pwm-dwc.c 7.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * DesignWare PWM Controller driver
  4. *
  5. * Copyright (C) 2018-2020 Intel Corporation
  6. *
  7. * Author: Felipe Balbi (Intel)
  8. * Author: Jarkko Nikula <[email protected]>
  9. * Author: Raymond Tan <[email protected]>
  10. *
  11. * Limitations:
  12. * - The hardware cannot generate a 0 % or 100 % duty cycle. Both high and low
  13. * periods are one or more input clock periods long.
  14. */
  15. #include <linux/bitops.h>
  16. #include <linux/export.h>
  17. #include <linux/kernel.h>
  18. #include <linux/module.h>
  19. #include <linux/pci.h>
  20. #include <linux/pm_runtime.h>
  21. #include <linux/pwm.h>
  22. #define DWC_TIM_LD_CNT(n) ((n) * 0x14)
  23. #define DWC_TIM_LD_CNT2(n) (((n) * 4) + 0xb0)
  24. #define DWC_TIM_CUR_VAL(n) (((n) * 0x14) + 0x04)
  25. #define DWC_TIM_CTRL(n) (((n) * 0x14) + 0x08)
  26. #define DWC_TIM_EOI(n) (((n) * 0x14) + 0x0c)
  27. #define DWC_TIM_INT_STS(n) (((n) * 0x14) + 0x10)
  28. #define DWC_TIMERS_INT_STS 0xa0
  29. #define DWC_TIMERS_EOI 0xa4
  30. #define DWC_TIMERS_RAW_INT_STS 0xa8
  31. #define DWC_TIMERS_COMP_VERSION 0xac
  32. #define DWC_TIMERS_TOTAL 8
  33. #define DWC_CLK_PERIOD_NS 10
  34. /* Timer Control Register */
  35. #define DWC_TIM_CTRL_EN BIT(0)
  36. #define DWC_TIM_CTRL_MODE BIT(1)
  37. #define DWC_TIM_CTRL_MODE_FREE (0 << 1)
  38. #define DWC_TIM_CTRL_MODE_USER (1 << 1)
  39. #define DWC_TIM_CTRL_INT_MASK BIT(2)
  40. #define DWC_TIM_CTRL_PWM BIT(3)
  41. struct dwc_pwm_ctx {
  42. u32 cnt;
  43. u32 cnt2;
  44. u32 ctrl;
  45. };
  46. struct dwc_pwm {
  47. struct pwm_chip chip;
  48. void __iomem *base;
  49. struct dwc_pwm_ctx ctx[DWC_TIMERS_TOTAL];
  50. };
  51. #define to_dwc_pwm(p) (container_of((p), struct dwc_pwm, chip))
  52. static inline u32 dwc_pwm_readl(struct dwc_pwm *dwc, u32 offset)
  53. {
  54. return readl(dwc->base + offset);
  55. }
  56. static inline void dwc_pwm_writel(struct dwc_pwm *dwc, u32 value, u32 offset)
  57. {
  58. writel(value, dwc->base + offset);
  59. }
  60. static void __dwc_pwm_set_enable(struct dwc_pwm *dwc, int pwm, int enabled)
  61. {
  62. u32 reg;
  63. reg = dwc_pwm_readl(dwc, DWC_TIM_CTRL(pwm));
  64. if (enabled)
  65. reg |= DWC_TIM_CTRL_EN;
  66. else
  67. reg &= ~DWC_TIM_CTRL_EN;
  68. dwc_pwm_writel(dwc, reg, DWC_TIM_CTRL(pwm));
  69. }
  70. static int __dwc_pwm_configure_timer(struct dwc_pwm *dwc,
  71. struct pwm_device *pwm,
  72. const struct pwm_state *state)
  73. {
  74. u64 tmp;
  75. u32 ctrl;
  76. u32 high;
  77. u32 low;
  78. /*
  79. * Calculate width of low and high period in terms of input clock
  80. * periods and check are the result within HW limits between 1 and
  81. * 2^32 periods.
