_wday);
  418. return s5m_check_peding_alarm_interrupt(info, alrm);
  419. }
  420. static int s5m_rtc_stop_alarm(struct s5m_rtc_info *info)
  421. {
  422. u8 data[RTC_MAX_NUM_TIME_REGS];
  423. int ret, i;
  424. struct rtc_time tm;
  425. ret = regmap_bulk_read(info->regmap, info->regs->alarm0, data,
  426. info->regs->regs_count);
  427. if (ret < 0)
  428. return ret;
  429. s5m8767_data_to_tm(data, &tm, info->rtc_24hr_mode);
  430. dev_dbg(info->dev, "%s: %ptR(%d)\n", __func__, &tm, tm.tm_wday);
  431. switch (info->device_type) {
  432. case S5M8763X:
  433. ret = regmap_write(info->regmap, S5M_ALARM0_CONF, 0);
  434. break;
  435. case S5M8767X:
  436. case S2MPS15X:
  437. case S2MPS14X:
  438. case S2MPS13X:
  439. for (i = 0; i < info->regs->regs_count; i++)
  440. data[i] &= ~ALARM_ENABLE_MASK;
  441. ret = regmap_raw_write(info->regmap, info->regs->alarm0, data,
  442. info->regs->regs_count);
  443. if (ret < 0)
  444. return ret;
  445. ret = s5m8767_rtc_set_alarm_reg(info);
  446. break;
  447. default:
  448. return -EINVAL;
  449. }
  450. return ret;
  451. }
  452. static int s5m_rtc_start_alarm(struct s5m_rtc_info *info)
  453. {
  454. int ret;
  455. u8 data[RTC_MAX_NUM_TIME_REGS];
  456. u8 alarm0_conf;
  457. struct rtc_time tm;
  458. ret = regmap_bulk_read(info->regmap, info->regs->alarm0, data,
  459. info->regs->regs_count);
  460. if (ret < 0)
  461. return ret;
  462. s5m8767_data_to_tm(data, &tm, info->rtc_24hr_mode);
  463. dev_dbg(info->dev, "%s: %ptR(%d)\n", __func__, &tm, tm.tm_wday);
  464. switch (info->device_type) {
  465. case S5M8763X:
  466. alarm0_conf = 0x77;
  467. ret = regmap_write(info->regmap, S5M_ALARM0_CONF, alarm0_conf);
  468. break;
  469. case S5M8767X:
  470. case S2MPS15X:
  471. case S2MPS14X:
  472. case S2MPS13X:
  473. data[RTC_SEC] |= ALARM_ENABLE_MASK;
  474. data[RTC_MIN] |= ALARM_ENABLE_MASK;
  475. data[RTC_HOUR] |= ALARM_ENABLE_MASK;
  476. data[RTC_WEEKDAY] &= ~ALARM_ENABLE_MASK;
  477. if (data[RTC_DATE] & 0x1f)
  478. data[RTC_DATE] |= ALARM_ENABLE_MASK;
  479. if (data[RTC_MONTH] & 0xf)
  480. data[RTC_MONTH] |= ALARM_ENABLE_MASK;
  481. if (data[RTC_YEAR1] & 0x7f)
  482. data[RTC_YEAR1] |= ALARM_ENABLE_MASK;
  483. ret = regmap_raw_write(info->regmap, info->regs->alarm0, data,
  484. info->regs->regs_count);
  485. if (ret < 0)
  486. return ret;
  487. ret = s5m8767_rtc_set_alarm_reg(info);
  488. break;
  489. default:
  490. return -EINVAL;
  491. }
  492. return ret;
  493. }
  494. static int s5m_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
  495. {
  496. struct s5m_rtc_info *info = dev_get_drvdata(dev);
  497. u8 data[RTC_MAX_NUM_TIME_REGS];
  498. int ret;
  499. switch (info->device_type) {
  500. case S5M8763X:
  501. s5m8763_tm_to_data(&alrm->time, data);
  502. break;
  503. case S5M8767X:
  504. case S2MPS15X:
  505. case S2MPS14X:
  506. case S2MPS13X:
  507. s5m8767_tm_to_data(&alrm->time, data);
  508. break;
  509. default:
  510. return -EINVAL;
  511. }
  512. dev_dbg(dev, "%s: %ptR(%d)\n", __func__, &alrm->time, alrm->time.tm_wday);
  513. ret = s5m_rtc_stop_alarm(info);
  514. if (ret < 0)
  515. return ret;
  516. ret = regmap_raw_write(info->regmap, info->regs->alarm0, data,
  517. info->regs->regs_count);
  518. if (ret < 0)
  519. return ret;
  520. ret = s5m8767_rtc_set_alarm_reg(info);
  521. if (ret < 0)
  522. return ret;
  523. if (alrm->enabled)
  524. ret = s5m_rtc_start_alarm(info);
  525. return ret;
  526. }
