pwm-sti.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701
  1. // SPDX-License-Identifier: GPL-2.0-or-later
  2. /*
  3. * PWM device driver for ST SoCs
  4. *
  5. * Copyright (C) 2013-2016 STMicroelectronics (R&D) Limited
  6. *
  7. * Author: Ajit Pal Singh <[email protected]>
  8. * Lee Jones <[email protected]>
  9. */
  10. #include <linux/clk.h>
  11. #include <linux/interrupt.h>
  12. #include <linux/math64.h>
  13. #include <linux/mfd/syscon.h>
  14. #include <linux/module.h>
  15. #include <linux/of.h>
  16. #include <linux/platform_device.h>
  17. #include <linux/pwm.h>
  18. #include <linux/regmap.h>
  19. #include <linux/sched.h>
  20. #include <linux/slab.h>
  21. #include <linux/time.h>
  22. #include <linux/wait.h>
  23. #define PWM_OUT_VAL(x) (0x00 + (4 * (x))) /* Device's Duty Cycle register */
  24. #define PWM_CPT_VAL(x) (0x10 + (4 * (x))) /* Capture value */
  25. #define PWM_CPT_EDGE(x) (0x30 + (4 * (x))) /* Edge to capture on */
  26. #define STI_PWM_CTRL 0x50 /* Control/Config register */
  27. #define STI_INT_EN 0x54 /* Interrupt Enable/Disable register */
  28. #define STI_INT_STA 0x58 /* Interrupt Status register */
  29. #define PWM_INT_ACK 0x5c
  30. #define PWM_PRESCALE_LOW_MASK 0x0f
  31. #define PWM_PRESCALE_HIGH_MASK 0xf0
  32. #define PWM_CPT_EDGE_MASK 0x03
  33. #define PWM_INT_ACK_MASK 0x1ff
  34. #define STI_MAX_CPT_DEVS 4
  35. #define CPT_DC_MAX 0xff
  36. /* Regfield IDs */
  37. enum {
  38. /* Bits in PWM_CTRL*/
  39. PWMCLK_PRESCALE_LOW,
  40. PWMCLK_PRESCALE_HIGH,
  41. CPTCLK_PRESCALE,
  42. PWM_OUT_EN,
  43. PWM_CPT_EN,
  44. PWM_CPT_INT_EN,
  45. PWM_CPT_INT_STAT,
  46. /* Keep last */
  47. MAX_REGFIELDS
  48. };
  49. /*
  50. * Each capture input can be programmed to detect rising-edge, falling-edge,
  51. * either edge or neither egde.
  52. */
  53. enum sti_cpt_edge {
  54. CPT_EDGE_DISABLED,
  55. CPT_EDGE_RISING,
  56. CPT_EDGE_FALLING,
  57. CPT_EDGE_BOTH,
  58. };
  59. struct sti_cpt_ddata {
  60. u32 snapshot[3];
  61. unsigned int index;
  62. struct mutex lock;
  63. wait_queue_head_t wait;
  64. };
  65. struct sti_pwm_compat_data {
  66. const struct reg_field *reg_fields;
  67. unsigned int pwm_num_devs;
  68. unsigned int cpt_num_devs;
  69. unsigned int max_pwm_cnt;
  70. unsigned int max_prescale;
  71. struct sti_cpt_ddata *ddata;
  72. };
  73. struct sti_pwm_chip {
  74. struct device *dev;
  75. struct clk *pwm_clk;
  76. struct clk *cpt_clk;
  77. struct regmap *regmap;
  78. struct sti_pwm_compat_data *cdata;
  79. struct regmap_field *prescale_low;
  80. struct regmap_field *prescale_high;
  81. struct regmap_field *pwm_out_en;
  82. struct regmap_field *pwm_cpt_en;
  83. struct regmap_field *pwm_cpt_int_en;
  84. struct regmap_field *pwm_cpt_int_stat;
  85. struct pwm_chip chip;
  86. struct pwm_device *cur;
  87. unsigned long configured;
  88. unsigned int en_count;
  89. struct mutex sti_pwm_lock; /* To sync between enable/disable calls */
  90. void __iomem *mmio;
  91. };
  92. static const struct reg_field sti_pwm_regfields[MAX_REGFIELDS] = {
  93. [PWMCLK_PRESCALE_LOW] = REG_FIELD(STI_PWM_CTRL, 0, 3),
  94. [PWMCLK_PRESCALE_HIGH] = REG_FIELD(STI_PWM_CTRL, 11, 14),
  95. [CPTCLK_PRESCALE] = REG_FIELD(STI_PWM_CTRL, 4, 8),
  96. [PWM_OUT_EN] = REG_FIELD(STI_PWM_CTRL, 9, 9),
  97. [PWM_CPT_EN] = REG_FIELD(STI_PWM_CTRL, 10, 10),
  98. [PWM_CPT_INT_EN] = REG_FIELD(STI_INT_EN, 1, 4),
  99. [PWM_CPT_INT_STAT] = REG_FIELD(STI_INT_STA, 1, 4),
  100. };
  101. static inline struct sti_pwm_chip *to_sti_pwmchip(struct pwm_chip *chip)
  102. {
  103. return container_of(chip, struct sti_pwm_chip, chip);
  104. }
  105. /*
  106. * Calculate the prescaler value corresponding to the period.
