ptp_ocp.c 87 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /* Copyright (c) 2020 Facebook */
  3. #include <linux/bits.h>
  4. #include <linux/err.h>
  5. #include <linux/kernel.h>
  6. #include <linux/module.h>
  7. #include <linux/debugfs.h>
  8. #include <linux/init.h>
  9. #include <linux/pci.h>
  10. #include <linux/serial_8250.h>
  11. #include <linux/clkdev.h>
  12. #include <linux/clk-provider.h>
  13. #include <linux/platform_device.h>
  14. #include <linux/platform_data/i2c-xiic.h>
  15. #include <linux/ptp_clock_kernel.h>
  16. #include <linux/spi/spi.h>
  17. #include <linux/spi/xilinx_spi.h>
  18. #include <net/devlink.h>
  19. #include <linux/i2c.h>
  20. #include <linux/mtd/mtd.h>
  21. #include <linux/nvmem-consumer.h>
  22. #include <linux/crc16.h>
  23. #define PCI_VENDOR_ID_FACEBOOK 0x1d9b
  24. #define PCI_DEVICE_ID_FACEBOOK_TIMECARD 0x0400
  25. #define PCI_VENDOR_ID_CELESTICA 0x18d4
  26. #define PCI_DEVICE_ID_CELESTICA_TIMECARD 0x1008
  27. static struct class timecard_class = {
  28. .owner = THIS_MODULE,
  29. .name = "timecard",
  30. };
  31. struct ocp_reg {
  32. u32 ctrl;
  33. u32 status;
  34. u32 select;
  35. u32 version;
  36. u32 time_ns;
  37. u32 time_sec;
  38. u32 __pad0[2];
  39. u32 adjust_ns;
  40. u32 adjust_sec;
  41. u32 __pad1[2];
  42. u32 offset_ns;
  43. u32 offset_window_ns;
  44. u32 __pad2[2];
  45. u32 drift_ns;
  46. u32 drift_window_ns;
  47. u32 __pad3[6];
  48. u32 servo_offset_p;
  49. u32 servo_offset_i;
  50. u32 servo_drift_p;
  51. u32 servo_drift_i;
  52. u32 status_offset;
  53. u32 status_drift;
  54. };
  55. #define OCP_CTRL_ENABLE BIT(0)
  56. #define OCP_CTRL_ADJUST_TIME BIT(1)
  57. #define OCP_CTRL_ADJUST_OFFSET BIT(2)
  58. #define OCP_CTRL_ADJUST_DRIFT BIT(3)
  59. #define OCP_CTRL_ADJUST_SERVO BIT(8)
  60. #define OCP_CTRL_READ_TIME_REQ BIT(30)
  61. #define OCP_CTRL_READ_TIME_DONE BIT(31)
  62. #define OCP_STATUS_IN_SYNC BIT(0)
  63. #define OCP_STATUS_IN_HOLDOVER BIT(1)
  64. #define OCP_SELECT_CLK_NONE 0
  65. #define OCP_SELECT_CLK_REG 0xfe
  66. struct tod_reg {
  67. u32 ctrl;
  68. u32 status;
  69. u32 uart_polarity;
  70. u32 version;
  71. u32 adj_sec;
  72. u32 __pad0[3];
  73. u32 uart_baud;
  74. u32 __pad1[3];
  75. u32 utc_status;
  76. u32 leap;
  77. };
  78. #define TOD_CTRL_PROTOCOL BIT(28)
  79. #define TOD_CTRL_DISABLE_FMT_A BIT(17)
  80. #define TOD_CTRL_DISABLE_FMT_B BIT(16)
  81. #define TOD_CTRL_ENABLE BIT(0)
  82. #define TOD_CTRL_GNSS_MASK GENMASK(3, 0)
  83. #define TOD_CTRL_GNSS_SHIFT 24
  84. #define TOD_STATUS_UTC_MASK GENMASK(7, 0)
  85. #define TOD_STATUS_UTC_VALID BIT(8)
  86. #define TOD_STATUS_LEAP_ANNOUNCE BIT(12)
  87. #define TOD_STATUS_LEAP_VALID BIT(16)
  88. struct ts_reg {
  89. u32 enable;
  90. u32 error;
  91. u32 polarity;
  92. u32 version;
  93. u32 __pad0[4];
  94. u32 cable_delay;
  95. u32 __pad1[3];
  96. u32 intr;
  97. u32 intr_mask;
  98. u32 event_count;
  99. u32 __pad2[1];
  100. u32 ts_count;
  101. u32 time_ns;
  102. u32 time_sec;
  103. u32 data_width;
  104. u32 data;
  105. };
  106. struct pps_reg {
  107. u32 ctrl;
  108. u32 status;
  109. u32 __pad0[6];
  110. u32 cable_delay;
  111. };
  112. #define PPS_STATUS_FILTER_ERR BIT(0)
  113. #define PPS_STATUS_SUPERV_ERR BIT(1)
  114. struct img_reg {
  115. u32 version;
  116. };
  117. struct gpio_reg {
  118. u32 gpio1;
  119. u32 __pad0;
  120. u32 gpio2;
  121. u32 __pad1;
  122. };
  123. struct irig_master_reg {
  124. u32 ctrl;
  125. u32 status;
  126. u32 __pad0;
  127. u32 version;
  128. u32 adj_sec;
  129. u32 mode_ctrl;
  130. };
  131. #define IRIG_M_CTRL_ENABLE BIT(0)
  132. struct irig_slave_reg {
  133. u32 ctrl;
  134. u32 status;
  135. u32 __pad0;
  136. u32 version;
  137. u32 adj_sec;
  138. u32 mode_ctrl;
  139. };
  140. #define IRIG_S_CTRL_ENABLE BIT(0)
  141. struct dcf_master_reg {
  142. u32 ctrl;
  143. u32 status;
  144. u32 __pad0;
  145. u32 version;
  146. u32 adj_sec;
  147. };
  148. #define DCF_M_CTRL_ENABLE BIT(0)
  149. struct dcf_slave_reg {
  150. u32 ctrl;
  151. u32 status;
  152. u32 __pad0;
  153. u32 version;
  154. u32 adj_sec;
  155. };
  156. #define DCF_S_CTRL_ENABLE BIT(0)
  157. struct signal_reg {
  158. u32 enable;
  159. u32 status;
  160. u32 polarity;
  161. u32 version;
  162. u32 __pad0[4];
  163. u32 cable_delay;
  164. u32 __pad1[3];
  165. u32 intr;
  166. u32 intr_mask;
  167. u32 __pad2[2];
  168. u32 start_ns;
  169. u32 start_sec;
  170. u32 pulse_ns;
  171. u32 pulse_sec;
  172. u32 period_ns;
  173. u32 period_sec;
  174. u32 repeat_count;
  175. };
  176. struct frequency_reg {
  177. u32 ctrl;
  178. u32 status;
  179. };
  180. #define FREQ_STATUS_VALID BIT(31)
  181. #define FREQ_STATUS_ERROR BIT(30)
  182. #define FREQ_STATUS_OVERRUN BIT(29)
  183. #define FREQ_STATUS_MASK GENMASK(23, 0)
  184. struct ptp_ocp_flash_info {
  185. const char *name;
  186. int pci_offset;
  187. int data_size;
  188. void *data;
  189. };
  190. struct ptp_ocp_firmware_header {
  191. char magic[4];
  192. __be16 pci_vendor_id;
  193. __be16 pci_device_id;
  194. __be32 image_size;
  195. __be16 hw_revision;
  196. __be16 crc;
  197. };
  198. #define OCP_FIRMWARE_MAGIC_HEADER "OCPC"
  199. struct ptp_ocp_i2c_info {
  200. const char *name;
  201. unsigned long fixed_rate;
  202. size_t data_size;
  203. void *data;
  204. };
  205. struct ptp_ocp_ext_info {
  206. int index;
  207. irqreturn_t (*irq_fcn)(int irq, void *priv);
  208. int (*enable)(void *priv, u32 req, bool enable);
  209. };
  210. struct ptp_ocp_ext_src {
  211. void __iomem *mem;
  212. struct ptp_ocp *bp;
  213. struct ptp_ocp_ext_info *info;
  214. int irq_vec;
  215. };
  216. enum ptp_ocp_sma_mode {
  217. SMA_MODE_IN,
  218. SMA_MODE_OUT,
  219. };
  220. struct ptp_ocp_sma_connector {
  221. enum ptp_ocp_sma_mode mode;
  222. bool fixed_fcn;
  223. bool fixed_dir;
  224. bool disabled;
  225. u8 default_fcn;
  226. };
  227. struct ocp_attr_group {
  228. u64 cap;
  229. const struct attribute_group *group;
  230. };
  231. #define OCP_CAP_BASIC BIT(0)
  232. #define OCP_CAP_SIGNAL BIT(1)
  233. #define OCP_CAP_FREQ BIT(2)
  234. struct ptp_ocp_signal {
  235. ktime_t period;
  236. ktime_t pulse;
  237. ktime_t phase;
  238. ktime_t start;
  239. int duty;
  240. bool polarity;
  241. bool running;
  242. };
  243. #define OCP_BOARD_ID_LEN 13
  244. #define OCP_SERIAL_LEN 6
  245. struct ptp_ocp {
  246. struct pci_dev *pdev;
  247. struct device dev;
  248. spinlock_t lock;
  249. struct ocp_reg __iomem *reg;
  250. struct tod_reg __iomem *tod;
  251. struct pps_reg __iomem *pps_to_ext;
  252. struct pps_reg __iomem *pps_to_clk;
  253. struct gpio_reg __iomem *pps_select;
  254. struct gpio_reg __iomem *sma_map1;
  255. struct gpio_reg __iomem *sma_map2;
  256. struct irig_master_reg __iomem *irig_out;
  257. struct irig_slave_reg __iomem *irig_in;
  258. struct dcf_master_reg __iomem *dcf_out;
  259. struct dcf_slave_reg __iomem *dcf_in;
  260. struct tod_reg __iomem *nmea_out;
  261. struct frequency_reg __iomem *freq_in[4];
  262. struct ptp_ocp_ext_src *signal_out[4];
  263. struct ptp_ocp_ext_src *pps;
  264. struct ptp_ocp_ext_src *ts0;
  265. struct ptp_ocp_ext_src *ts1;
  266. struct ptp_ocp_ext_src *ts2;
  267. struct ptp_ocp_ext_src *ts3;
  268. struct ptp_ocp_ext_src *ts4;
  269. struct img_reg __iomem *image;
  270. struct ptp_clock *ptp;
  271. struct ptp_clock_info ptp_info;
  272. struct platform_device *i2c_ctrl;
  273. struct platform_device *spi_flash;
  274. struct clk_hw *i2c_clk;
  275. struct timer_list watchdog;
  276. const struct attribute_group **attr_group;
  277. const struct ptp_ocp_eeprom_map *eeprom_map;
  278. struct dentry *debug_root;
  279. time64_t gnss_lost;
  280. int id;
  281. int n_irqs;
  282. int gnss_port;
  283. int gnss2_port;
  284. int mac_port; /* miniature atomic clock */
  285. int nmea_port;
  286. bool fw_loader;
  287. u8 fw_tag;
  288. u16 fw_version;
  289. u8 board_id[OCP_BOARD_ID_LEN];
  290. u8 serial[OCP_SERIAL_LEN];
  291. bool has_eeprom_data;
  292. u32 pps_req_map;
  293. int flash_start;
  294. u32 utc_tai_offset;
  295. u32 ts_window_adjust;
  296. u64 fw_cap;
  297. struct ptp_ocp_signal signal[4];
  298. struct ptp_ocp_sma_connector sma[4];
  299. const struct ocp_sma_op *sma_op;
  300. };
  301. #define OCP_REQ_TIMESTAMP BIT(0)
  302. #define OCP_REQ_PPS BIT(1)
  303. struct ocp_resource {
  304. unsigned long offset;
  305. int size;
  306. int irq_vec;
  307. int (*setup)(struct ptp_ocp *bp, struct ocp_resource *r);
  308. void *extra;
  309. unsigned long bp_offset;
  310. const char * const name;
  311. };
  312. static int ptp_ocp_register_mem(struct ptp_ocp *bp, struct ocp_resource *r);
  313. static int ptp_ocp_register_i2c(struct ptp_ocp *bp, struct ocp_resource *r);
  314. static int ptp_ocp_register_spi(struct ptp_ocp *bp, struct ocp_resource *r);
  315. static int ptp_ocp_register_serial(struct ptp_ocp *bp, struct ocp_resource *r);
  316. static int ptp_ocp_register_ext(struct ptp_ocp *bp, struct ocp_resource *r);
  317. static int ptp_ocp_fb_board_init(struct ptp_ocp *bp, struct ocp_resource *r);
  318. static irqreturn_t ptp_ocp_ts_irq(int irq, void *priv);
  319. static irqreturn_t ptp_ocp_signal_irq(int irq, void *priv);
  320. static int ptp_ocp_ts_enable(void *priv, u32 req, bool enable);
  321. static int ptp_ocp_signal_from_perout(struct ptp_ocp *bp, int gen,
  322. struct ptp_perout_request *req);
  323. static int ptp_ocp_signal_enable(void *priv, u32 req, bool enable);
  324. static int ptp_ocp_sma_store(struct ptp_ocp *bp, const char *buf, int sma_nr);
  325. static const struct ocp_attr_group fb_timecard_groups[];
  326. struct ptp_ocp_eeprom_map {
  327. u16 off;
  328. u16 len;
  329. u32 bp_offset;
  330. const void * const tag;
  331. };
  332. #define EEPROM_ENTRY(addr, member) \
  333. .off = addr, \
  334. .len = sizeof_field(struct ptp_ocp, member), \
  335. .bp_offset = offsetof(struct ptp_ocp, member)
  336. #define BP_MAP_ENTRY_ADDR(bp, map) ({ \
  337. (void *)((uintptr_t)(bp) + (map)->bp_offset); \
  338. })
  339. static struct ptp_ocp_eeprom_map fb_eeprom_map[] = {
  340. { EEPROM_ENTRY(0x43, board_id) },
  341. { EEPROM_ENTRY(0x00, serial), .tag = "mac" },
  342. { }
  343. };
  344. #define bp_assign_entry(bp, res, val) ({ \
  345. uintptr_t addr = (uintptr_t)(bp) + (res)->bp_offset; \
  346. *(typeof(val) *)addr = val; \
  347. })
  348. #define OCP_RES_LOCATION(member) \
  349. .name = #member, .bp_offset = offsetof(struct ptp_ocp, member)
  350. #define OCP_MEM_RESOURCE(member) \
  351. OCP_RES_LOCATION(member), .setup = ptp_ocp_register_mem
  352. #define OCP_SERIAL_RESOURCE(member) \
  353. OCP_RES_LOCATION(member), .setup = ptp_ocp_register_serial
  354. #define OCP_I2C_RESOURCE(member) \
  355. OCP_RES_LOCATION(member), .setup = ptp_ocp_register_i2c
  356. #define OCP_SPI_RESOURCE(member) \
  357. OCP_RES_LOCATION(member), .setup = ptp_ocp_register_spi
  358. #define OCP_EXT_RESOURCE(member) \
  359. OCP_RES_LOCATION(member), .setup = ptp_ocp_register_ext
  360. /* This is the MSI vector mapping used.