  82. */
  83. tmp = DIV_ROUND_CLOSEST_ULL(state->duty_cycle, DWC_CLK_PERIOD_NS);
  84. if (tmp < 1 || tmp > (1ULL << 32))
  85. return -ERANGE;
  86. low = tmp - 1;
  87. tmp = DIV_ROUND_CLOSEST_ULL(state->period - state->duty_cycle,
  88. DWC_CLK_PERIOD_NS);
  89. if (tmp < 1 || tmp > (1ULL << 32))
  90. return -ERANGE;
  91. high = tmp - 1;
  92. /*
  93. * Specification says timer usage flow is to disable timer, then
  94. * program it followed by enable. It also says Load Count is loaded
  95. * into timer after it is enabled - either after a disable or
  96. * a reset. Based on measurements it happens also without disable
  97. * whenever Load Count is updated. But follow the specification.
  98. */
  99. __dwc_pwm_set_enable(dwc, pwm->hwpwm, false);
  100. /*
  101. * Write Load Count and Load Count 2 registers. Former defines the
  102. * width of low period and latter the width of high period in terms
  103. * multiple of input clock periods:
  104. * Width = ((Count + 1) * input clock period).
  105. */
  106. dwc_pwm_writel(dwc, low, DWC_TIM_LD_CNT(pwm->hwpwm));
  107. dwc_pwm_writel(dwc, high, DWC_TIM_LD_CNT2(pwm->hwpwm));
  108. /*
  109. * Set user-defined mode, timer reloads from Load Count registers
  110. * when it counts down to 0.
  111. * Set PWM mode, it makes output to toggle and width of low and high
  112. * periods are set by Load Count registers.
  113. */
  114. ctrl = DWC_TIM_CTRL_MODE_USER | DWC_TIM_CTRL_PWM;
  115. dwc_pwm_writel(dwc, ctrl, DWC_TIM_CTRL(pwm->hwpwm));
  116. /*
  117. * Enable timer. Output starts from low period.
  118. */
  119. __dwc_pwm_set_enable(dwc, pwm->hwpwm, state->enabled);
  120. return 0;
  121. }
  122. static int dwc_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
  123. const struct pwm_state *state)
  124. {
  125. struct dwc_pwm *dwc = to_dwc_pwm(chip);
  126. if (state->polarity != PWM_POLARITY_INVERSED)
  127. return -EINVAL;
  128. if (state->enabled) {
  129. if (!pwm->state.enabled)
  130. pm_runtime_get_sync(chip->dev);
  131. return __dwc_pwm_configure_timer(dwc, pwm, state);
  132. } else {
  133. if (pwm->state.enabled) {
  134. __dwc_pwm_set_enable(dwc, pwm->hwpwm, false);
  135. pm_runtime_put_sync(chip->dev);
  136. }
  137. }
  138. return 0;
  139. }
  140. static int dwc_pwm_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
  141. struct pwm_state *state)
  142. {
  143. struct dwc_pwm *dwc = to_dwc_pwm(chip);
  144. u64 duty, period;
  145. pm_runtime_get_sync(chip->dev);
  146. state->enabled = !!(dwc_pwm_readl(dwc,
  147. DWC_TIM_CTRL(pwm->hwpwm)) & DWC_TIM_CTRL_EN);
  148. duty = dwc_pwm_readl(dwc, DWC_TIM_LD_CNT(pwm->hwpwm));
  149. duty += 1;
  150. duty *= DWC_CLK_PERIOD_NS;
  151. state->duty_cycle = duty;
  152. period = dwc_pwm_readl(dwc, DWC_TIM_LD_CNT2(pwm->hwpwm));
  153. period += 1;
  154. period *= DWC_CLK_PERIOD_NS;
  155. period += duty;
  156. state->period = period;
  157. state->polarity = PWM_POLARITY_INVERSED;
  158. pm_runtime_put_sync(chip->dev);
  159. return 0;
  160. }
  161. static const struct pwm_ops dwc_pwm_ops = {
  162. .apply = dwc_pwm_apply,
  163. .get_state = dwc_pwm_get_state,
  164. .owner = THIS_MODULE,
  165. };
  166. static int dwc_pwm_probe(struct pci_dev *pci, const struct pci_device_id *id)