  107. */
  108. static int sti_pwm_get_prescale(struct sti_pwm_chip *pc, unsigned long period,
  109. unsigned int *prescale)
  110. {
  111. struct sti_pwm_compat_data *cdata = pc->cdata;
  112. unsigned long clk_rate;
  113. unsigned long value;
  114. unsigned int ps;
  115. clk_rate = clk_get_rate(pc->pwm_clk);
  116. if (!clk_rate) {
  117. dev_err(pc->dev, "failed to get clock rate\n");
  118. return -EINVAL;
  119. }
  120. /*
  121. * prescale = ((period_ns * clk_rate) / (10^9 * (max_pwm_cnt + 1)) - 1
  122. */
  123. value = NSEC_PER_SEC / clk_rate;
  124. value *= cdata->max_pwm_cnt + 1;
  125. if (period % value)
  126. return -EINVAL;
  127. ps = period / value - 1;
  128. if (ps > cdata->max_prescale)
  129. return -EINVAL;
  130. *prescale = ps;
  131. return 0;
  132. }
  133. /*
  134. * For STiH4xx PWM IP, the PWM period is fixed to 256 local clock cycles. The
  135. * only way to change the period (apart from changing the PWM input clock) is
  136. * to change the PWM clock prescaler.
  137. *
  138. * The prescaler is of 8 bits, so 256 prescaler values and hence 256 possible
  139. * period values are supported (for a particular clock rate). The requested
  140. * period will be applied only if it matches one of these 256 values.
  141. */
  142. static int sti_pwm_config(struct pwm_chip *chip, struct pwm_device *pwm,
  143. int duty_ns, int period_ns)
  144. {
  145. struct sti_pwm_chip *pc = to_sti_pwmchip(chip);
  146. struct sti_pwm_compat_data *cdata = pc->cdata;
  147. unsigned int ncfg, value, prescale = 0;
  148. struct pwm_device *cur = pc->cur;
  149. struct device *dev = pc->dev;
  150. bool period_same = false;
  151. int ret;
  152. ncfg = hweight_long(pc->configured);
  153. if (ncfg)
  154. period_same = (period_ns == pwm_get_period(cur));
  155. /*
  156. * Allow configuration changes if one of the following conditions
  157. * satisfy.
  158. * 1. No devices have been configured.
  159. * 2. Only one device has been configured and the new request is for
  160. * the same device.
  161. * 3. Only one device has been configured and the new request is for
  162. * a new device and period of the new device is same as the current
  163. * configured period.
  164. * 4. More than one devices are configured and period of the new
  165. * requestis the same as the current period.
  166. */
  167. if (!ncfg ||
  168. ((ncfg == 1) && (pwm->hwpwm == cur->hwpwm)) ||
  169. ((ncfg == 1) && (pwm->hwpwm != cur->hwpwm) && period_same) ||
  170. ((ncfg > 1) && period_same)) {
  171. /* Enable clock before writing to PWM registers. */
  172. ret = clk_enable(pc->pwm_clk);
  173. if (ret)
  174. return ret;
  175. ret = clk_enable(pc->cpt_clk);
  176. if (ret)
  177. return ret;
  178. if (!period_same) {
  179. ret = sti_pwm_get_prescale(pc, period_ns, &prescale);
  180. if (ret)
  181. goto clk_dis;
  182. value = prescale & PWM_PRESCALE_LOW_MASK;
  183. ret = regmap_field_write(pc->prescale_low, value);
  184. if (ret)
  185. goto clk_dis;
  186. value = (prescale & PWM_PRESCALE_HIGH_MASK) >> 4;
  187. ret = regmap_field_write(pc->prescale_high, value);
  188. if (ret)
  189. goto clk_dis;
  190. }
  191. /*
  192. * When PWMVal == 0, PWM pulse = 1 local clock cycle.