  361. * 0: PPS (TS5)
  362. * 1: TS0
  363. * 2: TS1
  364. * 3: GNSS1
  365. * 4: GNSS2
  366. * 5: MAC
  367. * 6: TS2
  368. * 7: I2C controller
  369. * 8: HWICAP (notused)
  370. * 9: SPI Flash
  371. * 10: NMEA
  372. * 11: Signal Generator 1
  373. * 12: Signal Generator 2
  374. * 13: Signal Generator 3
  375. * 14: Signal Generator 4
  376. * 15: TS3
  377. * 16: TS4
  378. */
  379. static struct ocp_resource ocp_fb_resource[] = {
  380. {
  381. OCP_MEM_RESOURCE(reg),
  382. .offset = 0x01000000, .size = 0x10000,
  383. },
  384. {
  385. OCP_EXT_RESOURCE(ts0),
  386. .offset = 0x01010000, .size = 0x10000, .irq_vec = 1,
  387. .extra = &(struct ptp_ocp_ext_info) {
  388. .index = 0,
  389. .irq_fcn = ptp_ocp_ts_irq,
  390. .enable = ptp_ocp_ts_enable,
  391. },
  392. },
  393. {
  394. OCP_EXT_RESOURCE(ts1),
  395. .offset = 0x01020000, .size = 0x10000, .irq_vec = 2,
  396. .extra = &(struct ptp_ocp_ext_info) {
  397. .index = 1,
  398. .irq_fcn = ptp_ocp_ts_irq,
  399. .enable = ptp_ocp_ts_enable,
  400. },
  401. },
  402. {
  403. OCP_EXT_RESOURCE(ts2),
  404. .offset = 0x01060000, .size = 0x10000, .irq_vec = 6,
  405. .extra = &(struct ptp_ocp_ext_info) {
  406. .index = 2,
  407. .irq_fcn = ptp_ocp_ts_irq,
  408. .enable = ptp_ocp_ts_enable,
  409. },
  410. },
  411. {
  412. OCP_EXT_RESOURCE(ts3),
  413. .offset = 0x01110000, .size = 0x10000, .irq_vec = 15,
  414. .extra = &(struct ptp_ocp_ext_info) {
  415. .index = 3,
  416. .irq_fcn = ptp_ocp_ts_irq,
  417. .enable = ptp_ocp_ts_enable,
  418. },
  419. },
  420. {
  421. OCP_EXT_RESOURCE(ts4),
  422. .offset = 0x01120000, .size = 0x10000, .irq_vec = 16,
  423. .extra = &(struct ptp_ocp_ext_info) {
  424. .index = 4,
  425. .irq_fcn = ptp_ocp_ts_irq,
  426. .enable = ptp_ocp_ts_enable,
  427. },
  428. },
  429. /* Timestamp for PHC and/or PPS generator */
  430. {
  431. OCP_EXT_RESOURCE(pps),
  432. .offset = 0x010C0000, .size = 0x10000, .irq_vec = 0,
  433. .extra = &(struct ptp_ocp_ext_info) {
  434. .index = 5,
  435. .irq_fcn = ptp_ocp_ts_irq,
  436. .enable = ptp_ocp_ts_enable,
  437. },
  438. },
  439. {
  440. OCP_EXT_RESOURCE(signal_out[0]),
  441. .offset = 0x010D0000, .size = 0x10000, .irq_vec = 11,
  442. .extra = &(struct ptp_ocp_ext_info) {
  443. .index = 1,
  444. .irq_fcn = ptp_ocp_signal_irq,
  445. .enable = ptp_ocp_signal_enable,
  446. },
  447. },
  448. {
  449. OCP_EXT_RESOURCE(signal_out[1]),
  450. .offset = 0x010E0000, .size = 0x10000, .irq_vec = 12,
  451. .extra = &(struct ptp_ocp_ext_info) {
  452. .index = 2,
  453. .irq_fcn = ptp_ocp_signal_irq,
  454. .enable = ptp_ocp_signal_enable,
  455. },
  456. },
  457. {
  458. OCP_EXT_RESOURCE(signal_out[2]),
  459. .offset = 0x010F0000, .size = 0x10000, .irq_vec = 13,
  460. .extra = &(struct ptp_ocp_ext_info) {
  461. .index = 3,
  462. .irq_fcn = ptp_ocp_signal_irq,
  463. .enable = ptp_ocp_signal_enable,
  464. },
  465. },
  466. {
  467. OCP_EXT_RESOURCE(signal_out[3]),
  468. .offset = 0x01100000, .size = 0x10000, .irq_vec = 14,
  469. .extra = &(struct ptp_ocp_ext_info) {
  470. .index = 4,
  471. .irq_fcn = ptp_ocp_signal_irq,
  472. .enable = ptp_ocp_signal_enable,
  473. },
  474. },
  475. {
  476. OCP_MEM_RESOURCE(pps_to_ext),
  477. .offset = 0x01030000, .size = 0x10000,
  478. },
  479. {
  480. OCP_MEM_RESOURCE(pps_to_clk),
  481. .offset = 0x01040000, .size = 0x10000,
  482. },
  483. {
  484. OCP_MEM_RESOURCE(tod),
  485. .offset = 0x01050000, .size = 0x10000,
  486. },
  487. {
  488. OCP_MEM_RESOURCE(irig_in),
  489. .offset = 0x01070000, .size = 0x10000,
  490. },
  491. {
  492. OCP_MEM_RESOURCE(irig_out),
  493. .offset = 0x01080000, .size = 0x10000,
  494. },
  495. {
  496. OCP_MEM_RESOURCE(dcf_in),
  497. .offset = 0x01090000, .size = 0x10000,
  498. },
  499. {
  500. OCP_MEM_RESOURCE(dcf_out),
  501. .offset = 0x010A0000, .size = 0x10000,
  502. },
  503. {
  504. OCP_MEM_RESOURCE(nmea_out),
  505. .offset = 0x010B0000, .size = 0x10000,
  506. },
  507. {
  508. OCP_MEM_RESOURCE(image),
  509. .offset = 0x00020000, .size = 0x1000,
  510. },
  511. {
  512. OCP_MEM_RESOURCE(pps_select),
  513. .offset = 0x00130000, .size = 0x1000,
  514. },
  515. {
  516. OCP_MEM_RESOURCE(sma_map1),
  517. .offset = 0x00140000, .size = 0x1000,
  518. },
  519. {
  520. OCP_MEM_RESOURCE(sma_map2),
  521. .offset = 0x00220000, .size = 0x1000,
  522. },
  523. {
  524. OCP_I2C_RESOURCE(i2c_ctrl),
  525. .offset = 0x00150000, .size = 0x10000, .irq_vec = 7,
  526. .extra = &(struct ptp_ocp_i2c_info) {
  527. .name = "xiic-i2c",
  528. .fixed_rate = 50000000,
  529. .data_size = sizeof(struct xiic_i2c_platform_data),
  530. .data = &(struct xiic_i2c_platform_data) {
  531. .num_devices = 2,
  532. .devices = (struct i2c_board_info[]) {
  533. { I2C_BOARD_INFO("24c02", 0x50) },
  534. { I2C_BOARD_INFO("24mac402", 0x58),
  535. .platform_data = "mac" },
  536. },
  537. },
  538. },
  539. },
  540. {
  541. OCP_SERIAL_RESOURCE(gnss_port),
  542. .offset = 0x00160000 + 0x1000, .irq_vec = 3,
  543. },
  544. {
  545. OCP_SERIAL_RESOURCE(gnss2_port),
  546. .offset = 0x00170000 + 0x1000, .irq_vec = 4,
  547. },
  548. {
  549. OCP_SERIAL_RESOURCE(mac_port),
  550. .offset = 0x00180000 + 0x1000, .irq_vec = 5,
  551. },
  552. {
  553. OCP_SERIAL_RESOURCE(nmea_port),
  554. .offset = 0x00190000 + 0x1000, .irq_vec = 10,
  555. },
  556. {
  557. OCP_SPI_RESOURCE(spi_flash),
  558. .offset = 0x00310000, .size = 0x10000, .irq_vec = 9,
  559. .extra = &(struct ptp_ocp_flash_info) {
  560. .name = "xilinx_spi", .pci_offset = 0,
  561. .data_size = sizeof(struct xspi_platform_data),
  562. .data = &(struct xspi_platform_data) {
  563. .num_chipselect = 1,
  564. .bits_per_word = 8,
  565. .num_devices = 1,
  566. .devices = &(struct spi_board_info) {
  567. .modalias = "spi-nor",
  568. },
  569. },
  570. },
  571. },
  572. {
  573. OCP_MEM_RESOURCE(freq_in[0]),
  574. .offset = 0x01200000, .size = 0x10000,
  575. },
  576. {
  577. OCP_MEM_RESOURCE(freq_in[1]),
  578. .offset = 0x01210000, .size = 0x10000,
  579. },
  580. {
  581. OCP_MEM_RESOURCE(freq_in[2]),
  582. .offset = 0x01220000, .size = 0x10000,
  583. },
  584. {
  585. OCP_MEM_RESOURCE(freq_in[3]),
  586. .offset = 0x01230000, .size = 0x10000,
  587. },
  588. {
  589. .setup = ptp_ocp_fb_board_init,
  590. },
  591. { }
  592. };
  593. static const struct pci_device_id ptp_ocp_pcidev_id[] = {
  594. { PCI_DEVICE_DATA(FACEBOOK, TIMECARD, &ocp_fb_resource) },
  595. { PCI_DEVICE_DATA(CELESTICA, TIMECARD, &ocp_fb_resource) },
  596. { }
  597. };
  598. MODULE_DEVICE_TABLE(pci, ptp_ocp_pcidev_id);
  599. static DEFINE_MUTEX(ptp_ocp_lock);
  600. static DEFINE_IDR(ptp_ocp_idr);
  601. struct ocp_selector {
  602. const char *name;
  603. int value;
  604. };
  605. static const struct ocp_selector ptp_ocp_clock[] = {
  606. { .name = "NONE", .value = 0 },
  607. { .name = "TOD", .value = 1 },
  608. { .name = "IRIG", .value = 2 },
  609. { .name = "PPS", .value = 3 },
  610. { .name = "PTP", .value = 4 },
  611. { .name = "RTC", .value = 5 },
  612. { .name = "DCF", .value = 6 },
  613. { .name = "REGS", .value = 0xfe },
  614. { .name = "EXT", .value = 0xff },
  615. { }
  616. };
  617. #define SMA_DISABLE BIT(16)
  618. #define SMA_ENABLE BIT(15)
  619. #define SMA_SELECT_MASK GENMASK(14, 0)
  620. static const struct ocp_selector ptp_ocp_sma_in[] = {
  621. { .name = "10Mhz", .value = 0x0000 },
  622. { .name = "PPS1", .value = 0x0001 },
  623. { .name = "PPS2", .value = 0x0002 },
  624. { .name = "TS1", .value = 0x0004 },
  625. { .name = "TS2", .value = 0x0008 },
  626. { .name = "IRIG", .value = 0x0010 },
  627. { .name = "DCF", .value = 0x0020 },
  628. { .name = "TS3", .value = 0x0040 },
  629. { .name = "TS4", .value = 0x0080 },
  630. { .name = "FREQ1", .value = 0x0100 },
  631. { .name = "FREQ2", .value = 0x0200 },
  632. { .name = "FREQ3", .value = 0x0400 },
  633. { .name = "FREQ4", .value = 0x0800 },
  634. { .name = "None", .value = SMA_DISABLE },
  635. { }
  636. };
  637. static const struct ocp_selector ptp_ocp_sma_out[] = {
  638. { .name = "10Mhz", .value = 0x0000 },
  639. { .name = "PHC", .value = 0x0001 },
  640. { .name = "MAC", .value = 0x0002 },
  641. { .name = "GNSS1", .value = 0x0004 },
  642. { .name = "GNSS2", .value = 0x0008 },
  643. { .name = "IRIG", .value = 0x0010 },
  644. { .name = "DCF", .value = 0x0020 },
  645. { .name = "GEN1", .value = 0x0040 },
  646. { .name = "GEN2", .value = 0x0080 },
  647. { .name = "GEN3", .value = 0x0100 },
  648. { .name = "GEN4", .value = 0x0200 },
  649. { .name = "GND", .value = 0x2000 },
  650. { .name = "VCC", .value = 0x4000 },
  651. { }
  652. };
  653. struct ocp_sma_op {
  654. const struct ocp_selector *tbl[2];
  655. void (*init)(struct ptp_ocp *bp);
  656. u32 (*get)(struct ptp_ocp *bp, int sma_nr);
  657. int (*set_inputs)(struct ptp_ocp *bp, int sma_nr, u32 val);
  658. int (*set_output)(struct ptp_ocp *bp, int sma_nr, u32 val);
  659. };
  660. static void
  661. ptp_ocp_sma_init(struct ptp_ocp *bp)
  662. {
  663. return bp->sma_op->init(bp);
  664. }
  665. static u32
  666. ptp_ocp_sma_get(struct ptp_ocp *bp, int sma_nr)
  667. {
  668. return bp->sma_op->get(bp, sma_nr);
  669. }
  670. static int
  671. ptp_ocp_sma_set_inputs(struct ptp_ocp *bp, int sma_nr, u32 val)
  672. {
  673. return bp->sma_op->set_inputs(bp, sma_nr, val);
  674. }
  675. static int
  676. ptp_ocp_sma_set_output(struct ptp_ocp *bp, int sma_nr, u32 val)
  677. {
  678. return bp->sma_op->set_output(bp, sma_nr, val);
  679. }
  680. static const char *
  681. ptp_ocp_select_name_from_val(const struct ocp_selector *tbl, int val)
  682. {
  683. int i;
  684. for (i = 0; tbl[i].name; i++)
  685. if (tbl[i].value == val)
  686. return tbl[i].name;
  687. return NULL;
  688. }
  689. static int
  690. ptp_ocp_select_val_from_name(const struct ocp_selector *tbl, const char *name)
  691. {
  692. const char *select;
  693. int i;
  694. for (i = 0; tbl[i].name; i++) {
  695. select = tbl[i].name;
  696. if (!strncasecmp(name, select, strlen(select)))
  697. return tbl[i].value;
  698. }
  699. return -EINVAL;
  700. }
  701. static ssize_t
  702. ptp_ocp_select_table_show(const struct ocp_selector *tbl, char *buf)
  703. {
  704. ssize_t count;
  705. int i;
  706. count = 0;
  707. for (i = 0; tbl[i].name; i++)
  708. count += sysfs_emit_at(buf, count, "%s ", tbl[i].name);
  709. if (count)
  710. count--;
  711. count += sysfs_emit_at(buf, count, "\n");
  712. return count;
  713. }
  714. static int
  715. __ptp_ocp_gettime_locked(struct ptp_ocp *bp, struct timespec64 *ts,
  716. struct ptp_system_timestamp *sts)
  717. {
  718. u32 ctrl, time_sec, time_ns;
  719. int i;
  720. ptp_read_system_prets(sts);
  721. ctrl = OCP_CTRL_READ_TIME_REQ | OCP_CTRL_ENABLE;
  722. iowrite32(ctrl, &bp->reg->ctrl);
  723. for (i = 0; i < 100; i++) {
  724. ctrl = ioread32(&bp->reg->ctrl);
  725. if (ctrl & OCP_CTRL_READ_TIME_DONE)
  726. break;
  727. }
  728. ptp_read_system_postts(sts);
  729. if (sts && bp->ts_window_adjust) {
  730. s64 ns = timespec64_to_ns(&sts->post_ts);
  731. sts->post_ts = ns_to_timespec64(ns - bp->ts_window_adjust);
  732. }
  733. time_ns = ioread32(&bp->reg->time_ns);
  734. time_sec = ioread32(&bp->reg->time_sec);
  735. ts->tv_sec = time_sec;
  736. ts->tv_nsec = time_ns;
  737. return ctrl & OCP_CTRL_READ_TIME_DONE ? 0 : -ETIMEDOUT;
  738. }
  739. static int
  740. ptp_ocp_gettimex(struct ptp_clock_info *ptp_info, struct timespec64 *ts,
  741. struct ptp_system_timestamp *sts)
  742. {
  743. struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info);
  744. unsigned long flags;
  745. int err;
  746. spin_lock_irqsave(&bp->lock, flags);
  747. err = __ptp_ocp_gettime_locked(bp, ts, sts);
  748. spin_unlock_irqrestore(&bp->lock, flags);
  749. return err;
  750. }
  751. static void
  752. __ptp_ocp_settime_locked(struct ptp_ocp *bp, const struct timespec64 *ts)
  753. {
  754. u32 ctrl, time_sec, time_ns;
  755. u32 select;
  756. time_ns = ts->tv_nsec;
  757. time_sec = ts->tv_sec;
  758. select = ioread32(&bp->reg->select);
  759. iowrite32(OCP_SELECT_CLK_REG, &bp->reg->select);
  760. iowrite32(time_ns, &bp->reg->adjust_ns);
  761. iowrite32(time_sec, &bp->reg->adjust_sec);
  762. ctrl = OCP_CTRL_ADJUST_TIME | OCP_CTRL_ENABLE;
  763. iowrite32(ctrl, &bp->reg->ctrl);
  764. /* restore clock selection */
  765. iowrite32(select >> 16, &bp->reg->select);
  766. }
  767. static int
  768. ptp_ocp_settime(struct ptp_clock_info *ptp_info, const struct timespec64 *ts)
  769. {
  770. struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info);
  771. unsigned long flags;
  772. spin_lock_irqsave(&bp->lock, flags);
  773. __ptp_ocp_settime_locked(bp, ts);
  774. spin_unlock_irqrestore(&bp->lock, flags);
  775. return 0;
  776. }
  777. static void
  778. __ptp_ocp_adjtime_locked(struct ptp_ocp *bp, u32 adj_val)
  779. {
  780. u32 select, ctrl;
  781. select = ioread32(&bp->reg->select);
  782. iowrite32(OCP_SELECT_CLK_REG, &bp->reg->select);
  783. iowrite32(adj_val, &bp->reg->offset_ns);
  784. iowrite32(NSEC_PER_SEC, &bp->reg->offset_window_ns);
  785. ctrl = OCP_CTRL_ADJUST_OFFSET | OCP_CTRL_ENABLE;
  786. iowrite32(ctrl, &bp->reg->ctrl);
  787. /* restore clock selection */
  788. iowrite32(select >> 16, &bp->reg->select);
  789. }
  790. static void
  791. ptp_ocp_adjtime_coarse(struct ptp_ocp *bp, s64 delta_ns)
  792. {
  793. struct timespec64 ts;
  794. unsigned long flags;
  795. int err;
  796. spin_lock_irqsave(&bp->lock, flags);
  797. err = __ptp_ocp_gettime_locked(bp, &ts, NULL);
  798. if (likely(!err)) {
  799. set_normalized_timespec64(&ts, ts.tv_sec,
  800. ts.tv_nsec + delta_ns);
  801. __ptp_ocp_settime_locked(bp, &ts);
  802. }
  803. spin_unlock_irqrestore(&bp->lock, flags);
  804. }
  805. static int
  806. ptp_ocp_adjtime(struct ptp_clock_info *ptp_info, s64 delta_ns)
  807. {
  808. struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info);
  809. unsigned long flags;
  810. u32 adj_ns, sign;
  811. if (delta_ns > NSEC_PER_SEC || -delta_ns > NSEC_PER_SEC) {
  812. ptp_ocp_adjtime_coarse(bp, delta_ns);
  813. return 0;
  814. }
  815. sign = delta_ns < 0 ? BIT(31) : 0;
  816. adj_ns = sign ? -delta_ns : delta_ns;
  817. spin_lock_irqsave(&bp->lock, flags);
  818. __ptp_ocp_adjtime_locked(bp, sign | adj_ns);
  819. spin_unlock_irqrestore(&bp->lock, flags);
  820. return 0;
  821. }
  822. static int
  823. ptp_ocp_null_adjfine(struct ptp_clock_info *ptp_info, long scaled_ppm)
  824. {
  825. if (scaled_ppm == 0)
  826. return 0;
  827. return -EOPNOTSUPP;
  828. }
  829. static int
  830. ptp_ocp_null_adjphase(struct ptp_clock_info *ptp_info, s32 phase_ns)
  831. {
  832. return -EOPNOTSUPP;
  833. }
  834. static int
  835. ptp_ocp_enable(struct ptp_clock_info *ptp_info, struct ptp_clock_request *rq,
  836. int on)
  837. {
  838. struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info);
  839. struct ptp_ocp_ext_src *ext = NULL;
  840. u32 req;
  841. int err;
  842. switch (rq->type) {
  843. case PTP_CLK_REQ_EXTTS:
  844. req = OCP_REQ_TIMESTAMP;
  845. switch (rq->extts.index) {
  846. case 0:
  847. ext = bp->ts0;
  848. break;
  849. case 1:
  850. ext = bp->ts1;
  851. break;
  852. case 2:
  853. ext = bp->ts2;
  854. break;
  855. case 3:
  856. ext = bp->ts3;
  857. break;
  858. case 4:
  859. ext = bp->ts4;
  860. break;
  861. case 5:
  862. ext = bp->pps;
  863. break;
  864. }
  865. break;
  866. case PTP_CLK_REQ_PPS:
  867. req = OCP_REQ_PPS;
  868. ext = bp->pps;
  869. break;
  870. case PTP_CLK_REQ_PEROUT:
  871. switch (rq->perout.index) {
  872. case 0:
  873. /* This is a request for 1PPS on an output SMA.