  167. {
  168. struct device *dev = &pci->dev;
  169. struct dwc_pwm *dwc;
  170. int ret;
  171. dwc = devm_kzalloc(&pci->dev, sizeof(*dwc), GFP_KERNEL);
  172. if (!dwc)
  173. return -ENOMEM;
  174. ret = pcim_enable_device(pci);
  175. if (ret) {
  176. dev_err(&pci->dev,
  177. "Failed to enable device (%pe)\n", ERR_PTR(ret));
  178. return ret;
  179. }
  180. pci_set_master(pci);
  181. ret = pcim_iomap_regions(pci, BIT(0), pci_name(pci));
  182. if (ret) {
  183. dev_err(&pci->dev,
  184. "Failed to iomap PCI BAR (%pe)\n", ERR_PTR(ret));
  185. return ret;
  186. }
  187. dwc->base = pcim_iomap_table(pci)[0];
  188. if (!dwc->base) {
  189. dev_err(&pci->dev, "Base address missing\n");
  190. return -ENOMEM;
  191. }
  192. pci_set_drvdata(pci, dwc);
  193. dwc->chip.dev = dev;
  194. dwc->chip.ops = &dwc_pwm_ops;
  195. dwc->chip.npwm = DWC_TIMERS_TOTAL;
  196. ret = pwmchip_add(&dwc->chip);
  197. if (ret)
  198. return ret;
  199. pm_runtime_put(dev);
  200. pm_runtime_allow(dev);
  201. return 0;
  202. }
  203. static void dwc_pwm_remove(struct pci_dev *pci)
  204. {
  205. struct dwc_pwm *dwc = pci_get_drvdata(pci);
  206. pm_runtime_forbid(&pci->dev);
  207. pm_runtime_get_noresume(&pci->dev);
  208. pwmchip_remove(&dwc->chip);
  209. }
  210. #ifdef CONFIG_PM_SLEEP
  211. static int dwc_pwm_suspend(struct device *dev)
  212. {
  213. struct pci_dev *pdev = container_of(dev, struct pci_dev, dev);
  214. struct dwc_pwm *dwc = pci_get_drvdata(pdev);
  215. int i;
  216. for (i = 0; i < DWC_TIMERS_TOTAL; i++) {
  217. if (dwc->chip.pwms[i].state.enabled) {
  218. dev_err(dev, "PWM %u in use by consumer (%s)\n",
  219. i, dwc->chip.pwms[i].label);
  220. return -EBUSY;
  221. }
  222. dwc->ctx[i].cnt = dwc_pwm_readl(dwc, DWC_TIM_LD_CNT(i));
  223. dwc->ctx[i].cnt2 = dwc_pwm_readl(dwc, DWC_TIM_LD_CNT2(i));
  224. dwc->ctx[i].ctrl = dwc_pwm_readl(dwc, DWC_TIM_CTRL(i));
  225. }
  226. return 0;
  227. }
  228. static int dwc_pwm_resume(struct device *dev)
  229. {
  230. struct pci_dev *pdev = container_of(dev, struct pci_dev, dev);
  231. struct dwc_pwm *dwc = pci_get_drvdata(pdev);
  232. int i;
  233. for (i = 0; i < DWC_TIMERS_TOTAL; i++) {
  234. dwc_pwm_writel(dwc, dwc->ctx[i].cnt, DWC_TIM_LD_CNT(i));
  235. dwc_pwm_writel(dwc, dwc->ctx[i].cnt2, DWC_TIM_LD_CNT2(i));
  236. dwc_pwm_writel(dwc, dwc->ctx[i].ctrl, DWC_TIM_CTRL(i));
  237. }
  238. return 0;
  239. }
  240. #endif
  241. static SIMPLE_DEV_PM_OPS(dwc_pwm_pm_ops, dwc_pwm_suspend, dwc_pwm_resume);
  242. static const struct pci_device_id dwc_pwm_id_table[] = {
  243. { PCI_VDEVICE(INTEL, 0x4bb7) }, /* Elkhart Lake */
  244. { } /* Terminating Entry */
  245. };
  246. MODULE_DEVICE_TABLE(pci, dwc_pwm_id_table);
  247. static struct pci_driver dwc_pwm_driver = {
  248. .name = "pwm-dwc",
  249. .probe = dwc_pwm_probe,
  250. .remove = dwc_pwm_remove,
  251. .id_table = dwc_pwm_id_table,
  252. .driver = {
  253. .pm = &dwc_pwm_pm_ops,
  254. },
  255. };
  256. module_pci_driver(dwc_pwm_driver);
  257. MODULE_AUTHOR("Felipe Balbi (Intel)");
  258. MODULE_AUTHOR("Jarkko Nikula <[email protected]>");
  259. MODULE_AUTHOR("Raymond Tan <[email protected]>");
  260. MODULE_DESCRIPTION("DesignWare PWM Controller");
  261. MODULE_LICENSE("GPL");