  193. * When PWMVal == max_pwm_count,
  194. * PWM pulse = (max_pwm_count + 1) local cycles,
  195. * that is continuous pulse: signal never goes low.
  196. */
  197. value = cdata->max_pwm_cnt * duty_ns / period_ns;
  198. ret = regmap_write(pc->regmap, PWM_OUT_VAL(pwm->hwpwm), value);
  199. if (ret)
  200. goto clk_dis;
  201. ret = regmap_field_write(pc->pwm_cpt_int_en, 0);
  202. set_bit(pwm->hwpwm, &pc->configured);
  203. pc->cur = pwm;
  204. dev_dbg(dev, "prescale:%u, period:%i, duty:%i, value:%u\n",
  205. prescale, period_ns, duty_ns, value);
  206. } else {
  207. return -EINVAL;
  208. }
  209. clk_dis:
  210. clk_disable(pc->pwm_clk);
  211. clk_disable(pc->cpt_clk);
  212. return ret;
  213. }
  214. static int sti_pwm_enable(struct pwm_chip *chip, struct pwm_device *pwm)
  215. {
  216. struct sti_pwm_chip *pc = to_sti_pwmchip(chip);
  217. struct device *dev = pc->dev;
  218. int ret = 0;
  219. /*
  220. * Since we have a common enable for all PWM devices, do not enable if
  221. * already enabled.
  222. */
  223. mutex_lock(&pc->sti_pwm_lock);
  224. if (!pc->en_count) {
  225. ret = clk_enable(pc->pwm_clk);
  226. if (ret)
  227. goto out;
  228. ret = clk_enable(pc->cpt_clk);
  229. if (ret)
  230. goto out;
  231. ret = regmap_field_write(pc->pwm_out_en, 1);
  232. if (ret) {
  233. dev_err(dev, "failed to enable PWM device %u: %d\n",
  234. pwm->hwpwm, ret);
  235. goto out;
  236. }
  237. }
  238. pc->en_count++;
  239. out:
  240. mutex_unlock(&pc->sti_pwm_lock);
  241. return ret;
  242. }
  243. static void sti_pwm_disable(struct pwm_chip *chip, struct pwm_device *pwm)
  244. {
  245. struct sti_pwm_chip *pc = to_sti_pwmchip(chip);
  246. mutex_lock(&pc->sti_pwm_lock);
  247. if (--pc->en_count) {
  248. mutex_unlock(&pc->sti_pwm_lock);
  249. return;
  250. }
  251. regmap_field_write(pc->pwm_out_en, 0);
  252. clk_disable(pc->pwm_clk);
  253. clk_disable(pc->cpt_clk);
  254. mutex_unlock(&pc->sti_pwm_lock);
  255. }
  256. static void sti_pwm_free(struct pwm_chip *chip, struct pwm_device *pwm)
  257. {
  258. struct sti_pwm_chip *pc = to_sti_pwmchip(chip);
  259. clear_bit(pwm->hwpwm, &pc->configured);
  260. }
  261. static int sti_pwm_capture(struct pwm_chip *chip, struct pwm_device *pwm,
  262. struct pwm_capture *result, unsigned long timeout)
  263. {
  264. struct sti_pwm_chip *pc = to_sti_pwmchip(chip);
  265. struct sti_pwm_compat_data *cdata = pc->cdata;
  266. struct sti_cpt_ddata *ddata = &cdata->ddata[pwm->hwpwm];
  267. struct device *dev = pc->dev;
  268. unsigned int effective_ticks;
  269. unsigned long long high, low;
  270. int ret;
  271. if (pwm->hwpwm >= cdata->cpt_num_devs) {
  272. dev_err(dev, "device %u is not valid\n", pwm->hwpwm);
  273. return -EINVAL;
  274. }
  275. mutex_lock(&ddata->lock);
  276. ddata->index = 0;
  277. /* Prepare capture measurement */
  278. regmap_write(pc->regmap, PWM_CPT_EDGE(pwm->hwpwm), CPT_EDGE_RISING);
  279. regmap_field_write(pc->pwm_cpt_int_en, BIT(pwm->hwpwm));