  874. * Allow, but assume manual configuration.
  875. */
  876. if (on && (rq->perout.period.sec != 1 ||
  877. rq->perout.period.nsec != 0))
  878. return -EINVAL;
  879. return 0;
  880. case 1:
  881. case 2:
  882. case 3:
  883. case 4:
  884. req = rq->perout.index - 1;
  885. ext = bp->signal_out[req];
  886. err = ptp_ocp_signal_from_perout(bp, req, &rq->perout);
  887. if (err)
  888. return err;
  889. break;
  890. }
  891. break;
  892. default:
  893. return -EOPNOTSUPP;
  894. }
  895. err = -ENXIO;
  896. if (ext)
  897. err = ext->info->enable(ext, req, on);
  898. return err;
  899. }
  900. static int
  901. ptp_ocp_verify(struct ptp_clock_info *ptp_info, unsigned pin,
  902. enum ptp_pin_function func, unsigned chan)
  903. {
  904. struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info);
  905. char buf[16];
  906. switch (func) {
  907. case PTP_PF_NONE:
  908. snprintf(buf, sizeof(buf), "IN: None");
  909. break;
  910. case PTP_PF_EXTTS:
  911. /* Allow timestamps, but require sysfs configuration. */
  912. return 0;
  913. case PTP_PF_PEROUT:
  914. /* channel 0 is 1PPS from PHC.
  915. * channels 1..4 are the frequency generators.
  916. */
  917. if (chan)
  918. snprintf(buf, sizeof(buf), "OUT: GEN%d", chan);
  919. else
  920. snprintf(buf, sizeof(buf), "OUT: PHC");
  921. break;
  922. default:
  923. return -EOPNOTSUPP;
  924. }
  925. return ptp_ocp_sma_store(bp, buf, pin + 1);
  926. }
  927. static const struct ptp_clock_info ptp_ocp_clock_info = {
  928. .owner = THIS_MODULE,
  929. .name = KBUILD_MODNAME,
  930. .max_adj = 100000000,
  931. .gettimex64 = ptp_ocp_gettimex,
  932. .settime64 = ptp_ocp_settime,
  933. .adjtime = ptp_ocp_adjtime,
  934. .adjfine = ptp_ocp_null_adjfine,
  935. .adjphase = ptp_ocp_null_adjphase,
  936. .enable = ptp_ocp_enable,
  937. .verify = ptp_ocp_verify,
  938. .pps = true,
  939. .n_ext_ts = 6,
  940. .n_per_out = 5,
  941. };
  942. static void
  943. __ptp_ocp_clear_drift_locked(struct ptp_ocp *bp)
  944. {
  945. u32 ctrl, select;
  946. select = ioread32(&bp->reg->select);
  947. iowrite32(OCP_SELECT_CLK_REG, &bp->reg->select);
  948. iowrite32(0, &bp->reg->drift_ns);
  949. ctrl = OCP_CTRL_ADJUST_DRIFT | OCP_CTRL_ENABLE;
  950. iowrite32(ctrl, &bp->reg->ctrl);
  951. /* restore clock selection */
  952. iowrite32(select >> 16, &bp->reg->select);
  953. }
  954. static void
  955. ptp_ocp_utc_distribute(struct ptp_ocp *bp, u32 val)
  956. {
  957. unsigned long flags;
  958. spin_lock_irqsave(&bp->lock, flags);
  959. bp->utc_tai_offset = val;
  960. if (bp->irig_out)
  961. iowrite32(val, &bp->irig_out->adj_sec);
  962. if (bp->dcf_out)
  963. iowrite32(val, &bp->dcf_out->adj_sec);
  964. if (bp->nmea_out)
  965. iowrite32(val, &bp->nmea_out->adj_sec);
  966. spin_unlock_irqrestore(&bp->lock, flags);
  967. }
  968. static void
  969. ptp_ocp_watchdog(struct timer_list *t)
  970. {
  971. struct ptp_ocp *bp = from_timer(bp, t, watchdog);
  972. unsigned long flags;
  973. u32 status, utc_offset;
  974. status = ioread32(&bp->pps_to_clk->status);
  975. if (status & PPS_STATUS_SUPERV_ERR) {
  976. iowrite32(status, &bp->pps_to_clk->status);
  977. if (!bp->gnss_lost) {
  978. spin_lock_irqsave(&bp->lock, flags);
  979. __ptp_ocp_clear_drift_locked(bp);
  980. spin_unlock_irqrestore(&bp->lock, flags);
  981. bp->gnss_lost = ktime_get_real_seconds();
  982. }
  983. } else if (bp->gnss_lost) {
  984. bp->gnss_lost = 0;
  985. }
  986. /* if GNSS provides correct data we can rely on
  987. * it to get leap second information
  988. */
  989. if (bp->tod) {
  990. status = ioread32(&bp->tod->utc_status);
  991. utc_offset = status & TOD_STATUS_UTC_MASK;
  992. if (status & TOD_STATUS_UTC_VALID &&
  993. utc_offset != bp->utc_tai_offset)
  994. ptp_ocp_utc_distribute(bp, utc_offset);
  995. }
  996. mod_timer(&bp->watchdog, jiffies + HZ);
  997. }
  998. static void
  999. ptp_ocp_estimate_pci_timing(struct ptp_ocp *bp)
  1000. {
  1001. ktime_t start, end;
  1002. ktime_t delay;
  1003. u32 ctrl;
  1004. ctrl = ioread32(&bp->reg->ctrl);
  1005. ctrl = OCP_CTRL_READ_TIME_REQ | OCP_CTRL_ENABLE;
  1006. iowrite32(ctrl, &bp->reg->ctrl);
  1007. start = ktime_get_ns();
  1008. ctrl = ioread32(&bp->reg->ctrl);
  1009. end = ktime_get_ns();
  1010. delay = end - start;
  1011. bp->ts_window_adjust = (delay >> 5) * 3;
  1012. }
  1013. static int
  1014. ptp_ocp_init_clock(struct ptp_ocp *bp)
  1015. {
  1016. struct timespec64 ts;
  1017. bool sync;
  1018. u32 ctrl;
  1019. ctrl = OCP_CTRL_ENABLE;
  1020. iowrite32(ctrl, &bp->reg->ctrl);
  1021. /* NO DRIFT Correction */
  1022. /* offset_p:i 1/8, offset_i: 1/16, drift_p: 0, drift_i: 0 */
  1023. iowrite32(0x2000, &bp->reg->servo_offset_p);
  1024. iowrite32(0x1000, &bp->reg->servo_offset_i);
  1025. iowrite32(0, &bp->reg->servo_drift_p);
  1026. iowrite32(0, &bp->reg->servo_drift_i);
  1027. /* latch servo values */
  1028. ctrl |= OCP_CTRL_ADJUST_SERVO;
  1029. iowrite32(ctrl, &bp->reg->ctrl);
  1030. if ((ioread32(&bp->reg->ctrl) & OCP_CTRL_ENABLE) == 0) {
  1031. dev_err(&bp->pdev->dev, "clock not enabled\n");
  1032. return -ENODEV;
  1033. }
  1034. ptp_ocp_estimate_pci_timing(bp);
  1035. sync = ioread32(&bp->reg->status) & OCP_STATUS_IN_SYNC;
  1036. if (!sync) {
  1037. ktime_get_clocktai_ts64(&ts);
  1038. ptp_ocp_settime(&bp->ptp_info, &ts);
  1039. }
  1040. /* If there is a clock supervisor, then enable the watchdog */
  1041. if (bp->pps_to_clk) {
  1042. timer_setup(&bp->watchdog, ptp_ocp_watchdog, 0);
  1043. mod_timer(&bp->watchdog, jiffies + HZ);
  1044. }
  1045. return 0;
  1046. }
  1047. static void
  1048. ptp_ocp_tod_init(struct ptp_ocp *bp)
  1049. {
  1050. u32 ctrl, reg;
  1051. ctrl = ioread32(&bp->tod->ctrl);
  1052. ctrl |= TOD_CTRL_PROTOCOL | TOD_CTRL_ENABLE;
  1053. ctrl &= ~(TOD_CTRL_DISABLE_FMT_A | TOD_CTRL_DISABLE_FMT_B);
  1054. iowrite32(ctrl, &bp->tod->ctrl);
  1055. reg = ioread32(&bp->tod->utc_status);
  1056. if (reg & TOD_STATUS_UTC_VALID)
  1057. ptp_ocp_utc_distribute(bp, reg & TOD_STATUS_UTC_MASK);
  1058. }
  1059. static const char *
  1060. ptp_ocp_tod_proto_name(const int idx)
  1061. {
  1062. static const char * const proto_name[] = {
  1063. "NMEA", "NMEA_ZDA", "NMEA_RMC", "NMEA_none",
  1064. "UBX", "UBX_UTC", "UBX_LS", "UBX_none"
  1065. };
  1066. return proto_name[idx];
  1067. }
  1068. static const char *
  1069. ptp_ocp_tod_gnss_name(int idx)
  1070. {
  1071. static const char * const gnss_name[] = {
  1072. "ALL", "COMBINED", "GPS", "GLONASS", "GALILEO", "BEIDOU",
  1073. "Unknown"
  1074. };
  1075. if (idx >= ARRAY_SIZE(gnss_name))
  1076. idx = ARRAY_SIZE(gnss_name) - 1;
  1077. return gnss_name[idx];
  1078. }
  1079. struct ptp_ocp_nvmem_match_info {
  1080. struct ptp_ocp *bp;
  1081. const void * const tag;
  1082. };
  1083. static int
  1084. ptp_ocp_nvmem_match(struct device *dev, const void *data)
  1085. {
  1086. const struct ptp_ocp_nvmem_match_info *info = data;
  1087. dev = dev->parent;
  1088. if (!i2c_verify_client(dev) || info->tag != dev->platform_data)
  1089. return 0;
  1090. while ((dev = dev->parent))
  1091. if (dev->driver && !strcmp(dev->driver->name, KBUILD_MODNAME))
  1092. return info->bp == dev_get_drvdata(dev);
  1093. return 0;
  1094. }
  1095. static inline struct nvmem_device *
  1096. ptp_ocp_nvmem_device_get(struct ptp_ocp *bp, const void * const tag)
  1097. {
  1098. struct ptp_ocp_nvmem_match_info info = { .bp = bp, .tag = tag };
  1099. return nvmem_device_find(&info, ptp_ocp_nvmem_match);
  1100. }
  1101. static inline void
  1102. ptp_ocp_nvmem_device_put(struct nvmem_device **nvmemp)
  1103. {
  1104. if (!IS_ERR_OR_NULL(*nvmemp))
  1105. nvmem_device_put(*nvmemp);
  1106. *nvmemp = NULL;
  1107. }
  1108. static void
  1109. ptp_ocp_read_eeprom(struct ptp_ocp *bp)
  1110. {
  1111. const struct ptp_ocp_eeprom_map *map;
  1112. struct nvmem_device *nvmem;
  1113. const void *tag;
  1114. int ret;
  1115. if (!bp->i2c_ctrl)
  1116. return;
  1117. tag = NULL;
  1118. nvmem = NULL;
  1119. for (map = bp->eeprom_map; map->len; map++) {
  1120. if (map->tag != tag) {
  1121. tag = map->tag;
  1122. ptp_ocp_nvmem_device_put(&nvmem);
  1123. }
  1124. if (!nvmem) {
  1125. nvmem = ptp_ocp_nvmem_device_get(bp, tag);
  1126. if (IS_ERR(nvmem)) {
  1127. ret = PTR_ERR(nvmem);
  1128. goto fail;
  1129. }
  1130. }
  1131. ret = nvmem_device_read(nvmem, map->off, map->len,
  1132. BP_MAP_ENTRY_ADDR(bp, map));
  1133. if (ret != map->len)
  1134. goto fail;
  1135. }
  1136. bp->has_eeprom_data = true;
  1137. out:
  1138. ptp_ocp_nvmem_device_put(&nvmem);
  1139. return;
  1140. fail:
  1141. dev_err(&bp->pdev->dev, "could not read eeprom: %d\n", ret);
  1142. goto out;
  1143. }
  1144. static struct device *
  1145. ptp_ocp_find_flash(struct ptp_ocp *bp)
  1146. {
  1147. struct device *dev, *last;
  1148. last = NULL;
  1149. dev = &bp->spi_flash->dev;
  1150. while ((dev = device_find_any_child(dev))) {
  1151. if (!strcmp("mtd", dev_bus_name(dev)))
  1152. break;
  1153. put_device(last);
  1154. last = dev;
  1155. }
  1156. put_device(last);
  1157. return dev;
  1158. }
  1159. static int
  1160. ptp_ocp_devlink_fw_image(struct devlink *devlink, const struct firmware *fw,
  1161. const u8 **data, size_t *size)
  1162. {
  1163. struct ptp_ocp *bp = devlink_priv(devlink);
  1164. const struct ptp_ocp_firmware_header *hdr;
  1165. size_t offset, length;
  1166. u16 crc;
  1167. hdr = (const struct ptp_ocp_firmware_header *)fw->data;
  1168. if (memcmp(hdr->magic, OCP_FIRMWARE_MAGIC_HEADER, 4)) {
  1169. devlink_flash_update_status_notify(devlink,
  1170. "No firmware header found, flashing raw image",
  1171. NULL, 0, 0);
  1172. offset = 0;
  1173. length = fw->size;
  1174. goto out;
  1175. }
  1176. if (be16_to_cpu(hdr->pci_vendor_id) != bp->pdev->vendor ||
  1177. be16_to_cpu(hdr->pci_device_id) != bp->pdev->device) {
  1178. devlink_flash_update_status_notify(devlink,
  1179. "Firmware image compatibility check failed",
  1180. NULL, 0, 0);
  1181. return -EINVAL;
  1182. }
  1183. offset = sizeof(*hdr);
  1184. length = be32_to_cpu(hdr->image_size);
  1185. if (length != (fw->size - offset)) {
  1186. devlink_flash_update_status_notify(devlink,
  1187. "Firmware image size check failed",
  1188. NULL, 0, 0);
  1189. return -EINVAL;
  1190. }
  1191. crc = crc16(0xffff, &fw->data[offset], length);
  1192. if (be16_to_cpu(hdr->crc) != crc) {
  1193. devlink_flash_update_status_notify(devlink,
  1194. "Firmware image CRC check failed",
  1195. NULL, 0, 0);
  1196. return -EINVAL;
  1197. }
  1198. out:
  1199. *data = &fw->data[offset];
  1200. *size = length;
  1201. return 0;
  1202. }
  1203. static int
  1204. ptp_ocp_devlink_flash(struct devlink *devlink, struct device *dev,
  1205. const struct firmware *fw)
  1206. {
  1207. struct mtd_info *mtd = dev_get_drvdata(dev);
  1208. struct ptp_ocp *bp = devlink_priv(devlink);
  1209. size_t off, len, size, resid, wrote;
  1210. struct erase_info erase;
  1211. size_t base, blksz;
  1212. const u8 *data;
  1213. int err;
  1214. err = ptp_ocp_devlink_fw_image(devlink, fw, &data, &size);
  1215. if (err)
  1216. goto out;
  1217. off = 0;
  1218. base = bp->flash_start;
  1219. blksz = 4096;
  1220. resid = size;
  1221. while (resid) {
  1222. devlink_flash_update_status_notify(devlink, "Flashing",
  1223. NULL, off, size);
  1224. len = min_t(size_t, resid, blksz);
  1225. erase.addr = base + off;
  1226. erase.len = blksz;
  1227. err = mtd_erase(mtd, &erase);
  1228. if (err)
  1229. goto out;
  1230. err = mtd_write(mtd, base + off, len, &wrote, data + off);
  1231. if (err)
  1232. goto out;
  1233. off += blksz;
  1234. resid -= len;
  1235. }
  1236. out:
  1237. return err;
  1238. }
  1239. static int
  1240. ptp_ocp_devlink_flash_update(struct devlink *devlink,
