pwm-visconti.c 4.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Toshiba Visconti pulse-width-modulation controller driver
  4. *
  5. * Copyright (c) 2020 - 2021 TOSHIBA CORPORATION
  6. * Copyright (c) 2020 - 2021 Toshiba Electronic Devices & Storage Corporation
  7. *
  8. * Authors: Nobuhiro Iwamatsu <[email protected]>
  9. *
  10. * Limitations:
  11. * - The fixed input clock is running at 1 MHz and is divided by either 1,
  12. * 2, 4 or 8.
  13. * - When the settings of the PWM are modified, the new values are shadowed
  14. * in hardware until the PIPGM_PCSR register is written and the currently
  15. * running period is completed. This way the hardware switches atomically
  16. * from the old setting to the new.
  17. * - Disabling the hardware completes the currently running period and keeps
  18. * the output at low level at all times.
  19. */
  20. #include <linux/err.h>
  21. #include <linux/io.h>
  22. #include <linux/module.h>
  23. #include <linux/of_device.h>
  24. #include <linux/platform_device.h>
  25. #include <linux/pwm.h>
  26. #define PIPGM_PCSR(ch) (0x400 + 4 * (ch))
  27. #define PIPGM_PDUT(ch) (0x420 + 4 * (ch))
  28. #define PIPGM_PWMC(ch) (0x440 + 4 * (ch))
  29. #define PIPGM_PWMC_PWMACT BIT(5)
  30. #define PIPGM_PWMC_CLK_MASK GENMASK(1, 0)
  31. #define PIPGM_PWMC_POLARITY_MASK GENMASK(5, 5)
  32. struct visconti_pwm_chip {
  33. struct pwm_chip chip;
  34. void __iomem *base;
  35. };
  36. static inline struct visconti_pwm_chip *visconti_pwm_from_chip(struct pwm_chip *chip)
  37. {
  38. return container_of(chip, struct visconti_pwm_chip, chip);
  39. }
  40. static int visconti_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
  41. const struct pwm_state *state)
  42. {
  43. struct visconti_pwm_chip *priv = visconti_pwm_from_chip(chip);
  44. u32 period, duty_cycle, pwmc0;
  45. if (!state->enabled) {
  46. writel(0, priv->base + PIPGM_PCSR(pwm->hwpwm));
  47. return 0;
  48. }
  49. /*
  50. * The biggest period the hardware can provide is
  51. * (0xffff << 3) * 1000 ns
  52. * This value fits easily in an u32, so simplify the maths by
  53. * capping the values to 32 bit integers.
  54. */
  55. if (state->period > (0xffff << 3) * 1000)
  56. period = (0xffff << 3) * 1000;
  57. else
  58. period = state->period;
  59. if (state->duty_cycle > period)
  60. duty_cycle = period;
  61. else
  62. duty_cycle = state->duty_cycle;
  63. /*
  64. * The input clock runs fixed at 1 MHz, so we have only
  65. * microsecond resolution and so can divide by
  66. * NSEC_PER_SEC / CLKFREQ = 1000 without losing precision.
  67. */
  68. period /= 1000;
  69. duty_cycle /= 1000;
  70. if (!period)
  71. return -ERANGE;
  72. /*
  73. * PWMC controls a divider that divides the input clk by a power of two
  74. * between 1 and 8. As a smaller divider yields higher precision, pick
  75. * the smallest possible one. As period is at most 0xffff << 3, pwmc0 is
  76. * in the intended range [0..3].
  77. */
  78. pwmc0 = fls(period >> 16);
  79. if (WARN_ON(pwmc0 > 3))
  80. return -EINVAL;
  81. period >>= pwmc0;
  82. duty_cycle >>= pwmc0;
  83. if (state->polarity == PWM_POLARITY_INVERSED)
  84. pwmc0 |= PIPGM_PWMC_PWMACT;
  85. writel(pwmc0, priv->base + PIPGM_PWMC(pwm->hwpwm));
  86. writel(duty_cycle, priv->base + PIPGM_PDUT(pwm->hwpwm));
  87. writel(period, priv->base + PIPGM_PCSR(pwm->hwpwm));
  88. return 0;
  89. }
  90. static int visconti_pwm_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
  91. struct pwm_state *state)
  92. {
  93. struct visconti_pwm_chip *priv = visconti_pwm_from_chip(chip);
  94. u32 period, duty, pwmc0, pwmc0_clk;
  95. period = readl(priv->base + PIPGM_PCSR(pwm->hwpwm));
  96. duty = readl(priv->base + PIPGM_PDUT(pwm->hwpwm));
  97. pwmc0 = readl(priv->base + PIPGM_PWMC(pwm->hwpwm));
  98. pwmc0_clk = pwmc0 & PIPGM_PWMC_CLK_MASK;
  99. state->period = (period << pwmc0_clk) * NSEC_PER_USEC;
  100. state->duty_cycle = (duty << pwmc0_clk) * NSEC_PER_USEC;
  101. if (pwmc0 & PIPGM_PWMC_POLARITY_MASK)
  102. state->polarity = PWM_POLARITY_INVERSED;
  103. else
  104. state->polarity = PWM_POLARITY_NORMAL;
  105. state->enabled = true;
  106. return 0;
  107. }
  108. static const struct pwm_ops visconti_pwm_ops = {
  109. .apply = visconti_pwm_apply,
  110. .get_state = visconti_pwm_get_state,
  111. .owner = THIS_MODULE,
  112. };
  113. static int visconti_pwm_probe(struct platform_device *pdev)
  114. {
  115. struct device *dev = &pdev->dev;
  116. struct visconti_pwm_chip *priv;
  117. int ret;
  118. priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
  119. if (!priv)
  120. return -ENOMEM;
  121. priv->base = devm_platform_ioremap_resource(pdev, 0);
  122. if (IS_ERR(priv->base))
  123. return PTR_ERR(priv->base);
  124. priv->chip.dev = dev;
  125. priv->chip.ops = &visconti_pwm_ops;
  126. priv->chip.npwm = 4;
  127. ret = devm_pwmchip_add(&pdev->dev, &priv->chip);
  128. if (ret < 0)
  129. return dev_err_probe(&pdev->dev, ret, "Cannot register visconti PWM\n");
  130. return 0;
  131. }
  132. static const struct of_device_id visconti_pwm_of_match[] = {
  133. { .compatible = "toshiba,visconti-pwm", },
  134. { }
  135. };
  136. MODULE_DEVICE_TABLE(of, visconti_pwm_of_match);
  137. static struct platform_driver visconti_pwm_driver = {
  138. .driver = {
  139. .name = "pwm-visconti",
  140. .of_match_table = visconti_pwm_of_match,
  141. },
  142. .probe = visconti_pwm_probe,
  143. };
  144. module_platform_driver(visconti_pwm_driver);
  145. MODULE_LICENSE("GPL v2");
  146. MODULE_AUTHOR("Nobuhiro Iwamatsu <[email protected]>");
  147. MODULE_ALIAS("platform:pwm-visconti");