  280. /* Enable capture */
  281. ret = regmap_field_write(pc->pwm_cpt_en, 1);
  282. if (ret) {
  283. dev_err(dev, "failed to enable PWM capture %u: %d\n",
  284. pwm->hwpwm, ret);
  285. goto out;
  286. }
  287. ret = wait_event_interruptible_timeout(ddata->wait, ddata->index > 1,
  288. msecs_to_jiffies(timeout));
  289. regmap_write(pc->regmap, PWM_CPT_EDGE(pwm->hwpwm), CPT_EDGE_DISABLED);
  290. if (ret == -ERESTARTSYS)
  291. goto out;
  292. switch (ddata->index) {
  293. case 0:
  294. case 1:
  295. /*
  296. * Getting here could mean:
  297. * - input signal is constant of less than 1 Hz
  298. * - there is no input signal at all
  299. *
  300. * In such case the frequency is rounded down to 0
  301. */
  302. result->period = 0;
  303. result->duty_cycle = 0;
  304. break;
  305. case 2:
  306. /* We have everying we need */
  307. high = ddata->snapshot[1] - ddata->snapshot[0];
  308. low = ddata->snapshot[2] - ddata->snapshot[1];
  309. effective_ticks = clk_get_rate(pc->cpt_clk);
  310. result->period = (high + low) * NSEC_PER_SEC;
  311. result->period /= effective_ticks;
  312. result->duty_cycle = high * NSEC_PER_SEC;
  313. result->duty_cycle /= effective_ticks;
  314. break;
  315. default:
  316. dev_err(dev, "internal error\n");
  317. break;
  318. }
  319. out:
  320. /* Disable capture */
  321. regmap_field_write(pc->pwm_cpt_en, 0);
  322. mutex_unlock(&ddata->lock);
  323. return ret;
  324. }
  325. static int sti_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
  326. const struct pwm_state *state)
  327. {
  328. int err;
  329. if (state->polarity != PWM_POLARITY_NORMAL)
  330. return -EINVAL;
  331. if (!state->enabled) {
  332. if (pwm->state.enabled)
  333. sti_pwm_disable(chip, pwm);
  334. return 0;
  335. }
  336. err = sti_pwm_config(pwm->chip, pwm, state->duty_cycle, state->period);
  337. if (err)
  338. return err;
  339. if (!pwm->state.enabled)
  340. err = sti_pwm_enable(chip, pwm);
  341. return err;
  342. }
  343. static const struct pwm_ops sti_pwm_ops = {
  344. .capture = sti_pwm_capture,
  345. .apply = sti_pwm_apply,
  346. .free = sti_pwm_free,
  347. .owner = THIS_MODULE,
  348. };
  349. static irqreturn_t sti_pwm_interrupt(int irq, void *data)
  350. {
  351. struct sti_pwm_chip *pc = data;
  352. struct device *dev = pc->dev;
  353. struct sti_cpt_ddata *ddata;
  354. int devicenum;
  355. unsigned int cpt_int_stat;
  356. unsigned int reg;
  357. int ret = IRQ_NONE;
  358. ret = regmap_field_read(pc->pwm_cpt_int_stat, &cpt_int_stat);
  359. if (ret)
  360. return ret;
  361. while (cpt_int_stat) {
  362. devicenum = ffs(cpt_int_stat) - 1;
  363. ddata = &pc->cdata->ddata[devicenum];
  364. /*
  365. * Capture input:
  366. * _______ _______
  367. * | | | |
  368. * __| |_________________| |________
  369. * ^0 ^1 ^2
  370. *
  371. * Capture start by the first available rising edge. When a
  372. * capture event occurs, capture value (CPT_VALx) is stored,
  373. * index incremented, capture edge changed.