  1241. struct devlink_flash_update_params *params,
  1242. struct netlink_ext_ack *extack)
  1243. {
  1244. struct ptp_ocp *bp = devlink_priv(devlink);
  1245. struct device *dev;
  1246. const char *msg;
  1247. int err;
  1248. dev = ptp_ocp_find_flash(bp);
  1249. if (!dev) {
  1250. dev_err(&bp->pdev->dev, "Can't find Flash SPI adapter\n");
  1251. return -ENODEV;
  1252. }
  1253. devlink_flash_update_status_notify(devlink, "Preparing to flash",
  1254. NULL, 0, 0);
  1255. err = ptp_ocp_devlink_flash(devlink, dev, params->fw);
  1256. msg = err ? "Flash error" : "Flash complete";
  1257. devlink_flash_update_status_notify(devlink, msg, NULL, 0, 0);
  1258. put_device(dev);
  1259. return err;
  1260. }
  1261. static int
  1262. ptp_ocp_devlink_info_get(struct devlink *devlink, struct devlink_info_req *req,
  1263. struct netlink_ext_ack *extack)
  1264. {
  1265. struct ptp_ocp *bp = devlink_priv(devlink);
  1266. const char *fw_image;
  1267. char buf[32];
  1268. int err;
  1269. err = devlink_info_driver_name_put(req, KBUILD_MODNAME);
  1270. if (err)
  1271. return err;
  1272. fw_image = bp->fw_loader ? "loader" : "fw";
  1273. sprintf(buf, "%d.%d", bp->fw_tag, bp->fw_version);
  1274. err = devlink_info_version_running_put(req, fw_image, buf);
  1275. if (err)
  1276. return err;
  1277. if (!bp->has_eeprom_data) {
  1278. ptp_ocp_read_eeprom(bp);
  1279. if (!bp->has_eeprom_data)
  1280. return 0;
  1281. }
  1282. sprintf(buf, "%pM", bp->serial);
  1283. err = devlink_info_serial_number_put(req, buf);
  1284. if (err)
  1285. return err;
  1286. err = devlink_info_version_fixed_put(req,
  1287. DEVLINK_INFO_VERSION_GENERIC_BOARD_ID,
  1288. bp->board_id);
  1289. if (err)
  1290. return err;
  1291. return 0;
  1292. }
  1293. static const struct devlink_ops ptp_ocp_devlink_ops = {
  1294. .flash_update = ptp_ocp_devlink_flash_update,
  1295. .info_get = ptp_ocp_devlink_info_get,
  1296. };
  1297. static void __iomem *
  1298. __ptp_ocp_get_mem(struct ptp_ocp *bp, resource_size_t start, int size)
  1299. {
  1300. struct resource res = DEFINE_RES_MEM_NAMED(start, size, "ptp_ocp");
  1301. return devm_ioremap_resource(&bp->pdev->dev, &res);
  1302. }
  1303. static void __iomem *
  1304. ptp_ocp_get_mem(struct ptp_ocp *bp, struct ocp_resource *r)
  1305. {
  1306. resource_size_t start;
  1307. start = pci_resource_start(bp->pdev, 0) + r->offset;
  1308. return __ptp_ocp_get_mem(bp, start, r->size);
  1309. }
  1310. static void
  1311. ptp_ocp_set_irq_resource(struct resource *res, int irq)
  1312. {
  1313. struct resource r = DEFINE_RES_IRQ(irq);
  1314. *res = r;
  1315. }
  1316. static void
  1317. ptp_ocp_set_mem_resource(struct resource *res, resource_size_t start, int size)
  1318. {
  1319. struct resource r = DEFINE_RES_MEM(start, size);
  1320. *res = r;
  1321. }
  1322. static int
  1323. ptp_ocp_register_spi(struct ptp_ocp *bp, struct ocp_resource *r)
  1324. {
  1325. struct ptp_ocp_flash_info *info;
  1326. struct pci_dev *pdev = bp->pdev;
  1327. struct platform_device *p;
  1328. struct resource res[2];
  1329. resource_size_t start;
  1330. int id;
  1331. start = pci_resource_start(pdev, 0) + r->offset;
  1332. ptp_ocp_set_mem_resource(&res[0], start, r->size);
  1333. ptp_ocp_set_irq_resource(&res[1], pci_irq_vector(pdev, r->irq_vec));
  1334. info = r->extra;
  1335. id = pci_dev_id(pdev) << 1;
  1336. id += info->pci_offset;
  1337. p = platform_device_register_resndata(&pdev->dev, info->name, id,
  1338. res, 2, info->data,
  1339. info->data_size);
  1340. if (IS_ERR(p))
  1341. return PTR_ERR(p);
  1342. bp_assign_entry(bp, r, p);
  1343. return 0;
  1344. }
  1345. static struct platform_device *
  1346. ptp_ocp_i2c_bus(struct pci_dev *pdev, struct ocp_resource *r, int id)
  1347. {
  1348. struct ptp_ocp_i2c_info *info;
  1349. struct resource res[2];
  1350. resource_size_t start;
  1351. info = r->extra;
  1352. start = pci_resource_start(pdev, 0) + r->offset;
  1353. ptp_ocp_set_mem_resource(&res[0], start, r->size);
  1354. ptp_ocp_set_irq_resource(&res[1], pci_irq_vector(pdev, r->irq_vec));
  1355. return platform_device_register_resndata(&pdev->dev, info->name,
  1356. id, res, 2,
  1357. info->data, info->data_size);
  1358. }
  1359. static int
  1360. ptp_ocp_register_i2c(struct ptp_ocp *bp, struct ocp_resource *r)
  1361. {
  1362. struct pci_dev *pdev = bp->pdev;
  1363. struct ptp_ocp_i2c_info *info;
  1364. struct platform_device *p;
  1365. struct clk_hw *clk;
  1366. char buf[32];
  1367. int id;
  1368. info = r->extra;
  1369. id = pci_dev_id(bp->pdev);
  1370. sprintf(buf, "AXI.%d", id);
  1371. clk = clk_hw_register_fixed_rate(&pdev->dev, buf, NULL, 0,
  1372. info->fixed_rate);
  1373. if (IS_ERR(clk))
  1374. return PTR_ERR(clk);
  1375. bp->i2c_clk = clk;
  1376. sprintf(buf, "%s.%d", info->name, id);
  1377. devm_clk_hw_register_clkdev(&pdev->dev, clk, NULL, buf);
  1378. p = ptp_ocp_i2c_bus(bp->pdev, r, id);
  1379. if (IS_ERR(p))
  1380. return PTR_ERR(p);
  1381. bp_assign_entry(bp, r, p);
  1382. return 0;
  1383. }
  1384. /* The expectation is that this is triggered only on error. */
  1385. static irqreturn_t
  1386. ptp_ocp_signal_irq(int irq, void *priv)
  1387. {
  1388. struct ptp_ocp_ext_src *ext = priv;
  1389. struct signal_reg __iomem *reg = ext->mem;
  1390. struct ptp_ocp *bp = ext->bp;
  1391. u32 enable, status;
  1392. int gen;
  1393. gen = ext->info->index - 1;
  1394. enable = ioread32(&reg->enable);
  1395. status = ioread32(&reg->status);
  1396. /* disable generator on error */
  1397. if (status || !enable) {
  1398. iowrite32(0, &reg->intr_mask);
  1399. iowrite32(0, &reg->enable);
  1400. bp->signal[gen].running = false;
  1401. }
  1402. iowrite32(0, &reg->intr); /* ack interrupt */
  1403. return IRQ_HANDLED;
  1404. }
  1405. static int
  1406. ptp_ocp_signal_set(struct ptp_ocp *bp, int gen, struct ptp_ocp_signal *s)
  1407. {
  1408. struct ptp_system_timestamp sts;
  1409. struct timespec64 ts;
  1410. ktime_t start_ns;
  1411. int err;
  1412. if (!s->period)
  1413. return 0;
  1414. if (!s->pulse)
  1415. s->pulse = ktime_divns(s->period * s->duty, 100);
  1416. err = ptp_ocp_gettimex(&bp->ptp_info, &ts, &sts);
  1417. if (err)
  1418. return err;
  1419. start_ns = ktime_set(ts.tv_sec, ts.tv_nsec) + NSEC_PER_MSEC;
  1420. if (!s->start) {
  1421. /* roundup() does not work on 32-bit systems */
  1422. s->start = DIV64_U64_ROUND_UP(start_ns, s->period);
  1423. s->start = ktime_add(s->start, s->phase);
  1424. }
  1425. if (s->duty < 1 || s->duty > 99)
  1426. return -EINVAL;
  1427. if (s->pulse < 1 || s->pulse > s->period)
  1428. return -EINVAL;
  1429. if (s->start < start_ns)
  1430. return -EINVAL;
  1431. bp->signal[gen] = *s;
  1432. return 0;
  1433. }
  1434. static int
  1435. ptp_ocp_signal_from_perout(struct ptp_ocp *bp, int gen,
  1436. struct ptp_perout_request *req)
  1437. {
  1438. struct ptp_ocp_signal s = { };
  1439. s.polarity = bp->signal[gen].polarity;
  1440. s.period = ktime_set(req->period.sec, req->period.nsec);
  1441. if (!s.period)
  1442. return 0;
  1443. if (req->flags & PTP_PEROUT_DUTY_CYCLE) {
  1444. s.pulse = ktime_set(req->on.sec, req->on.nsec);
  1445. s.duty = ktime_divns(s.pulse * 100, s.period);
  1446. }
  1447. if (req->flags & PTP_PEROUT_PHASE)
  1448. s.phase = ktime_set(req->phase.sec, req->phase.nsec);
  1449. else
  1450. s.start = ktime_set(req->start.sec, req->start.nsec);
  1451. return ptp_ocp_signal_set(bp, gen, &s);
  1452. }
  1453. static int
  1454. ptp_ocp_signal_enable(void *priv, u32 req, bool enable)
  1455. {
  1456. struct ptp_ocp_ext_src *ext = priv;
  1457. struct signal_reg __iomem *reg = ext->mem;
  1458. struct ptp_ocp *bp = ext->bp;
  1459. struct timespec64 ts;
  1460. int gen;
  1461. gen = ext->info->index - 1;
  1462. iowrite32(0, &reg->intr_mask);
  1463. iowrite32(0, &reg->enable);
  1464. bp->signal[gen].running = false;
  1465. if (!enable)
  1466. return 0;
  1467. ts = ktime_to_timespec64(bp->signal[gen].start);
  1468. iowrite32(ts.tv_sec, &reg->start_sec);
  1469. iowrite32(ts.tv_nsec, &reg->start_ns);
  1470. ts = ktime_to_timespec64(bp->signal[gen].period);
  1471. iowrite32(ts.tv_sec, &reg->period_sec);
  1472. iowrite32(ts.tv_nsec, &reg->period_ns);
  1473. ts = ktime_to_timespec64(bp->signal[gen].pulse);
  1474. iowrite32(ts.tv_sec, &reg->pulse_sec);
  1475. iowrite32(ts.tv_nsec, &reg->pulse_ns);
  1476. iowrite32(bp->signal[gen].polarity, &reg->polarity);
  1477. iowrite32(0, &reg->repeat_count);
  1478. iowrite32(0, &reg->intr); /* clear interrupt state */
  1479. iowrite32(1, &reg->intr_mask); /* enable interrupt */
  1480. iowrite32(3, &reg->enable); /* valid & enable */
  1481. bp->signal[gen].running = true;
  1482. return 0;
  1483. }
  1484. static irqreturn_t
  1485. ptp_ocp_ts_irq(int irq, void *priv)
  1486. {
  1487. struct ptp_ocp_ext_src *ext = priv;
  1488. struct ts_reg __iomem *reg = ext->mem;
  1489. struct ptp_clock_event ev;
  1490. u32 sec, nsec;
  1491. if (ext == ext->bp->pps) {
  1492. if (ext->bp->pps_req_map & OCP_REQ_PPS) {
  1493. ev.type = PTP_CLOCK_PPS;
  1494. ptp_clock_event(ext->bp->ptp, &ev);
  1495. }
  1496. if ((ext->bp->pps_req_map & ~OCP_REQ_PPS) == 0)
  1497. goto out;
  1498. }
  1499. /* XXX should fix API - this converts s/ns -> ts -> s/ns */
  1500. sec = ioread32(&reg->time_sec);
  1501. nsec = ioread32(&reg->time_ns);
  1502. ev.type = PTP_CLOCK_EXTTS;
  1503. ev.index = ext->info->index;
  1504. ev.timestamp = sec * NSEC_PER_SEC + nsec;
  1505. ptp_clock_event(ext->bp->ptp, &ev);
  1506. out:
  1507. iowrite32(1, &reg->intr); /* write 1 to ack */
  1508. return IRQ_HANDLED;
  1509. }
  1510. static int
  1511. ptp_ocp_ts_enable(void *priv, u32 req, bool enable)
  1512. {
  1513. struct ptp_ocp_ext_src *ext = priv;
  1514. struct ts_reg __iomem *reg = ext->mem;
  1515. struct ptp_ocp *bp = ext->bp;
  1516. if (ext == bp->pps) {
  1517. u32 old_map = bp->pps_req_map;
  1518. if (enable)
  1519. bp->pps_req_map |= req;
  1520. else
  1521. bp->pps_req_map &= ~req;
  1522. /* if no state change, just return */
  1523. if ((!!old_map ^ !!bp->pps_req_map) == 0)
  1524. return 0;
  1525. }
  1526. if (enable) {
  1527. iowrite32(1, &reg->enable);
  1528. iowrite32(1, &reg->intr_mask);
  1529. iowrite32(1, &reg->intr);
  1530. } else {
  1531. iowrite32(0, &reg->intr_mask);
  1532. iowrite32(0, &reg->enable);
  1533. }
  1534. return 0;
  1535. }
  1536. static void
  1537. ptp_ocp_unregister_ext(struct ptp_ocp_ext_src *ext)
  1538. {
  1539. ext->info->enable(ext, ~0, false);
  1540. pci_free_irq(ext->bp->pdev, ext->irq_vec, ext);
  1541. kfree(ext);
  1542. }
  1543. static int
  1544. ptp_ocp_register_ext(struct ptp_ocp *bp, struct ocp_resource *r)
  1545. {
  1546. struct pci_dev *pdev = bp->pdev;
  1547. struct ptp_ocp_ext_src *ext;
  1548. int err;
  1549. ext = kzalloc(sizeof(*ext), GFP_KERNEL);
  1550. if (!ext)
  1551. return -ENOMEM;
  1552. ext->mem = ptp_ocp_get_mem(bp, r);
  1553. if (IS_ERR(ext->mem)) {
  1554. err = PTR_ERR(ext->mem);
  1555. goto out;
  1556. }
  1557. ext->bp = bp;
  1558. ext->info = r->extra;
  1559. ext->irq_vec = r->irq_vec;
  1560. err = pci_request_irq(pdev, r->irq_vec, ext->info->irq_fcn, NULL,
  1561. ext, "ocp%d.%s", bp->id, r->name);
  1562. if (err) {
  1563. dev_err(&pdev->dev, "Could not get irq %d\n", r->irq_vec);
  1564. goto out;
  1565. }
  1566. bp_assign_entry(bp, r, ext);
  1567. return 0;
  1568. out:
  1569. kfree(ext);
  1570. return err;
  1571. }
  1572. static int
  1573. ptp_ocp_serial_line(struct ptp_ocp *bp, struct ocp_resource *r)
  1574. {
  1575. struct pci_dev *pdev = bp->pdev;
  1576. struct uart_8250_port uart;
  1577. /* Setting UPF_IOREMAP and leaving port.membase unspecified lets
  1578. * the serial port device claim and release the pci resource.