  527. static int s5m_rtc_alarm_irq_enable(struct device *dev,
  528. unsigned int enabled)
  529. {
  530. struct s5m_rtc_info *info = dev_get_drvdata(dev);
  531. if (enabled)
  532. return s5m_rtc_start_alarm(info);
  533. else
  534. return s5m_rtc_stop_alarm(info);
  535. }
  536. static irqreturn_t s5m_rtc_alarm_irq(int irq, void *data)
  537. {
  538. struct s5m_rtc_info *info = data;
  539. rtc_update_irq(info->rtc_dev, 1, RTC_IRQF | RTC_AF);
  540. return IRQ_HANDLED;
  541. }
  542. static const struct rtc_class_ops s5m_rtc_ops = {
  543. .read_time = s5m_rtc_read_time,
  544. .set_time = s5m_rtc_set_time,
  545. .read_alarm = s5m_rtc_read_alarm,
  546. .set_alarm = s5m_rtc_set_alarm,
  547. .alarm_irq_enable = s5m_rtc_alarm_irq_enable,
  548. };
  549. static int s5m8767_rtc_init_reg(struct s5m_rtc_info *info)
  550. {
  551. u8 data[2];
  552. int ret;
  553. switch (info->device_type) {
  554. case S5M8763X:
  555. case S5M8767X:
  556. /* UDR update time. Default of 7.32 ms is too long. */
  557. ret = regmap_update_bits(info->regmap, S5M_RTC_UDR_CON,
  558. S5M_RTC_UDR_T_MASK, S5M_RTC_UDR_T_450_US);
  559. if (ret < 0)
  560. dev_err(info->dev, "%s: fail to change UDR time: %d\n",
  561. __func__, ret);
  562. /* Set RTC control register : Binary mode, 24hour mode */
  563. data[0] = (1 << BCD_EN_SHIFT) | (1 << MODEL24_SHIFT);
  564. data[1] = (0 << BCD_EN_SHIFT) | (1 << MODEL24_SHIFT);
  565. ret = regmap_raw_write(info->regmap, S5M_ALARM0_CONF, data, 2);
  566. break;
  567. case S2MPS15X:
  568. case S2MPS14X:
  569. case S2MPS13X:
  570. data[0] = (0 << BCD_EN_SHIFT) | (1 << MODEL24_SHIFT);
  571. ret = regmap_write(info->regmap, info->regs->ctrl, data[0]);
  572. if (ret < 0)
  573. break;
  574. /*
  575. * Should set WUDR & (RUDR or AUDR) bits to high after writing
  576. * RTC_CTRL register like writing Alarm registers. We can't find
  577. * the description from datasheet but vendor code does that
  578. * really.
  579. */
  580. ret = s5m8767_rtc_set_alarm_reg(info);
  581. break;
  582. default:
  583. return -EINVAL;
  584. }
  585. info->rtc_24hr_mode = 1;
  586. if (ret < 0) {
  587. dev_err(info->dev, "%s: fail to write controlm reg(%d)\n",
  588. __func__, ret);
  589. return ret;
  590. }
  591. return ret;
  592. }
  593. static int s5m_rtc_probe(struct platform_device *pdev)
  594. {
  595. struct sec_pmic_dev *s5m87xx = dev_get_drvdata(pdev->dev.parent);
  596. struct s5m_rtc_info *info;
  597. const struct regmap_config *regmap_cfg;
  598. int ret, alarm_irq;
  599. info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
  600. if (!info)
  601. return -ENOMEM;
  602. switch (platform_get_device_id(pdev)->driver_data) {
  603. case S2MPS15X:
  604. regmap_cfg = &s2mps14_rtc_regmap_config;
  605. info->regs = &s2mps15_rtc_regs;
  606. alarm_irq = S2MPS14_IRQ_RTCA0;
  607. break;
  608. case S2MPS14X:
  609. regmap_cfg = &s2mps14_rtc_regmap_config;
  610. info->regs = &s2mps14_rtc_regs;
  611. alarm_irq = S2MPS14_IRQ_RTCA0;
  612. break;
  613. case S2MPS13X:
  614. regmap_cfg = &s2mps14_rtc_regmap_config;
  615. info->regs = &s2mps13_rtc_regs;
  616. alarm_irq = S2MPS14_IRQ_RTCA0;
  617. break;
  618. case S5M8763X:
  619. regmap_cfg = &s5m_rtc_regmap_config;
  620. info->regs = &s5m_rtc_regs;
  621. alarm_irq = S5M8763_IRQ_ALARM0;
  622. break;
  623. case S5M8767X:
  624. regmap_cfg = &s5m_rtc_regmap_config;
  625. info->regs = &s5m_rtc_regs;
  626. alarm_irq = S5M8767_IRQ_RTCA1;
  627. break;
  628. default:
  629. dev_err(&pdev->dev,
  630. "Device type %lu is not supported by RTC driver\n",
  631. platform_get_device_id(pdev)->driver_data);
  632. return -ENODEV;
  633. }
  634. info->i2c = devm_i2c_new_dummy_device(&pdev->dev, s5m87xx->i2c->adapter,
  635. RTC_I2C_ADDR);
  636. if (IS_ERR(info->i2c)) {
  637. dev_err(&pdev->dev, "Failed to allocate I2C for RTC\n");
  638. return PTR_ERR(info->i2c);
  639. }
  640. info->regmap = devm_regmap_init_i2c(info->i2c, regmap_cfg);
  641. if (IS_ERR(info->regmap)) {
  642. ret = PTR_ERR(info->regmap);
  643. dev_err(&pdev->dev, "Failed to allocate RTC register map: %d\n",
  644. ret);
  645. return ret;
  646. }
  647. info->dev = &pdev->dev;
  648. info->s5m87xx = s5m87xx;
  649. info->device_type = platform_get_device_id(pdev)->driver_data;
  650. if (s5m87xx->irq_data) {
  651. info->irq = regmap_irq_get_virq(s5m87xx->irq_data, alarm_irq);
  652. if (info->irq <= 0) {
  653. dev_err(&pdev->dev, "Failed to get virtual IRQ %d\n",
  654. alarm_irq);
  655. return -EINVAL;
  656. }
  657. }
  658. platform_set_drvdata(pdev, info);
  659. ret = s5m8767_rtc_init_reg(info);
  660. if (ret)
  661. return ret;
  662. info->rtc_dev = devm_rtc_allocate_device(&pdev->dev);
  663. if (IS_ERR(info->rtc_dev))
  664. return PTR_ERR(info->rtc_dev);
  665. info->rtc_dev->ops = &s5m_rtc_ops;
  666. if (info->device_type == S5M8763X) {
  667. info->rtc_dev->range_min = RTC_TIMESTAMP_BEGIN_0000;
  668. info->rtc_dev->range_max = RTC_TIMESTAMP_END_9999;
  669. } else {
  670. info->rtc_dev->range_min = RTC_TIMESTAMP_BEGIN_2000;
  671. info->rtc_dev->range_max = RTC_TIMESTAMP_END_2099;
  672. }
  673. if (!info->irq) {
  674. clear_bit(RTC_FEATURE_ALARM, info->rtc_dev->features);
  675. } else {
  676. ret = devm_request_threaded_irq(&pdev->dev, info->irq, NULL,
  677. s5m_rtc_alarm_irq, 0, "rtc-alarm0",
  678. info);
  679. if (ret < 0) {
  680. dev_err(&pdev->dev, "Failed to request alarm IRQ: %d: %d\n",
  681. info->irq, ret);
  682. return ret;
  683. }
  684. device_init_wakeup(&pdev->dev, 1);
  685. }
  686. return devm_rtc_register_device(info->rtc_dev);
  687. }
  688. #ifdef CONFIG_PM_SLEEP
  689. static int s5m_rtc_resume(struct device *dev)
  690. {
  691. struct s5m_rtc_info *info = dev_get_drvdata(dev);
  692. int ret = 0;
  693. if (info->irq && device_may_wakeup(dev))
  694. ret = disable_irq_wake(info->irq);
  695. return ret;
  696. }
  697. static int s5m_rtc_suspend(struct device *dev)
  698. {
  699. struct s5m_rtc_info *info = dev_get_drvdata(dev);
  700. int ret = 0;
  701. if (info->irq && device_may_wakeup(dev))
  702. ret = enable_irq_wake(info->irq);
  703. return ret;
  704. }
  705. #endif /* CONFIG_PM_SLEEP */
  706. static SIMPLE_DEV_PM_OPS(s5m_rtc_pm_ops, s5m_rtc_suspend, s5m_rtc_resume);
  707. static const struct platform_device_id s5m_rtc_id[] = {
  708. { "s5m-rtc", S5M8767X },
  709. { "s2mps13-rtc", S2MPS13X },
  710. { "s2mps14-rtc", S2MPS14X },
  711. { "s2mps15-rtc", S2MPS15X },
  712. { },
  713. };
  714. MODULE_DEVICE_TABLE(platform, s5m_rtc_id);
  715. static struct platform_driver s5m_rtc_driver = {
  716. .driver = {
  717. .name = "s5m-rtc",
  718. .pm = &s5m_rtc_pm_ops,
  719. },
  720. .probe = s5m_rtc_probe,
  721. .id_table = s5m_rtc_id,
  722. };
  723. module_platform_driver(s5m_rtc_driver);
  724. /* Module information */
  725. MODULE_AUTHOR("Sangbeom Kim <[email protected]>");
  726. MODULE_DESCRIPTION("Samsung S5M/S2MPS14 RTC driver");
  727. MODULE_LICENSE("GPL");