  374. *
  375. * After the capture, if the index > 1, we have collected the
  376. * necessary data so we signal the thread waiting for it and
  377. * disable the capture by setting capture edge to none
  378. */
  379. regmap_read(pc->regmap,
  380. PWM_CPT_VAL(devicenum),
  381. &ddata->snapshot[ddata->index]);
  382. switch (ddata->index) {
  383. case 0:
  384. case 1:
  385. regmap_read(pc->regmap, PWM_CPT_EDGE(devicenum), &reg);
  386. reg ^= PWM_CPT_EDGE_MASK;
  387. regmap_write(pc->regmap, PWM_CPT_EDGE(devicenum), reg);
  388. ddata->index++;
  389. break;
  390. case 2:
  391. regmap_write(pc->regmap,
  392. PWM_CPT_EDGE(devicenum),
  393. CPT_EDGE_DISABLED);
  394. wake_up(&ddata->wait);
  395. break;
  396. default:
  397. dev_err(dev, "Internal error\n");
  398. }
  399. cpt_int_stat &= ~BIT_MASK(devicenum);
  400. ret = IRQ_HANDLED;
  401. }
  402. /* Just ACK everything */
  403. regmap_write(pc->regmap, PWM_INT_ACK, PWM_INT_ACK_MASK);
  404. return ret;
  405. }
  406. static int sti_pwm_probe_dt(struct sti_pwm_chip *pc)
  407. {
  408. struct device *dev = pc->dev;
  409. const struct reg_field *reg_fields;
  410. struct device_node *np = dev->of_node;
  411. struct sti_pwm_compat_data *cdata = pc->cdata;
  412. u32 num_devs;
  413. int ret;
  414. ret = of_property_read_u32(np, "st,pwm-num-chan", &num_devs);
  415. if (!ret)
  416. cdata->pwm_num_devs = num_devs;
  417. ret = of_property_read_u32(np, "st,capture-num-chan", &num_devs);
  418. if (!ret)
  419. cdata->cpt_num_devs = num_devs;
  420. if (!cdata->pwm_num_devs && !cdata->cpt_num_devs) {
  421. dev_err(dev, "No channels configured\n");
  422. return -EINVAL;
  423. }
  424. reg_fields = cdata->reg_fields;
  425. pc->prescale_low = devm_regmap_field_alloc(dev, pc->regmap,
  426. reg_fields[PWMCLK_PRESCALE_LOW]);
  427. if (IS_ERR(pc->prescale_low))
  428. return PTR_ERR(pc->prescale_low);
  429. pc->prescale_high = devm_regmap_field_alloc(dev, pc->regmap,
  430. reg_fields[PWMCLK_PRESCALE_HIGH]);
  431. if (IS_ERR(pc->prescale_high))
  432. return PTR_ERR(pc->prescale_high);
  433. pc->pwm_out_en = devm_regmap_field_alloc(dev, pc->regmap,
  434. reg_fields[PWM_OUT_EN]);
  435. if (IS_ERR(pc->pwm_out_en))
  436. return PTR_ERR(pc->pwm_out_en);
  437. pc->pwm_cpt_en = devm_regmap_field_alloc(dev, pc->regmap,
  438. reg_fields[PWM_CPT_EN]);
  439. if (IS_ERR(pc->pwm_cpt_en))
  440. return PTR_ERR(pc->pwm_cpt_en);
  441. pc->pwm_cpt_int_en = devm_regmap_field_alloc(dev, pc->regmap,
  442. reg_fields[PWM_CPT_INT_EN]);
  443. if (IS_ERR(pc->pwm_cpt_int_en))
  444. return PTR_ERR(pc->pwm_cpt_int_en);
  445. pc->pwm_cpt_int_stat = devm_regmap_field_alloc(dev, pc->regmap,
  446. reg_fields[PWM_CPT_INT_STAT]);
  447. if (PTR_ERR_OR_ZERO(pc->pwm_cpt_int_stat))
  448. return PTR_ERR(pc->pwm_cpt_int_stat);
  449. return 0;
  450. }
  451. static const struct regmap_config sti_pwm_regmap_config = {
  452. .reg_bits = 32,
  453. .val_bits = 32,
  454. .reg_stride = 4,
  455. };
  456. static int sti_pwm_probe(struct platform_device *pdev)
  457. {
  458. struct device *dev = &pdev->dev;
  459. struct sti_pwm_compat_data *cdata;
  460. struct sti_pwm_chip *pc;
  461. unsigned int i;
  462. int irq, ret;
  463. pc = devm_kzalloc(dev, sizeof(*pc), GFP_KERNEL);
  464. if (!pc)
  465. return -ENOMEM;
  466. cdata = devm_kzalloc(dev, sizeof(*cdata), GFP_KERNEL);
  467. if (!cdata)
  468. return -ENOMEM;
  469. pc->mmio = devm_platform_ioremap_resource(pdev, 0);
  470. if (IS_ERR(pc->mmio))
  471. return PTR_ERR(pc->mmio);
  472. pc->regmap = devm_regmap_init_mmio(dev, pc->mmio,
  473. &sti_pwm_regmap_config);
  474. if (IS_ERR(pc->regmap))
  475. return PTR_ERR(pc->regmap);
  476. irq = platform_get_irq(pdev, 0);
  477. if (irq < 0)
  478. return irq;
  479. ret = devm_request_irq(&pdev->dev, irq, sti_pwm_interrupt, 0,
  480. pdev->name, pc);
  481. if (ret < 0) {
  482. dev_err(&pdev->dev, "Failed to request IRQ\n");
  483. return ret;
  484. }
  485. /*
  486. * Setup PWM data with default values: some values could be replaced
  487. * with specific ones provided from Device Tree.