  1579. */
  1580. memset(&uart, 0, sizeof(uart));
  1581. uart.port.dev = &pdev->dev;
  1582. uart.port.iotype = UPIO_MEM;
  1583. uart.port.regshift = 2;
  1584. uart.port.mapbase = pci_resource_start(pdev, 0) + r->offset;
  1585. uart.port.irq = pci_irq_vector(pdev, r->irq_vec);
  1586. uart.port.uartclk = 50000000;
  1587. uart.port.flags = UPF_FIXED_TYPE | UPF_IOREMAP | UPF_NO_THRE_TEST;
  1588. uart.port.type = PORT_16550A;
  1589. return serial8250_register_8250_port(&uart);
  1590. }
  1591. static int
  1592. ptp_ocp_register_serial(struct ptp_ocp *bp, struct ocp_resource *r)
  1593. {
  1594. int port;
  1595. port = ptp_ocp_serial_line(bp, r);
  1596. if (port < 0)
  1597. return port;
  1598. bp_assign_entry(bp, r, port);
  1599. return 0;
  1600. }
  1601. static int
  1602. ptp_ocp_register_mem(struct ptp_ocp *bp, struct ocp_resource *r)
  1603. {
  1604. void __iomem *mem;
  1605. mem = ptp_ocp_get_mem(bp, r);
  1606. if (IS_ERR(mem))
  1607. return PTR_ERR(mem);
  1608. bp_assign_entry(bp, r, mem);
  1609. return 0;
  1610. }
  1611. static void
  1612. ptp_ocp_nmea_out_init(struct ptp_ocp *bp)
  1613. {
  1614. if (!bp->nmea_out)
  1615. return;
  1616. iowrite32(0, &bp->nmea_out->ctrl); /* disable */
  1617. iowrite32(7, &bp->nmea_out->uart_baud); /* 115200 */
  1618. iowrite32(1, &bp->nmea_out->ctrl); /* enable */
  1619. }
  1620. static void
  1621. _ptp_ocp_signal_init(struct ptp_ocp_signal *s, struct signal_reg __iomem *reg)
  1622. {
  1623. u32 val;
  1624. iowrite32(0, &reg->enable); /* disable */
  1625. val = ioread32(&reg->polarity);
  1626. s->polarity = val ? true : false;
  1627. s->duty = 50;
  1628. }
  1629. static void
  1630. ptp_ocp_signal_init(struct ptp_ocp *bp)
  1631. {
  1632. int i;
  1633. for (i = 0; i < 4; i++)
  1634. if (bp->signal_out[i])
  1635. _ptp_ocp_signal_init(&bp->signal[i],
  1636. bp->signal_out[i]->mem);
  1637. }
  1638. static void
  1639. ptp_ocp_attr_group_del(struct ptp_ocp *bp)
  1640. {
  1641. sysfs_remove_groups(&bp->dev.kobj, bp->attr_group);
  1642. kfree(bp->attr_group);
  1643. }
  1644. static int
  1645. ptp_ocp_attr_group_add(struct ptp_ocp *bp,
  1646. const struct ocp_attr_group *attr_tbl)
  1647. {
  1648. int count, i;
  1649. int err;
  1650. count = 0;
  1651. for (i = 0; attr_tbl[i].cap; i++)
  1652. if (attr_tbl[i].cap & bp->fw_cap)
  1653. count++;
  1654. bp->attr_group = kcalloc(count + 1, sizeof(struct attribute_group *),
  1655. GFP_KERNEL);
  1656. if (!bp->attr_group)
  1657. return -ENOMEM;
  1658. count = 0;
  1659. for (i = 0; attr_tbl[i].cap; i++)
  1660. if (attr_tbl[i].cap & bp->fw_cap)
  1661. bp->attr_group[count++] = attr_tbl[i].group;
  1662. err = sysfs_create_groups(&bp->dev.kobj, bp->attr_group);
  1663. if (err)
  1664. bp->attr_group[0] = NULL;
  1665. return err;
  1666. }
  1667. static void
  1668. ptp_ocp_enable_fpga(u32 __iomem *reg, u32 bit, bool enable)
  1669. {
  1670. u32 ctrl;
  1671. bool on;
  1672. ctrl = ioread32(reg);
  1673. on = ctrl & bit;
  1674. if (on ^ enable) {
  1675. ctrl &= ~bit;
  1676. ctrl |= enable ? bit : 0;
  1677. iowrite32(ctrl, reg);
  1678. }
  1679. }
  1680. static void
  1681. ptp_ocp_irig_out(struct ptp_ocp *bp, bool enable)
  1682. {
  1683. return ptp_ocp_enable_fpga(&bp->irig_out->ctrl,
  1684. IRIG_M_CTRL_ENABLE, enable);
  1685. }
  1686. static void
  1687. ptp_ocp_irig_in(struct ptp_ocp *bp, bool enable)
  1688. {
  1689. return ptp_ocp_enable_fpga(&bp->irig_in->ctrl,
  1690. IRIG_S_CTRL_ENABLE, enable);
  1691. }
  1692. static void
  1693. ptp_ocp_dcf_out(struct ptp_ocp *bp, bool enable)
  1694. {
  1695. return ptp_ocp_enable_fpga(&bp->dcf_out->ctrl,
  1696. DCF_M_CTRL_ENABLE, enable);
  1697. }
  1698. static void
  1699. ptp_ocp_dcf_in(struct ptp_ocp *bp, bool enable)
  1700. {
  1701. return ptp_ocp_enable_fpga(&bp->dcf_in->ctrl,
  1702. DCF_S_CTRL_ENABLE, enable);
  1703. }
  1704. static void
  1705. __handle_signal_outputs(struct ptp_ocp *bp, u32 val)
  1706. {
  1707. ptp_ocp_irig_out(bp, val & 0x00100010);
  1708. ptp_ocp_dcf_out(bp, val & 0x00200020);
  1709. }
  1710. static void
  1711. __handle_signal_inputs(struct ptp_ocp *bp, u32 val)
  1712. {
  1713. ptp_ocp_irig_in(bp, val & 0x00100010);
  1714. ptp_ocp_dcf_in(bp, val & 0x00200020);
  1715. }
  1716. static u32
  1717. ptp_ocp_sma_fb_get(struct ptp_ocp *bp, int sma_nr)
  1718. {
  1719. u32 __iomem *gpio;
  1720. u32 shift;
  1721. if (bp->sma[sma_nr - 1].fixed_fcn)
  1722. return (sma_nr - 1) & 1;
  1723. if (bp->sma[sma_nr - 1].mode == SMA_MODE_IN)
  1724. gpio = sma_nr > 2 ? &bp->sma_map2->gpio1 : &bp->sma_map1->gpio1;
  1725. else
  1726. gpio = sma_nr > 2 ? &bp->sma_map1->gpio2 : &bp->sma_map2->gpio2;
  1727. shift = sma_nr & 1 ? 0 : 16;
  1728. return (ioread32(gpio) >> shift) & 0xffff;
  1729. }
  1730. static int
  1731. ptp_ocp_sma_fb_set_output(struct ptp_ocp *bp, int sma_nr, u32 val)
  1732. {
  1733. u32 reg, mask, shift;
  1734. unsigned long flags;
  1735. u32 __iomem *gpio;
  1736. gpio = sma_nr > 2 ? &bp->sma_map1->gpio2 : &bp->sma_map2->gpio2;
  1737. shift = sma_nr & 1 ? 0 : 16;
  1738. mask = 0xffff << (16 - shift);
  1739. spin_lock_irqsave(&bp->lock, flags);
  1740. reg = ioread32(gpio);
  1741. reg = (reg & mask) | (val << shift);
  1742. __handle_signal_outputs(bp, reg);
  1743. iowrite32(reg, gpio);
  1744. spin_unlock_irqrestore(&bp->lock, flags);
  1745. return 0;
  1746. }
  1747. static int
  1748. ptp_ocp_sma_fb_set_inputs(struct ptp_ocp *bp, int sma_nr, u32 val)
  1749. {
  1750. u32 reg, mask, shift;
  1751. unsigned long flags;
  1752. u32 __iomem *gpio;
  1753. gpio = sma_nr > 2 ? &bp->sma_map2->gpio1 : &bp->sma_map1->gpio1;
  1754. shift = sma_nr & 1 ? 0 : 16;
  1755. mask = 0xffff << (16 - shift);
  1756. spin_lock_irqsave(&bp->lock, flags);
  1757. reg = ioread32(gpio);
  1758. reg = (reg & mask) | (val << shift);
  1759. __handle_signal_inputs(bp, reg);
  1760. iowrite32(reg, gpio);
  1761. spin_unlock_irqrestore(&bp->lock, flags);
  1762. return 0;
  1763. }
  1764. static void
  1765. ptp_ocp_sma_fb_init(struct ptp_ocp *bp)
  1766. {
  1767. u32 reg;
  1768. int i;
  1769. /* defaults */
  1770. bp->sma[0].mode = SMA_MODE_IN;
  1771. bp->sma[1].mode = SMA_MODE_IN;
  1772. bp->sma[2].mode = SMA_MODE_OUT;
  1773. bp->sma[3].mode = SMA_MODE_OUT;
  1774. for (i = 0; i < 4; i++)
  1775. bp->sma[i].default_fcn = i & 1;
  1776. /* If no SMA1 map, the pin functions and directions are fixed. */
  1777. if (!bp->sma_map1) {
  1778. for (i = 0; i < 4; i++) {
  1779. bp->sma[i].fixed_fcn = true;
  1780. bp->sma[i].fixed_dir = true;
  1781. }
  1782. return;
  1783. }
  1784. /* If SMA2 GPIO output map is all 1, it is not present.
  1785. * This indicates the firmware has fixed direction SMA pins.
  1786. */
  1787. reg = ioread32(&bp->sma_map2->gpio2);
  1788. if (reg == 0xffffffff) {
  1789. for (i = 0; i < 4; i++)
  1790. bp->sma[i].fixed_dir = true;
  1791. } else {
  1792. reg = ioread32(&bp->sma_map1->gpio1);
  1793. bp->sma[0].mode = reg & BIT(15) ? SMA_MODE_IN : SMA_MODE_OUT;
  1794. bp->sma[1].mode = reg & BIT(31) ? SMA_MODE_IN : SMA_MODE_OUT;
  1795. reg = ioread32(&bp->sma_map1->gpio2);
  1796. bp->sma[2].mode = reg & BIT(15) ? SMA_MODE_OUT : SMA_MODE_IN;
  1797. bp->sma[3].mode = reg & BIT(31) ? SMA_MODE_OUT : SMA_MODE_IN;
  1798. }
  1799. }
  1800. static const struct ocp_sma_op ocp_fb_sma_op = {
  1801. .tbl = { ptp_ocp_sma_in, ptp_ocp_sma_out },
  1802. .init = ptp_ocp_sma_fb_init,
  1803. .get = ptp_ocp_sma_fb_get,
  1804. .set_inputs = ptp_ocp_sma_fb_set_inputs,
  1805. .set_output = ptp_ocp_sma_fb_set_output,
  1806. };
  1807. static int
  1808. ptp_ocp_fb_set_pins(struct ptp_ocp *bp)
  1809. {
  1810. struct ptp_pin_desc *config;
  1811. int i;
  1812. config = kcalloc(4, sizeof(*config), GFP_KERNEL);
  1813. if (!config)
  1814. return -ENOMEM;
  1815. for (i = 0; i < 4; i++) {
  1816. sprintf(config[i].name, "sma%d", i + 1);
  1817. config[i].index = i;
  1818. }
  1819. bp->ptp_info.n_pins = 4;
  1820. bp->ptp_info.pin_config = config;
  1821. return 0;
  1822. }
  1823. static void
  1824. ptp_ocp_fb_set_version(struct ptp_ocp *bp)
  1825. {
  1826. u64 cap = OCP_CAP_BASIC;
  1827. u32 version;
  1828. version = ioread32(&bp->image->version);
  1829. /* if lower 16 bits are empty, this is the fw loader. */
  1830. if ((version & 0xffff) == 0) {
  1831. version = version >> 16;
  1832. bp->fw_loader = true;
  1833. }
  1834. bp->fw_tag = version >> 15;
  1835. bp->fw_version = version & 0x7fff;
  1836. if (bp->fw_tag) {
  1837. /* FPGA firmware */
  1838. if (version >= 5)
  1839. cap |= OCP_CAP_SIGNAL | OCP_CAP_FREQ;
  1840. } else {
  1841. /* SOM firmware */
  1842. if (version >= 19)
  1843. cap |= OCP_CAP_SIGNAL;
  1844. if (version >= 20)
  1845. cap |= OCP_CAP_FREQ;
  1846. }
  1847. bp->fw_cap = cap;
  1848. }
  1849. /* FB specific board initializers; last "resource" registered. */
  1850. static int
  1851. ptp_ocp_fb_board_init(struct ptp_ocp *bp, struct ocp_resource *r)
  1852. {
  1853. int err;
  1854. bp->flash_start = 1024 * 4096;
  1855. bp->eeprom_map = fb_eeprom_map;
  1856. bp->fw_version = ioread32(&bp->image->version);
  1857. bp->sma_op = &ocp_fb_sma_op;
  1858. ptp_ocp_fb_set_version(bp);
  1859. ptp_ocp_tod_init(bp);
  1860. ptp_ocp_nmea_out_init(bp);
  1861. ptp_ocp_sma_init(bp);
  1862. ptp_ocp_signal_init(bp);
  1863. err = ptp_ocp_attr_group_add(bp, fb_timecard_groups);
  1864. if (err)
  1865. return err;
  1866. err = ptp_ocp_fb_set_pins(bp);
  1867. if (err)
  1868. return err;
  1869. return ptp_ocp_init_clock(bp);
  1870. }
  1871. static bool
  1872. ptp_ocp_allow_irq(struct ptp_ocp *bp, struct ocp_resource *r)
  1873. {
  1874. bool allow = !r->irq_vec || r->irq_vec < bp->n_irqs;
  1875. if (!allow)
  1876. dev_err(&bp->pdev->dev, "irq %d out of range, skipping %s\n",
  1877. r->irq_vec, r->name);
  1878. return allow;
  1879. }
  1880. static int
  1881. ptp_ocp_register_resources(struct ptp_ocp *bp, kernel_ulong_t driver_data)
  1882. {
  1883. struct ocp_resource *r, *table;
  1884. int err = 0;
  1885. table = (struct ocp_resource *)driver_data;
  1886. for (r = table; r->setup; r++) {
  1887. if (!ptp_ocp_allow_irq(bp, r))
  1888. continue;
  1889. err = r->setup(bp, r);
  1890. if (err) {
  1891. dev_err(&bp->pdev->dev,
  1892. "Could not register %s: err %d\n",
  1893. r->name, err);
  1894. break;
  1895. }
  1896. }
  1897. return err;
  1898. }
  1899. static ssize_t
  1900. ptp_ocp_show_output(const struct ocp_selector *tbl, u32 val, char *buf,
  1901. int def_val)
  1902. {
  1903. const char *name;
  1904. ssize_t count;
  1905. count = sysfs_emit(buf, "OUT: ");
  1906. name = ptp_ocp_select_name_from_val(tbl, val);
  1907. if (!name)
  1908. name = ptp_ocp_select_name_from_val(tbl, def_val);
  1909. count += sysfs_emit_at(buf, count, "%s\n", name);
  1910. return count;
  1911. }
  1912. static ssize_t
  1913. ptp_ocp_show_inputs(const struct ocp_selector *tbl, u32 val, char *buf,
  1914. int def_val)
  1915. {
  1916. const char *name;
  1917. ssize_t count;
  1918. int i;
  1919. count = sysfs_emit(buf, "IN: ");
  1920. for (i = 0; tbl[i].name; i++) {
  1921. if (val & tbl[i].value) {
  1922. name = tbl[i].name;
  1923. count += sysfs_emit_at(buf, count, "%s ", name);
  1924. }
  1925. }
  1926. if (!val && def_val >= 0) {
  1927. name = ptp_ocp_select_name_from_val(tbl, def_val);
  1928. count += sysfs_emit_at(buf, count, "%s ", name);
  1929. }
  1930. if (count)
  1931. count--;
  1932. count += sysfs_emit_at(buf, count, "\n");
  1933. return count;
  1934. }
  1935. static int
  1936. sma_parse_inputs(const struct ocp_selector * const tbl[], const char *buf,
  1937. enum ptp_ocp_sma_mode *mode)
  1938. {
  1939. int idx, count, dir;
  1940. char **argv;
  1941. int ret;
  1942. argv = argv_split(GFP_KERNEL, buf, &count);
  1943. if (!argv)
  1944. return -ENOMEM;
  1945. ret = -EINVAL;
  1946. if (!count)
  1947. goto out;
  1948. idx = 0;
  1949. dir = *mode == SMA_MODE_IN ? 0 : 1;
  1950. if (!strcasecmp("IN:", argv[0])) {
  1951. dir = 0;
  1952. idx++;
  1953. }
  1954. if (!strcasecmp("OUT:", argv[0])) {
  1955. dir = 1;
  1956. idx++;
  1957. }
  1958. *mode = dir == 0 ? SMA_MODE_IN : SMA_MODE_OUT;
  1959. ret = 0;
  1960. for (; idx < count; idx++)
  1961. ret |= ptp_ocp_select_val_from_name(tbl[dir], argv[idx]);
  1962. if (ret < 0)
  1963. ret = -EINVAL;
  1964. out:
  1965. argv_free(argv);
  1966. return ret;
  1967. }
  1968. static ssize_t
  1969. ptp_ocp_sma_show(struct ptp_ocp *bp, int sma_nr, char *buf,
  1970. int default_in_val, int default_out_val)
  1971. {
  1972. struct ptp_ocp_sma_connector *sma = &bp->sma[sma_nr - 1];
  1973. const struct ocp_selector * const *tbl;
  1974. u32 val;
  1975. tbl = bp->sma_op->tbl;
  1976. val = ptp_ocp_sma_get(bp, sma_nr) & SMA_SELECT_MASK;
  1977. if (sma->mode == SMA_MODE_IN) {
  1978. if (sma->disabled)
  1979. val = SMA_DISABLE;
  1980. return ptp_ocp_show_inputs(tbl[0], val, buf, default_in_val);
  1981. }
  1982. return ptp_ocp_show_output(tbl[1], val, buf, default_out_val);
  1983. }
  1984. static ssize_t
  1985. sma1_show(struct device *dev, struct device_attribute *attr, char *buf)
  1986. {
  1987. struct ptp_ocp *bp = dev_get_drvdata(dev);
  1988. return ptp_ocp_sma_show(bp, 1, buf, 0, 1);
  1989. }
  1990. static ssize_t
  1991. sma2_show(struct device *dev, struct device_attribute *attr, char *buf)
  1992. {
  1993. struct ptp_ocp *bp = dev_get_drvdata(dev);
  1994. return ptp_ocp_sma_show(bp, 2, buf, -1, 1);
  1995. }
  1996. static ssize_t
  1997. sma3_show(struct device *dev, struct device_attribute *attr, char *buf)
  1998. {
  1999. struct ptp_ocp *bp = dev_get_drvdata(dev);
  2000. return ptp_ocp_sma_show(bp, 3, buf, -1, 0);
  2001. }
  2002. static ssize_t
  2003. sma4_show(struct device *dev, struct device_attribute *attr, char *buf)
  2004. {
  2005. struct ptp_ocp *bp = dev_get_drvdata(dev);
  2006. return ptp_ocp_sma_show(bp, 4, buf, -1, 1);
  2007. }
  2008. static int
  2009. ptp_ocp_sma_store(struct ptp_ocp *bp, const char *buf, int sma_nr)
  2010. {
  2011. struct ptp_ocp_sma_connector *sma = &bp->sma[sma_nr - 1];
  2012. enum ptp_ocp_sma_mode mode;
  2013. int val;
  2014. mode = sma->mode;
  2015. val = sma_parse_inputs(bp->sma_op->tbl, buf, &mode);
  2016. if (val < 0)
  2017. return val;
  2018. if (sma->fixed_dir && (mode != sma->mode || val & SMA_DISABLE))
  2019. return -EOPNOTSUPP;
  2020. if (sma->fixed_fcn) {
  2021. if (val != sma->default_fcn)
  2022. return -EOPNOTSUPP;
  2023. return 0;
  2024. }
  2025. sma->disabled = !!(val & SMA_DISABLE);
  2026. if (mode != sma->mode) {
  2027. if (mode == SMA_MODE_IN)
  2028. ptp_ocp_sma_set_output(bp, sma_nr, 0);
  2029. else
  2030. ptp_ocp_sma_set_inputs(bp, sma_nr, 0);
  2031. sma->mode = mode;
  2032. }
  2033. if (!sma->fixed_dir)
  2034. val |= SMA_ENABLE; /* add enable bit */
  2035. if (sma->disabled)
  2036. val = 0;
  2037. if (mode == SMA_MODE_IN)
  2038. val = ptp_ocp_sma_set_inputs(bp, sma_nr, val);
  2039. else
  2040. val = ptp_ocp_sma_set_output(bp, sma_nr, val);
  2041. return val;
  2042. }
  2043. static ssize_t
  2044. sma1_store(struct device *dev, struct device_attribute *attr,
  2045. const char *buf, size_t count)
  2046. {
  2047. struct ptp_ocp *bp = dev_get_drvdata(dev);
  2048. int err;
  2049. err = ptp_ocp_sma_store(bp, buf, 1);
  2050. return err ? err : count;
  2051. }
  2052. static ssize_t
  2053. sma2_store(struct device *dev, struct device_attribute *attr,
  2054. const char *buf, size_t count)
  2055. {
  2056. struct ptp_ocp *bp = dev_get_drvdata(dev);
  2057. int err;
  2058. err = ptp_ocp_sma_store(bp, buf, 2);
  2059. return err ? err : count;
  2060. }
  2061. static ssize_t
  2062. sma3_store(struct device *dev, struct device_attribute *attr,
  2063. const char *buf, size_t count)
  2064. {
  2065. struct ptp_ocp *bp = dev_get_drvdata(dev);
  2066. int err;
  2067. err = ptp_ocp_sma_store(bp, buf, 3);
  2068. return err ? err : count;
  2069. }
  2070. static ssize_t
  2071. sma4_store(struct device *dev, struct device_attribute *attr,
  2072. const char *buf, size_t count)
  2073. {
  2074. struct ptp_ocp *bp = dev_get_drvdata(dev);
  2075. int err;
  2076. err = ptp_ocp_sma_store(bp, buf, 4);
  2077. return err ? err : count;
  2078. }
  2079. static DEVICE_ATTR_RW(sma1);
  2080. static DEVICE_ATTR_RW(sma2);
  2081. static DEVICE_ATTR_RW(sma3);
  2082. static DEVICE_ATTR_RW(sma4);
  2083. static ssize_t
  2084. available_sma_inputs_show(struct device *dev,
  2085. struct device_attribute *attr, char *buf)
  2086. {
  2087. struct ptp_ocp *bp = dev_get_drvdata(dev);
  2088. return ptp_ocp_select_table_show(bp->sma_op->tbl[0], buf);
  2089. }
  2090. static DEVICE_ATTR_RO(available_sma_inputs);
  2091. static ssize_t
  2092. available_sma_outputs_show(struct device *dev,
  2093. struct device_attribute *attr, char *buf)
  2094. {
  2095. struct ptp_ocp *bp = dev_get_drvdata(dev);
  2096. return ptp_ocp_select_table_show(bp->sma_op->tbl[1], buf);
  2097. }
  2098. static DEVICE_ATTR_RO(available_sma_outputs);
  2099. #define EXT_ATTR_RO(_group, _name, _val) \
  2100. struct dev_ext_attribute dev_attr_##_group##_val##_##_name = \
  2101. { __ATTR_RO(_name), (void *)_val }
  2102. #define EXT_ATTR_RW(_group, _name, _val) \
  2103. struct dev_ext_attribute dev_attr_##_group##_val##_##_name = \
  2104. { __ATTR_RW(_name), (void *)_val }
  2105. #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
  2106. /* period [duty [phase [polarity]]] */
  2107. static ssize_t
  2108. signal_store(struct device *dev, struct device_attribute *attr,
  2109. const char *buf, size_t count)
  2110. {
  2111. struct dev_ext_attribute *ea = to_ext_attr(attr);
  2112. struct ptp_ocp *bp = dev_get_drvdata(dev);
  2113. struct ptp_ocp_signal s = { };
  2114. int gen = (uintptr_t)ea->var;
  2115. int argc, err;
  2116. char **argv;
  2117. argv = argv_split(GFP_KERNEL, buf, &argc);
  2118. if (!argv)
  2119. return -ENOMEM;
  2120. err = -EINVAL;
  2121. s.duty = bp->signal[gen].duty;
  2122. s.phase = bp->signal[gen].phase;
  2123. s.period = bp->signal[gen].period;
  2124. s.polarity = bp->signal[gen].polarity;
  2125. switch (argc) {
  2126. case 4:
  2127. argc--;
  2128. err = kstrtobool(argv[argc], &s.polarity);
  2129. if (err)
  2130. goto out;
  2131. fallthrough;
  2132. case 3:
  2133. argc--;
  2134. err = kstrtou64(argv[argc], 0, &s.phase);
  2135. if (err)
  2136. goto out;
  2137. fallthrough;
  2138. case 2:
  2139. argc--;
  2140. err = kstrtoint(argv[argc], 0, &s.duty);
  2141. if (err)
  2142. goto out;
  2143. fallthrough;
  2144. case 1:
  2145. argc--;
  2146. err = kstrtou64(argv[argc], 0, &s.period);
  2147. if (err)
  2148. goto out;
  2149. break;
  2150. default:
  2151. goto out;
  2152. }
  2153. err = ptp_ocp_signal_set(bp, gen, &s);
  2154. if (err)
  2155. goto out;
  2156. err = ptp_ocp_signal_enable(bp->signal_out[gen], gen, s.period != 0);
  2157. out:
  2158. argv_free(argv);
  2159. return err ? err : count;
  2160. }
  2161. static ssize_t
  2162. signal_show(struct device *dev, struct device_attribute *attr, char *buf)
  2163. {
  2164. struct dev_ext_attribute *ea = to_ext_attr(attr);
  2165. struct ptp_ocp *bp = dev_get_drvdata(dev);
  2166. struct ptp_ocp_signal *signal;
  2167. struct timespec64 ts;
  2168. ssize_t count;
  2169. int i;
  2170. i = (uintptr_t)ea->var;
  2171. signal = &bp->signal[i];
  2172. count = sysfs_emit(buf, "%llu %d %llu %d", signal->period,
  2173. signal->duty, signal->phase, signal->polarity);
  2174. ts = ktime_to_timespec64(signal->start);
  2175. count += sysfs_emit_at(buf, count, " %ptT TAI\n", &ts);
  2176. return count;
  2177. }
  2178. static EXT_ATTR_RW(signal, signal, 0);
  2179. static EXT_ATTR_RW(signal, signal, 1);
  2180. static EXT_ATTR_RW(signal, signal, 2);
  2181. static EXT_ATTR_RW(signal, signal, 3);
  2182. static ssize_t
  2183. duty_show(struct device *dev, struct device_attribute *attr, char *buf)
  2184. {
  2185. struct dev_ext_attribute *ea = to_ext_attr(attr);
  2186. struct ptp_ocp *bp = dev_get_drvdata(dev);
  2187. int i = (uintptr_t)ea->var;
  2188. return sysfs_emit(buf, "%d\n", bp->signal[i].duty);
  2189. }
  2190. static EXT_ATTR_RO(signal, duty, 0);
  2191. static EXT_ATTR_RO(signal, duty, 1);
  2192. static EXT_ATTR_RO(signal, duty, 2);
  2193. static EXT_ATTR_RO(signal, duty, 3);
  2194. static ssize_t
  2195. period_show(struct device *dev, struct device_attribute *attr, char *buf)
  2196. {
  2197. struct dev_ext_attribute *ea = to_ext_attr(attr);
  2198. struct ptp_ocp *bp = dev_get_drvdata(dev);
  2199. int i = (uintptr_t)ea->var;
  2200. return sysfs_emit(buf, "%llu\n", bp->signal[i].period);
  2201. }
  2202. static EXT_ATTR_RO(signal, period, 0);
  2203. static EXT_ATTR_RO(signal, period, 1);
  2204. static EXT_ATTR_RO(signal, period, 2);
  2205. static EXT_ATTR_RO(signal, period, 3);
  2206. static ssize_t
  2207. phase_show(struct device *dev, struct device_attribute *attr, char *buf)
  2208. {
  2209. struct dev_ext_attribute *ea = to_ext_attr(attr);
  2210. struct ptp_ocp *bp = dev_get_drvdata(dev);
  2211. int i = (uintptr_t)ea->var;
  2212. return sysfs_emit(buf, "%llu\n", bp->signal[i].phase);
  2213. }
  2214. static EXT_ATTR_RO(signal, phase, 0);
  2215. static EXT_ATTR_RO(signal, phase, 1);
  2216. static EXT_ATTR_RO(signal, phase, 2);
  2217. static EXT_ATTR_RO(signal, phase, 3);
  2218. static ssize_t
  2219. polarity_show(struct device *dev, struct device_attribute *attr,
  2220. char *buf)
  2221. {
  2222. struct dev_ext_attribute *ea = to_ext_attr(attr);
  2223. struct ptp_ocp *bp = dev_get_drvdata(dev);
  2224. int i = (uintptr_t)ea->var;
  2225. return sysfs_emit(buf, "%d\n", bp->signal[i].polarity);
  2226. }
  2227. static EXT_ATTR_RO(signal, polarity, 0);
  2228. static EXT_ATTR_RO(signal, polarity, 1);
  2229. static EXT_ATTR_RO(signal, polarity, 2);
  2230. static EXT_ATTR_RO(signal, polarity, 3);
  2231. static ssize_t
  2232. running_show(struct device *dev, struct device_attribute *attr, char *buf)
  2233. {
  2234. struct dev_ext_attribute *ea = to_ext_attr(attr);
  2235. struct ptp_ocp *bp = dev_get_drvdata(dev);
  2236. int i = (uintptr_t)ea->var;
  2237. return sysfs_emit(buf, "%d\n", bp->signal[i].running);
  2238. }
  2239. static EXT_ATTR_RO(signal, running, 0);
  2240. static EXT_ATTR_RO(signal, running, 1);
  2241. static EXT_ATTR_RO(signal, running, 2);
  2242. static EXT_ATTR_RO(signal, running, 3);
  2243. static ssize_t
  2244. start_show(struct device *dev, struct device_attribute *attr, char *buf)
  2245. {
  2246. struct dev_ext_attribute *ea = to_ext_attr(attr);
  2247. struct ptp_ocp *bp = dev_get_drvdata(dev);
  2248. int i = (uintptr_t)ea->var;
  2249. struct timespec64 ts;
  2250. ts = ktime_to_timespec64(bp->signal[i].start);
  2251. return sysfs_emit(buf, "%llu.%lu\n", ts.tv_sec, ts.tv_nsec);
  2252. }
  2253. static EXT_ATTR_RO(signal, start, 0);
  2254. static EXT_ATTR_RO(signal, start, 1);
  2255. static EXT_ATTR_RO(signal, start, 2);
  2256. static EXT_ATTR_RO(signal, start, 3);
  2257. static ssize_t
  2258. seconds_store(struct device *dev, struct device_attribute *attr,
  2259. const char *buf, size_t count)
  2260. {
  2261. struct dev_ext_attribute *ea = to_ext_attr(attr);
  2262. struct ptp_ocp *bp = dev_get_drvdata(dev);
  2263. int idx = (uintptr_t)ea->var;
  2264. u32 val;
  2265. int err;
  2266. err = kstrtou32(buf, 0, &val);
  2267. if (err)
  2268. return err;
  2269. if (val > 0xff)
  2270. return -EINVAL;
  2271. if (val)
  2272. val = (val << 8) | 0x1;
  2273. iowrite32(val, &bp->freq_in[idx]->ctrl);
  2274. return count;
  2275. }
  2276. static ssize_t
  2277. seconds_show(struct device *dev, struct device_attribute *attr, char *buf)
  2278. {
  2279. struct dev_ext_attribute *ea = to_ext_attr(attr);
  2280. struct ptp_ocp *bp = dev_get_drvdata(dev);
  2281. int idx = (uintptr_t)ea->var;
  2282. u32 val;
  2283. val = ioread32(&bp->freq_in[idx]->ctrl);
  2284. if (val & 1)
  2285. val = (val >> 8) & 0xff;
  2286. else
  2287. val = 0;
  2288. return sysfs_emit(buf, "%u\n", val);
  2289. }
  2290. static EXT_ATTR_RW(freq, seconds, 0);
  2291. static EXT_ATTR_RW(freq, seconds, 1);
  2292. static EXT_ATTR_RW(freq, seconds, 2);
  2293. static EXT_ATTR_RW(freq, seconds, 3);
  2294. static ssize_t
  2295. frequency_show(struct device *dev, struct device_attribute *attr, char *buf)
  2296. {
  2297. struct dev_ext_attribute *ea = to_ext_attr(attr);
  2298. struct ptp_ocp *bp = dev_get_drvdata(dev);
  2299. int idx = (uintptr_t)ea->var;
  2300. u32 val;
  2301. val = ioread32(&bp->freq_in[idx]->status);
  2302. if (val & FREQ_STATUS_ERROR)
  2303. return sysfs_emit(buf, "error\n");
  2304. if (val & FREQ_STATUS_OVERRUN)
  2305. return sysfs_emit(buf, "overrun\n");
  2306. if (val & FREQ_STATUS_VALID)
  2307. return sysfs_emit(buf, "%lu\n", val & FREQ_STATUS_MASK);
  2308. return 0;
  2309. }
  2310. static EXT_ATTR_RO(freq, frequency, 0);
  2311. static EXT_ATTR_RO(freq, frequency, 1);
  2312. static EXT_ATTR_RO(freq, frequency, 2);
  2313. static EXT_ATTR_RO(freq, frequency, 3);
  2314. static ssize_t
  2315. serialnum_show(struct device *dev, struct device_attribute *attr, char *buf)
  2316. {
  2317. struct ptp_ocp *bp = dev_get_drvdata(dev);
  2318. if (!bp->has_eeprom_data)
  2319. ptp_ocp_read_eeprom(bp);
  2320. return sysfs_emit(buf, "%pM\n", bp->serial);
  2321. }
  2322. static DEVICE_ATTR_RO(serialnum);
  2323. static ssize_t
  2324. gnss_sync_show(struct device *dev, struct device_attribute *attr, char *buf)
  2325. {
  2326. struct ptp_ocp *bp = dev_get_drvdata(dev);
  2327. ssize_t ret;
  2328. if (bp->gnss_lost)
  2329. ret = sysfs_emit(buf, "LOST @ %ptT\n", &bp->gnss_lost);
  2330. else
  2331. ret = sysfs_emit(buf, "SYNC\n");
  2332. return ret;
  2333. }
  2334. static DEVICE_ATTR_RO(gnss_sync);
  2335. static ssize_t
  2336. utc_tai_offset_show(struct device *dev,
  2337. struct device_attribute *attr, char *buf)
  2338. {
  2339. struct ptp_ocp *bp = dev_get_drvdata(dev);
  2340. return sysfs_emit(buf, "%d\n", bp->utc_tai_offset);
  2341. }
  2342. static ssize_t
  2343. utc_tai_offset_store(struct device *dev,
  2344. struct device_attribute *attr,
  2345. const char *buf, size_t count)
  2346. {
  2347. struct ptp_ocp *bp = dev_get_drvdata(dev);
  2348. int err;
  2349. u32 val;
  2350. err = kstrtou32(buf, 0, &val);
  2351. if (err)
  2352. return err;
  2353. ptp_ocp_utc_distribute(bp, val);
  2354. return count;
  2355. }
  2356. static DEVICE_ATTR_RW(utc_tai_offset);
  2357. static ssize_t
  2358. ts_window_adjust_show(struct device *dev,
  2359. struct device_attribute *attr, char *buf)
  2360. {
  2361. struct ptp_ocp *bp = dev_get_drvdata(dev);
  2362. return sysfs_emit(buf, "%d\n", bp->ts_window_adjust);
  2363. }
  2364. static ssize_t
  2365. ts_window_adjust_store(struct device *dev,
  2366. struct device_attribute *attr,
  2367. const char *buf, size_t count)
  2368. {
  2369. struct ptp_ocp *bp = dev_get_drvdata(dev);
  2370. int err;
  2371. u32 val;
  2372. err = kstrtou32(buf, 0, &val);
  2373. if (err)
  2374. return err;
  2375. bp->ts_window_adjust = val;
  2376. return count;
  2377. }
  2378. static DEVICE_ATTR_RW(ts_window_adjust);
  2379. static ssize_t
  2380. irig_b_mode_show(struct device *dev, struct device_attribute *attr, char *buf)
  2381. {
  2382. struct ptp_ocp *bp = dev_get_drvdata(dev);
  2383. u32 val;
  2384. val = ioread32(&bp->irig_out->ctrl);
  2385. val = (val >> 16) & 0x07;
  2386. return sysfs_emit(buf, "%d\n", val);
  2387. }
  2388. static ssize_t
  2389. irig_b_mode_store(struct device *dev,
  2390. struct device_attribute *attr,
  2391. const char *buf, size_t count)
  2392. {
  2393. struct ptp_ocp *bp = dev_get_drvdata(dev);
  2394. unsigned long flags;
  2395. int err;
  2396. u32 reg;
  2397. u8 val;
  2398. err = kstrtou8(buf, 0, &val);