  488. */
  489. cdata->reg_fields = sti_pwm_regfields;
  490. cdata->max_prescale = 0xff;
  491. cdata->max_pwm_cnt = 255;
  492. cdata->pwm_num_devs = 0;
  493. cdata->cpt_num_devs = 0;
  494. pc->cdata = cdata;
  495. pc->dev = dev;
  496. pc->en_count = 0;
  497. mutex_init(&pc->sti_pwm_lock);
  498. ret = sti_pwm_probe_dt(pc);
  499. if (ret)
  500. return ret;
  501. if (cdata->pwm_num_devs) {
  502. pc->pwm_clk = of_clk_get_by_name(dev->of_node, "pwm");
  503. if (IS_ERR(pc->pwm_clk)) {
  504. dev_err(dev, "failed to get PWM clock\n");
  505. return PTR_ERR(pc->pwm_clk);
  506. }
  507. ret = clk_prepare(pc->pwm_clk);
  508. if (ret) {
  509. dev_err(dev, "failed to prepare clock\n");
  510. return ret;
  511. }
  512. }
  513. if (cdata->cpt_num_devs) {
  514. pc->cpt_clk = of_clk_get_by_name(dev->of_node, "capture");
  515. if (IS_ERR(pc->cpt_clk)) {
  516. dev_err(dev, "failed to get PWM capture clock\n");
  517. return PTR_ERR(pc->cpt_clk);
  518. }
  519. ret = clk_prepare(pc->cpt_clk);
  520. if (ret) {
  521. dev_err(dev, "failed to prepare clock\n");
  522. return ret;
  523. }
  524. cdata->ddata = devm_kzalloc(dev, cdata->cpt_num_devs * sizeof(*cdata->ddata), GFP_KERNEL);
  525. if (!cdata->ddata)
  526. return -ENOMEM;
  527. }
  528. pc->chip.dev = dev;
  529. pc->chip.ops = &sti_pwm_ops;
  530. pc->chip.npwm = pc->cdata->pwm_num_devs;
  531. for (i = 0; i < cdata->cpt_num_devs; i++) {
  532. struct sti_cpt_ddata *ddata = &cdata->ddata[i];
  533. init_waitqueue_head(&ddata->wait);
  534. mutex_init(&ddata->lock);
  535. }
  536. ret = pwmchip_add(&pc->chip);
  537. if (ret < 0) {
  538. clk_unprepare(pc->pwm_clk);
  539. clk_unprepare(pc->cpt_clk);
  540. return ret;
  541. }
  542. platform_set_drvdata(pdev, pc);
  543. return 0;
  544. }
  545. static int sti_pwm_remove(struct platform_device *pdev)
  546. {
  547. struct sti_pwm_chip *pc = platform_get_drvdata(pdev);
  548. pwmchip_remove(&pc->chip);
  549. clk_unprepare(pc->pwm_clk);
  550. clk_unprepare(pc->cpt_clk);
  551. return 0;
  552. }
  553. static const struct of_device_id sti_pwm_of_match[] = {
  554. { .compatible = "st,sti-pwm", },
  555. { /* sentinel */ }
  556. };
  557. MODULE_DEVICE_TABLE(of, sti_pwm_of_match);
  558. static struct platform_driver sti_pwm_driver = {
  559. .driver = {
  560. .name = "sti-pwm",
  561. .of_match_table = sti_pwm_of_match,
  562. },
  563. .probe = sti_pwm_probe,
  564. .remove = sti_pwm_remove,
  565. };
  566. module_platform_driver(sti_pwm_driver);
  567. MODULE_AUTHOR("Ajit Pal Singh <[email protected]>");
  568. MODULE_DESCRIPTION("STMicroelectronics ST PWM driver");
  569. MODULE_LICENSE("GPL");