  2399. if (err)
  2400. return err;
  2401. if (val > 7)
  2402. return -EINVAL;
  2403. reg = ((val & 0x7) << 16);
  2404. spin_lock_irqsave(&bp->lock, flags);
  2405. iowrite32(0, &bp->irig_out->ctrl); /* disable */
  2406. iowrite32(reg, &bp->irig_out->ctrl); /* change mode */
  2407. iowrite32(reg | IRIG_M_CTRL_ENABLE, &bp->irig_out->ctrl);
  2408. spin_unlock_irqrestore(&bp->lock, flags);
  2409. return count;
  2410. }
  2411. static DEVICE_ATTR_RW(irig_b_mode);
  2412. static ssize_t
  2413. clock_source_show(struct device *dev, struct device_attribute *attr, char *buf)
  2414. {
  2415. struct ptp_ocp *bp = dev_get_drvdata(dev);
  2416. const char *p;
  2417. u32 select;
  2418. select = ioread32(&bp->reg->select);
  2419. p = ptp_ocp_select_name_from_val(ptp_ocp_clock, select >> 16);
  2420. return sysfs_emit(buf, "%s\n", p);
  2421. }
  2422. static ssize_t
  2423. clock_source_store(struct device *dev, struct device_attribute *attr,
  2424. const char *buf, size_t count)
  2425. {
  2426. struct ptp_ocp *bp = dev_get_drvdata(dev);
  2427. unsigned long flags;
  2428. int val;
  2429. val = ptp_ocp_select_val_from_name(ptp_ocp_clock, buf);
  2430. if (val < 0)
  2431. return val;
  2432. spin_lock_irqsave(&bp->lock, flags);
  2433. iowrite32(val, &bp->reg->select);
  2434. spin_unlock_irqrestore(&bp->lock, flags);
  2435. return count;
  2436. }
  2437. static DEVICE_ATTR_RW(clock_source);
  2438. static ssize_t
  2439. available_clock_sources_show(struct device *dev,
  2440. struct device_attribute *attr, char *buf)
  2441. {
  2442. return ptp_ocp_select_table_show(ptp_ocp_clock, buf);
  2443. }
  2444. static DEVICE_ATTR_RO(available_clock_sources);
  2445. static ssize_t
  2446. clock_status_drift_show(struct device *dev,
  2447. struct device_attribute *attr, char *buf)
  2448. {
  2449. struct ptp_ocp *bp = dev_get_drvdata(dev);
  2450. u32 val;
  2451. int res;
  2452. val = ioread32(&bp->reg->status_drift);
  2453. res = (val & ~INT_MAX) ? -1 : 1;
  2454. res *= (val & INT_MAX);
  2455. return sysfs_emit(buf, "%d\n", res);
  2456. }
  2457. static DEVICE_ATTR_RO(clock_status_drift);
  2458. static ssize_t
  2459. clock_status_offset_show(struct device *dev,
  2460. struct device_attribute *attr, char *buf)
  2461. {
  2462. struct ptp_ocp *bp = dev_get_drvdata(dev);
  2463. u32 val;
  2464. int res;
  2465. val = ioread32(&bp->reg->status_offset);
  2466. res = (val & ~INT_MAX) ? -1 : 1;
  2467. res *= (val & INT_MAX);
  2468. return sysfs_emit(buf, "%d\n", res);
  2469. }
  2470. static DEVICE_ATTR_RO(clock_status_offset);
  2471. static ssize_t
  2472. tod_correction_show(struct device *dev,
  2473. struct device_attribute *attr, char *buf)
  2474. {
  2475. struct ptp_ocp *bp = dev_get_drvdata(dev);
  2476. u32 val;
  2477. int res;
  2478. val = ioread32(&bp->tod->adj_sec);
  2479. res = (val & ~INT_MAX) ? -1 : 1;
  2480. res *= (val & INT_MAX);
  2481. return sysfs_emit(buf, "%d\n", res);
  2482. }
  2483. static ssize_t
  2484. tod_correction_store(struct device *dev, struct device_attribute *attr,
  2485. const char *buf, size_t count)
  2486. {
  2487. struct ptp_ocp *bp = dev_get_drvdata(dev);
  2488. unsigned long flags;
  2489. int err, res;
  2490. u32 val = 0;
  2491. err = kstrtos32(buf, 0, &res);
  2492. if (err)
  2493. return err;
  2494. if (res < 0) {
  2495. res *= -1;
  2496. val |= BIT(31);
  2497. }
  2498. val |= res;
  2499. spin_lock_irqsave(&bp->lock, flags);
  2500. iowrite32(val, &bp->tod->adj_sec);
  2501. spin_unlock_irqrestore(&bp->lock, flags);
  2502. return count;
  2503. }
  2504. static DEVICE_ATTR_RW(tod_correction);
  2505. #define _DEVICE_SIGNAL_GROUP_ATTRS(_nr) \
  2506. static struct attribute *fb_timecard_signal##_nr##_attrs[] = { \
  2507. &dev_attr_signal##_nr##_signal.attr.attr, \
  2508. &dev_attr_signal##_nr##_duty.attr.attr, \
  2509. &dev_attr_signal##_nr##_phase.attr.attr, \
  2510. &dev_attr_signal##_nr##_period.attr.attr, \
  2511. &dev_attr_signal##_nr##_polarity.attr.attr, \
  2512. &dev_attr_signal##_nr##_running.attr.attr, \
  2513. &dev_attr_signal##_nr##_start.attr.attr, \
  2514. NULL, \
  2515. }
  2516. #define DEVICE_SIGNAL_GROUP(_name, _nr) \
  2517. _DEVICE_SIGNAL_GROUP_ATTRS(_nr); \
  2518. static const struct attribute_group \
  2519. fb_timecard_signal##_nr##_group = { \
  2520. .name = #_name, \
  2521. .attrs = fb_timecard_signal##_nr##_attrs, \
  2522. }
  2523. DEVICE_SIGNAL_GROUP(gen1, 0);
  2524. DEVICE_SIGNAL_GROUP(gen2, 1);
  2525. DEVICE_SIGNAL_GROUP(gen3, 2);
  2526. DEVICE_SIGNAL_GROUP(gen4, 3);
  2527. #define _DEVICE_FREQ_GROUP_ATTRS(_nr) \
  2528. static struct attribute *fb_timecard_freq##_nr##_attrs[] = { \
  2529. &dev_attr_freq##_nr##_seconds.attr.attr, \
  2530. &dev_attr_freq##_nr##_frequency.attr.attr, \
  2531. NULL, \
  2532. }
  2533. #define DEVICE_FREQ_GROUP(_name, _nr) \
  2534. _DEVICE_FREQ_GROUP_ATTRS(_nr); \
  2535. static const struct attribute_group \
  2536. fb_timecard_freq##_nr##_group = { \
  2537. .name = #_name, \
  2538. .attrs = fb_timecard_freq##_nr##_attrs, \
  2539. }
  2540. DEVICE_FREQ_GROUP(freq1, 0);
  2541. DEVICE_FREQ_GROUP(freq2, 1);
  2542. DEVICE_FREQ_GROUP(freq3, 2);
  2543. DEVICE_FREQ_GROUP(freq4, 3);
  2544. static struct attribute *fb_timecard_attrs[] = {
  2545. &dev_attr_serialnum.attr,
  2546. &dev_attr_gnss_sync.attr,
  2547. &dev_attr_clock_source.attr,
  2548. &dev_attr_available_clock_sources.attr,
  2549. &dev_attr_sma1.attr,
  2550. &dev_attr_sma2.attr,
  2551. &dev_attr_sma3.attr,
  2552. &dev_attr_sma4.attr,
  2553. &dev_attr_available_sma_inputs.attr,
  2554. &dev_attr_available_sma_outputs.attr,
  2555. &dev_attr_clock_status_drift.attr,
  2556. &dev_attr_clock_status_offset.attr,
  2557. &dev_attr_irig_b_mode.attr,
  2558. &dev_attr_utc_tai_offset.attr,
  2559. &dev_attr_ts_window_adjust.attr,
  2560. &dev_attr_tod_correction.attr,
  2561. NULL,
  2562. };
  2563. static const struct attribute_group fb_timecard_group = {
  2564. .attrs = fb_timecard_attrs,
  2565. };
  2566. static const struct ocp_attr_group fb_timecard_groups[] = {
  2567. { .cap = OCP_CAP_BASIC, .group = &fb_timecard_group },
  2568. { .cap = OCP_CAP_SIGNAL, .group = &fb_timecard_signal0_group },
  2569. { .cap = OCP_CAP_SIGNAL, .group = &fb_timecard_signal1_group },
  2570. { .cap = OCP_CAP_SIGNAL, .group = &fb_timecard_signal2_group },
  2571. { .cap = OCP_CAP_SIGNAL, .group = &fb_timecard_signal3_group },
  2572. { .cap = OCP_CAP_FREQ, .group = &fb_timecard_freq0_group },
  2573. { .cap = OCP_CAP_FREQ, .group = &fb_timecard_freq1_group },
  2574. { .cap = OCP_CAP_FREQ, .group = &fb_timecard_freq2_group },
  2575. { .cap = OCP_CAP_FREQ, .group = &fb_timecard_freq3_group },
  2576. { },
  2577. };
  2578. static void
  2579. gpio_input_map(char *buf, struct ptp_ocp *bp, u16 map[][2], u16 bit,
  2580. const char *def)
  2581. {
  2582. int i;
  2583. for (i = 0; i < 4; i++) {
  2584. if (bp->sma[i].mode != SMA_MODE_IN)
  2585. continue;
  2586. if (map[i][0] & (1 << bit)) {
  2587. sprintf(buf, "sma%d", i + 1);
  2588. return;
  2589. }
  2590. }
  2591. if (!def)
  2592. def = "----";
  2593. strcpy(buf, def);
  2594. }
  2595. static void
  2596. gpio_output_map(char *buf, struct ptp_ocp *bp, u16 map[][2], u16 bit)
  2597. {
  2598. char *ans = buf;
  2599. int i;
  2600. strcpy(ans, "----");
  2601. for (i = 0; i < 4; i++) {
  2602. if (bp->sma[i].mode != SMA_MODE_OUT)
  2603. continue;
  2604. if (map[i][1] & (1 << bit))
  2605. ans += sprintf(ans, "sma%d ", i + 1);
  2606. }
  2607. }
  2608. static void
  2609. _signal_summary_show(struct seq_file *s, struct ptp_ocp *bp, int nr)
  2610. {
  2611. struct signal_reg __iomem *reg = bp->signal_out[nr]->mem;
  2612. struct ptp_ocp_signal *signal = &bp->signal[nr];
  2613. char label[8];
  2614. bool on;
  2615. u32 val;
  2616. if (!signal)
  2617. return;
  2618. on = signal->running;
  2619. sprintf(label, "GEN%d", nr + 1);
  2620. seq_printf(s, "%7s: %s, period:%llu duty:%d%% phase:%llu pol:%d",
  2621. label, on ? " ON" : "OFF",
  2622. signal->period, signal->duty, signal->phase,
  2623. signal->polarity);
  2624. val = ioread32(&reg->enable);
  2625. seq_printf(s, " [%x", val);
  2626. val = ioread32(&reg->status);
  2627. seq_printf(s, " %x]", val);
  2628. seq_printf(s, " start:%llu\n", signal->start);
  2629. }
  2630. static void
  2631. _frequency_summary_show(struct seq_file *s, int nr,
  2632. struct frequency_reg __iomem *reg)
  2633. {
  2634. char label[8];
  2635. bool on;
  2636. u32 val;
  2637. if (!reg)
  2638. return;
  2639. sprintf(label, "FREQ%d", nr + 1);
  2640. val = ioread32(&reg->ctrl);
  2641. on = val & 1;
  2642. val = (val >> 8) & 0xff;
  2643. seq_printf(s, "%7s: %s, sec:%u",
  2644. label,
  2645. on ? " ON" : "OFF",
  2646. val);
  2647. val = ioread32(&reg->status);
  2648. if (val & FREQ_STATUS_ERROR)
  2649. seq_printf(s, ", error");
  2650. if (val & FREQ_STATUS_OVERRUN)
  2651. seq_printf(s, ", overrun");
  2652. if (val & FREQ_STATUS_VALID)
  2653. seq_printf(s, ", freq %lu Hz", val & FREQ_STATUS_MASK);
  2654. seq_printf(s, " reg:%x\n", val);
  2655. }
  2656. static int
  2657. ptp_ocp_summary_show(struct seq_file *s, void *data)
  2658. {
  2659. struct device *dev = s->private;
  2660. struct ptp_system_timestamp sts;
  2661. struct ts_reg __iomem *ts_reg;
  2662. char *buf, *src, *mac_src;
  2663. struct timespec64 ts;
  2664. struct ptp_ocp *bp;
  2665. u16 sma_val[4][2];
  2666. u32 ctrl, val;
  2667. bool on, map;
  2668. int i;
  2669. buf = (char *)__get_free_page(GFP_KERNEL);
  2670. if (!buf)
  2671. return -ENOMEM;
  2672. bp = dev_get_drvdata(dev);
  2673. seq_printf(s, "%7s: /dev/ptp%d\n", "PTP", ptp_clock_index(bp->ptp));
  2674. if (bp->gnss_port != -1)
  2675. seq_printf(s, "%7s: /dev/ttyS%d\n", "GNSS1", bp->gnss_port);
  2676. if (bp->gnss2_port != -1)
  2677. seq_printf(s, "%7s: /dev/ttyS%d\n", "GNSS2", bp->gnss2_port);
  2678. if (bp->mac_port != -1)
  2679. seq_printf(s, "%7s: /dev/ttyS%d\n", "MAC", bp->mac_port);
  2680. if (bp->nmea_port != -1)
  2681. seq_printf(s, "%7s: /dev/ttyS%d\n", "NMEA", bp->nmea_port);
  2682. memset(sma_val, 0xff, sizeof(sma_val));
  2683. if (bp->sma_map1) {
  2684. u32 reg;
  2685. reg = ioread32(&bp->sma_map1->gpio1);
  2686. sma_val[0][0] = reg & 0xffff;
  2687. sma_val[1][0] = reg >> 16;
  2688. reg = ioread32(&bp->sma_map1->gpio2);
  2689. sma_val[2][1] = reg & 0xffff;
  2690. sma_val[3][1] = reg >> 16;
  2691. reg = ioread32(&bp->sma_map2->gpio1);
  2692. sma_val[2][0] = reg & 0xffff;
  2693. sma_val[3][0] = reg >> 16;
  2694. reg = ioread32(&bp->sma_map2->gpio2);
  2695. sma_val[0][1] = reg & 0xffff;
  2696. sma_val[1][1] = reg >> 16;
  2697. }
  2698. sma1_show(dev, NULL, buf);
  2699. seq_printf(s, " sma1: %04x,%04x %s",
  2700. sma_val[0][0], sma_val[0][1], buf);
  2701. sma2_show(dev, NULL, buf);
  2702. seq_printf(s, " sma2: %04x,%04x %s",
  2703. sma_val[1][0], sma_val[1][1], buf);
  2704. sma3_show(dev, NULL, buf);
  2705. seq_printf(s, " sma3: %04x,%04x %s",
  2706. sma_val[2][0], sma_val[2][1], buf);
  2707. sma4_show(dev, NULL, buf);
  2708. seq_printf(s, " sma4: %04x,%04x %s",
  2709. sma_val[3][0], sma_val[3][1], buf);
  2710. if (bp->ts0) {
  2711. ts_reg = bp->ts0->mem;
  2712. on = ioread32(&ts_reg->enable);
  2713. src = "GNSS1";
  2714. seq_printf(s, "%7s: %s, src: %s\n", "TS0",
  2715. on ? " ON" : "OFF", src);
  2716. }
  2717. if (bp->ts1) {
  2718. ts_reg = bp->ts1->mem;
  2719. on = ioread32(&ts_reg->enable);
  2720. gpio_input_map(buf, bp, sma_val, 2, NULL);
  2721. seq_printf(s, "%7s: %s, src: %s\n", "TS1",
  2722. on ? " ON" : "OFF", buf);
  2723. }
  2724. if (bp->ts2) {
  2725. ts_reg = bp->ts2->mem;
  2726. on = ioread32(&ts_reg->enable);
  2727. gpio_input_map(buf, bp, sma_val, 3, NULL);
  2728. seq_printf(s, "%7s: %s, src: %s\n", "TS2",
  2729. on ? " ON" : "OFF", buf);
  2730. }
  2731. if (bp->ts3) {
  2732. ts_reg = bp->ts3->mem;
  2733. on = ioread32(&ts_reg->enable);
  2734. gpio_input_map(buf, bp, sma_val, 6, NULL);
  2735. seq_printf(s, "%7s: %s, src: %s\n", "TS3",
  2736. on ? " ON" : "OFF", buf);
  2737. }
  2738. if (bp->ts4) {
  2739. ts_reg = bp->ts4->mem;
  2740. on = ioread32(&ts_reg->enable);
  2741. gpio_input_map(buf, bp, sma_val, 7, NULL);
  2742. seq_printf(s, "%7s: %s, src: %s\n", "TS4",
  2743. on ? " ON" : "OFF", buf);
  2744. }
  2745. if (bp->pps) {
  2746. ts_reg = bp->pps->mem;
  2747. src = "PHC";
  2748. on = ioread32(&ts_reg->enable);
  2749. map = !!(bp->pps_req_map & OCP_REQ_TIMESTAMP);
  2750. seq_printf(s, "%7s: %s, src: %s\n", "TS5",
  2751. on && map ? " ON" : "OFF", src);
  2752. map = !!(bp->pps_req_map & OCP_REQ_PPS);
  2753. seq_printf(s, "%7s: %s, src: %s\n", "PPS",
  2754. on && map ? " ON" : "OFF", src);
  2755. }
  2756. if (bp->fw_cap & OCP_CAP_SIGNAL)
  2757. for (i = 0; i < 4; i++)
  2758. _signal_summary_show(s, bp, i);
  2759. if (bp->fw_cap & OCP_CAP_FREQ)
  2760. for (i = 0; i < 4; i++)
  2761. _frequency_summary_show(s, i, bp->freq_in[i]);
  2762. if (bp->irig_out) {
  2763. ctrl = ioread32(&bp->irig_out->ctrl);
  2764. on = ctrl & IRIG_M_CTRL_ENABLE;
  2765. val = ioread32(&bp->irig_out->status);
  2766. gpio_output_map(buf, bp, sma_val, 4);
  2767. seq_printf(s, "%7s: %s, error: %d, mode %d, out: %s\n", "IRIG",
  2768. on ? " ON" : "OFF", val, (ctrl >> 16), buf);
  2769. }
  2770. if (bp->irig_in) {
  2771. on = ioread32(&bp->irig_in->ctrl) & IRIG_S_CTRL_ENABLE;
  2772. val = ioread32(&bp->irig_in->status);
  2773. gpio_input_map(buf, bp, sma_val, 4, NULL);
  2774. seq_printf(s, "%7s: %s, error: %d, src: %s\n", "IRIG in",
  2775. on ? " ON" : "OFF", val, buf);
  2776. }
  2777. if (bp->dcf_out) {
  2778. on = ioread32(&bp->dcf_out->ctrl) & DCF_M_CTRL_ENABLE;
  2779. val = ioread32(&bp->dcf_out->status);
  2780. gpio_output_map(buf, bp, sma_val, 5);
  2781. seq_printf(s, "%7s: %s, error: %d, out: %s\n", "DCF",
  2782. on ? " ON" : "OFF", val, buf);
  2783. }
  2784. if (bp->dcf_in) {
  2785. on = ioread32(&bp->dcf_in->ctrl) & DCF_S_CTRL_ENABLE;
  2786. val = ioread32(&bp->dcf_in->status);
  2787. gpio_input_map(buf, bp, sma_val, 5, NULL);
  2788. seq_printf(s, "%7s: %s, error: %d, src: %s\n", "DCF in",
  2789. on ? " ON" : "OFF", val, buf);
  2790. }
  2791. if (bp->nmea_out) {
  2792. on = ioread32(&bp->nmea_out->ctrl) & 1;
  2793. val = ioread32(&bp->nmea_out->status);
  2794. seq_printf(s, "%7s: %s, error: %d\n", "NMEA",
  2795. on ? " ON" : "OFF", val);
  2796. }
  2797. /* compute src for PPS1, used below. */
  2798. if (bp->pps_select) {
  2799. val = ioread32(&bp->pps_select->gpio1);
  2800. src = &buf[80];
  2801. mac_src = "GNSS1";
  2802. if (val & 0x01) {
  2803. gpio_input_map(src, bp, sma_val, 0, NULL);
  2804. mac_src = src;
  2805. } else if (val & 0x02) {
  2806. src = "MAC";
  2807. } else if (val & 0x04) {
  2808. src = "GNSS1";
  2809. } else {
  2810. src = "----";
  2811. mac_src = src;
  2812. }
  2813. } else {
  2814. src = "?";
  2815. mac_src = src;
  2816. }
  2817. seq_printf(s, "MAC PPS1 src: %s\n", mac_src);
  2818. gpio_input_map(buf, bp, sma_val, 1, "GNSS2");
  2819. seq_printf(s, "MAC PPS2 src: %s\n", buf);
  2820. /* assumes automatic switchover/selection */
  2821. val = ioread32(&bp->reg->select);
  2822. switch (val >> 16) {
  2823. case 0:
  2824. sprintf(buf, "----");
  2825. break;
  2826. case 2:
  2827. sprintf(buf, "IRIG");
  2828. break;
  2829. case 3:
  2830. sprintf(buf, "%s via PPS1", src);
  2831. break;
  2832. case 6:
  2833. sprintf(buf, "DCF");
  2834. break;
  2835. default:
  2836. strcpy(buf, "unknown");
  2837. break;
  2838. }
  2839. val = ioread32(&bp->reg->status);
  2840. seq_printf(s, "%7s: %s, state: %s\n", "PHC src", buf,
  2841. val & OCP_STATUS_IN_SYNC ? "sync" : "unsynced");
  2842. if (!ptp_ocp_gettimex(&bp->ptp_info, &ts, &sts)) {
  2843. struct timespec64 sys_ts;
  2844. s64 pre_ns, post_ns, ns;
  2845. pre_ns = timespec64_to_ns(&sts.pre_ts);
  2846. post_ns = timespec64_to_ns(&sts.post_ts);
  2847. ns = (pre_ns + post_ns) / 2;
  2848. ns += (s64)bp->utc_tai_offset * NSEC_PER_SEC;
  2849. sys_ts = ns_to_timespec64(ns);
  2850. seq_printf(s, "%7s: %lld.%ld == %ptT TAI\n", "PHC",
  2851. ts.tv_sec, ts.tv_nsec, &ts);
  2852. seq_printf(s, "%7s: %lld.%ld == %ptT UTC offset %d\n", "SYS",
  2853. sys_ts.tv_sec, sys_ts.tv_nsec, &sys_ts,
  2854. bp->utc_tai_offset);
  2855. seq_printf(s, "%7s: PHC:SYS offset: %lld window: %lld\n", "",
  2856. timespec64_to_ns(&ts) - ns,
  2857. post_ns - pre_ns);
  2858. }
  2859. free_page((unsigned long)buf);
  2860. return 0;
  2861. }
  2862. DEFINE_SHOW_ATTRIBUTE(ptp_ocp_summary);
  2863. static int
  2864. ptp_ocp_tod_status_show(struct seq_file *s, void *data)
  2865. {
  2866. struct device *dev = s->private;
  2867. struct ptp_ocp *bp;
  2868. u32 val;
  2869. int idx;
  2870. bp = dev_get_drvdata(dev);
  2871. val = ioread32(&bp->tod->ctrl);
  2872. if (!(val & TOD_CTRL_ENABLE)) {
  2873. seq_printf(s, "TOD Slave disabled\n");
  2874. return 0;
  2875. }
  2876. seq_printf(s, "TOD Slave enabled, Control Register 0x%08X\n", val);
  2877. idx = val & TOD_CTRL_PROTOCOL ? 4 : 0;
  2878. idx += (val >> 16) & 3;
  2879. seq_printf(s, "Protocol %s\n", ptp_ocp_tod_proto_name(idx));
  2880. idx = (val >> TOD_CTRL_GNSS_SHIFT) & TOD_CTRL_GNSS_MASK;
  2881. seq_printf(s, "GNSS %s\n", ptp_ocp_tod_gnss_name(idx));
  2882. val = ioread32(&bp->tod->version);
  2883. seq_printf(s, "TOD Version %d.%d.%d\n",
  2884. val >> 24, (val >> 16) & 0xff, val & 0xffff);
  2885. val = ioread32(&bp->tod->status);
  2886. seq_printf(s, "Status register: 0x%08X\n", val);
  2887. val = ioread32(&bp->tod->adj_sec);
  2888. idx = (val & ~INT_MAX) ? -1 : 1;
  2889. idx *= (val & INT_MAX);
  2890. seq_printf(s, "Correction seconds: %d\n", idx);
  2891. val = ioread32(&bp->tod->utc_status);
  2892. seq_printf(s, "UTC status register: 0x%08X\n", val);
  2893. seq_printf(s, "UTC offset: %ld valid:%d\n",
  2894. val & TOD_STATUS_UTC_MASK, val & TOD_STATUS_UTC_VALID ? 1 : 0);
  2895. seq_printf(s, "Leap second info valid:%d, Leap second announce %d\n",
  2896. val & TOD_STATUS_LEAP_VALID ? 1 : 0,
  2897. val & TOD_STATUS_LEAP_ANNOUNCE ? 1 : 0);
  2898. val = ioread32(&bp->tod->leap);
  2899. seq_printf(s, "Time to next leap second (in sec): %d\n", (s32) val);
  2900. return 0;
  2901. }
  2902. DEFINE_SHOW_ATTRIBUTE(ptp_ocp_tod_status);
  2903. static struct dentry *ptp_ocp_debugfs_root;
  2904. static void
  2905. ptp_ocp_debugfs_add_device(struct ptp_ocp *bp)
  2906. {
  2907. struct dentry *d;
  2908. d = debugfs_create_dir(dev_name(&bp->dev), ptp_ocp_debugfs_root);
  2909. bp->debug_root = d;
  2910. debugfs_create_file("summary", 0444, bp->debug_root,
  2911. &bp->dev, &ptp_ocp_summary_fops);
  2912. if (bp->tod)
  2913. debugfs_create_file("tod_status", 0444, bp->debug_root,
  2914. &bp->dev, &ptp_ocp_tod_status_fops);
  2915. }
  2916. static void
  2917. ptp_ocp_debugfs_remove_device(struct ptp_ocp *bp)
  2918. {
  2919. debugfs_remove_recursive(bp->debug_root);
  2920. }
  2921. static void
  2922. ptp_ocp_debugfs_init(void)
  2923. {
  2924. ptp_ocp_debugfs_root = debugfs_create_dir("timecard", NULL);
  2925. }
  2926. static void
  2927. ptp_ocp_debugfs_fini(void)
  2928. {
  2929. debugfs_remove_recursive(ptp_ocp_debugfs_root);
  2930. }
  2931. static void
  2932. ptp_ocp_dev_release(struct device *dev)
  2933. {
  2934. struct ptp_ocp *bp = dev_get_drvdata(dev);
  2935. mutex_lock(&ptp_ocp_lock);
  2936. idr_remove(&ptp_ocp_idr, bp->id);
  2937. mutex_unlock(&ptp_ocp_lock);
  2938. }
  2939. static int
  2940. ptp_ocp_device_init(struct ptp_ocp *bp, struct pci_dev *pdev)
  2941. {
  2942. int err;
  2943. mutex_lock(&ptp_ocp_lock);
  2944. err = idr_alloc(&ptp_ocp_idr, bp, 0, 0, GFP_KERNEL);
  2945. mutex_unlock(&ptp_ocp_lock);
  2946. if (err < 0) {
  2947. dev_err(&pdev->dev, "idr_alloc failed: %d\n", err);
  2948. return err;
  2949. }
  2950. bp->id = err;
  2951. bp->ptp_info = ptp_ocp_clock_info;
  2952. spin_lock_init(&bp->lock);
  2953. bp->gnss_port = -1;
  2954. bp->gnss2_port = -1;
  2955. bp->mac_port = -1;
  2956. bp->nmea_port = -1;
  2957. bp->pdev = pdev;
  2958. device_initialize(&bp->dev);
  2959. dev_set_name(&bp->dev, "ocp%d", bp->id);
  2960. bp->dev.class = &timecard_class;
  2961. bp->dev.parent = &pdev->dev;
  2962. bp->dev.release = ptp_ocp_dev_release;
  2963. dev_set_drvdata(&bp->dev, bp);
  2964. err = device_add(&bp->dev);
  2965. if (err) {
  2966. dev_err(&bp->dev, "device add failed: %d\n", err);
  2967. goto out;
  2968. }
  2969. pci_set_drvdata(pdev, bp);
  2970. return 0;
  2971. out:
  2972. put_device(&bp->dev);
  2973. return err;
  2974. }
  2975. static void
  2976. ptp_ocp_symlink(struct ptp_ocp *bp, struct device *child, const char *link)
  2977. {
  2978. struct device *dev = &bp->dev;
  2979. if (sysfs_create_link(&dev->kobj, &child->kobj, link))
  2980. dev_err(dev, "%s symlink failed\n", link);
  2981. }
  2982. static void
  2983. ptp_ocp_link_child(struct ptp_ocp *bp, const char *name, const char *link)
  2984. {
  2985. struct device *dev, *child;
  2986. dev = &bp->pdev->dev;
  2987. child = device_find_child_by_name(dev, name);
  2988. if (!child) {
  2989. dev_err(dev, "Could not find device %s\n", name);
  2990. return;
  2991. }
  2992. ptp_ocp_symlink(bp, child, link);
  2993. put_device(child);
  2994. }
  2995. static int
  2996. ptp_ocp_complete(struct ptp_ocp *bp)
  2997. {
  2998. struct pps_device *pps;
  2999. char buf[32];
  3000. if (bp->gnss_port != -1) {
  3001. sprintf(buf, "ttyS%d", bp->gnss_port);
  3002. ptp_ocp_link_child(bp, buf, "ttyGNSS");
  3003. }
  3004. if (bp->gnss2_port != -1) {
  3005. sprintf(buf, "ttyS%d", bp->gnss2_port);
  3006. ptp_ocp_link_child(bp, buf, "ttyGNSS2");
  3007. }
  3008. if (bp->mac_port != -1) {
  3009. sprintf(buf, "ttyS%d", bp->mac_port);
  3010. ptp_ocp_link_child(bp, buf, "ttyMAC");
  3011. }
  3012. if (bp->nmea_port != -1) {
  3013. sprintf(buf, "ttyS%d", bp->nmea_port);
  3014. ptp_ocp_link_child(bp, buf, "ttyNMEA");
  3015. }
  3016. sprintf(buf, "ptp%d", ptp_clock_index(bp->ptp));
  3017. ptp_ocp_link_child(bp, buf, "ptp");
  3018. pps = pps_lookup_dev(bp->ptp);
  3019. if (pps)
  3020. ptp_ocp_symlink(bp, pps->dev, "pps");
  3021. ptp_ocp_debugfs_add_device(bp);
  3022. return 0;
  3023. }
  3024. static void
  3025. ptp_ocp_phc_info(struct ptp_ocp *bp)
  3026. {
  3027. struct timespec64 ts;
  3028. u32 version, select;
  3029. bool sync;
  3030. version = ioread32(&bp->reg->version);
  3031. select = ioread32(&bp->reg->select);
  3032. dev_info(&bp->pdev->dev, "Version %d.%d.%d, clock %s, device ptp%d\n",
  3033. version >> 24, (version >> 16) & 0xff, version & 0xffff,
  3034. ptp_ocp_select_name_from_val(ptp_ocp_clock, select >> 16),
  3035. ptp_clock_index(bp->ptp));
  3036. sync = ioread32(&bp->reg->status) & OCP_STATUS_IN_SYNC;
  3037. if (!ptp_ocp_gettimex(&bp->ptp_info, &ts, NULL))
  3038. dev_info(&bp->pdev->dev, "Time: %lld.%ld, %s\n",
  3039. ts.tv_sec, ts.tv_nsec,
  3040. sync ? "in-sync" : "UNSYNCED");
  3041. }
  3042. static void
  3043. ptp_ocp_serial_info(struct device *dev, const char *name, int port, int baud)
  3044. {
  3045. if (port != -1)
  3046. dev_info(dev, "%5s: /dev/ttyS%-2d @ %6d\n", name, port, baud);
  3047. }
  3048. static void
  3049. ptp_ocp_info(struct ptp_ocp *bp)
  3050. {
  3051. static int nmea_baud[] = {
  3052. 1200, 2400, 4800, 9600, 19200, 38400,
  3053. 57600, 115200, 230400, 460800, 921600,
  3054. 1000000, 2000000
  3055. };
  3056. struct device *dev = &bp->pdev->dev;
  3057. u32 reg;
  3058. ptp_ocp_phc_info(bp);
  3059. ptp_ocp_serial_info(dev, "GNSS", bp->gnss_port, 115200);
  3060. ptp_ocp_serial_info(dev, "GNSS2", bp->gnss2_port, 115200);
  3061. ptp_ocp_serial_info(dev, "MAC", bp->mac_port, 57600);
  3062. if (bp->nmea_out && bp->nmea_port != -1) {
  3063. int baud = -1;
  3064. reg = ioread32(&bp->nmea_out->uart_baud);
  3065. if (reg < ARRAY_SIZE(nmea_baud))
  3066. baud = nmea_baud[reg];
  3067. ptp_ocp_serial_info(dev, "NMEA", bp->nmea_port, baud);
  3068. }
  3069. }
  3070. static void
  3071. ptp_ocp_detach_sysfs(struct ptp_ocp *bp)
  3072. {
  3073. struct device *dev = &bp->dev;
  3074. sysfs_remove_link(&dev->kobj, "ttyGNSS");
  3075. sysfs_remove_link(&dev->kobj, "ttyGNSS2");
  3076. sysfs_remove_link(&dev->kobj, "ttyMAC");
  3077. sysfs_remove_link(&dev->kobj, "ptp");
  3078. sysfs_remove_link(&dev->kobj, "pps");
  3079. }
  3080. static void
  3081. ptp_ocp_detach(struct ptp_ocp *bp)
  3082. {
  3083. int i;
  3084. ptp_ocp_debugfs_remove_device(bp);
  3085. ptp_ocp_detach_sysfs(bp);
  3086. ptp_ocp_attr_group_del(bp);
  3087. if (timer_pending(&bp->watchdog))
  3088. del_timer_sync(&bp->watchdog);
  3089. if (bp->ts0)
  3090. ptp_ocp_unregister_ext(bp->ts0);
  3091. if (bp->ts1)
  3092. ptp_ocp_unregister_ext(bp->ts1);
  3093. if (bp->ts2)
  3094. ptp_ocp_unregister_ext(bp->ts2);
  3095. if (bp->ts3)
  3096. ptp_ocp_unregister_ext(bp->ts3);
  3097. if (bp->ts4)
  3098. ptp_ocp_unregister_ext(bp->ts4);
  3099. if (bp->pps)
  3100. ptp_ocp_unregister_ext(bp->pps);
  3101. for (i = 0; i < 4; i++)
  3102. if (bp->signal_out[i])
  3103. ptp_ocp_unregister_ext(bp->signal_out[i]);
  3104. if (bp->gnss_port != -1)
  3105. serial8250_unregister_port(bp->gnss_port);
  3106. if (bp->gnss2_port != -1)
  3107. serial8250_unregister_port(bp->gnss2_port);
  3108. if (bp->mac_port != -1)
  3109. serial8250_unregister_port(bp->mac_port);
  3110. if (bp->nmea_port != -1)
  3111. serial8250_unregister_port(bp->nmea_port);
  3112. platform_device_unregister(bp->spi_flash);
  3113. platform_device_unregister(bp->i2c_ctrl);
  3114. if (bp->i2c_clk)
  3115. clk_hw_unregister_fixed_rate(bp->i2c_clk);
  3116. if (bp->n_irqs)
  3117. pci_free_irq_vectors(bp->pdev);
  3118. if (bp->ptp)
  3119. ptp_clock_unregister(bp->ptp);
  3120. kfree(bp->ptp_info.pin_config);
  3121. device_unregister(&bp->dev);
  3122. }
  3123. static int
  3124. ptp_ocp_probe(struct pci_dev *pdev, const struct pci_device_id *id)
  3125. {
  3126. struct devlink *devlink;
  3127. struct ptp_ocp *bp;
  3128. int err;
  3129. devlink = devlink_alloc(&ptp_ocp_devlink_ops, sizeof(*bp), &pdev->dev);
  3130. if (!devlink) {
  3131. dev_err(&pdev->dev, "devlink_alloc failed\n");
  3132. return -ENOMEM;
  3133. }
  3134. err = pci_enable_device(pdev);
  3135. if (err) {
  3136. dev_err(&pdev->dev, "pci_enable_device\n");
  3137. goto out_free;
  3138. }
  3139. bp = devlink_priv(devlink);
  3140. err = ptp_ocp_device_init(bp, pdev);
  3141. if (err)
  3142. goto out_disable;
  3143. /* compat mode.
  3144. * Older FPGA firmware only returns 2 irq's.
  3145. * allow this - if not all of the IRQ's are returned, skip the
  3146. * extra devices and just register the clock.
  3147. */
  3148. err = pci_alloc_irq_vectors(pdev, 1, 17, PCI_IRQ_MSI | PCI_IRQ_MSIX);
  3149. if (err < 0) {
  3150. dev_err(&pdev->dev, "alloc_irq_vectors err: %d\n", err);
  3151. goto out;
  3152. }
  3153. bp->n_irqs = err;
  3154. pci_set_master(pdev);
  3155. err = ptp_ocp_register_resources(bp, id->driver_data);
  3156. if (err)
  3157. goto out;
  3158. bp->ptp = ptp_clock_register(&bp->ptp_info, &pdev->dev);
  3159. if (IS_ERR(bp->ptp)) {
  3160. err = PTR_ERR(bp->ptp);
  3161. dev_err(&pdev->dev, "ptp_clock_register: %d\n", err);
  3162. bp->ptp = NULL;
  3163. goto out;
  3164. }
  3165. err = ptp_ocp_complete(bp);
  3166. if (err)
  3167. goto out;
  3168. ptp_ocp_info(bp);
  3169. devlink_register(devlink);
  3170. return 0;
  3171. out:
  3172. ptp_ocp_detach(bp);
  3173. out_disable:
  3174. pci_disable_device(pdev);
  3175. out_free:
  3176. devlink_free(devlink);
  3177. return err;
  3178. }
  3179. static void
  3180. ptp_ocp_remove(struct pci_dev *pdev)
  3181. {
  3182. struct ptp_ocp *bp = pci_get_drvdata(pdev);
  3183. struct devlink *devlink = priv_to_devlink(bp);
  3184. devlink_unregister(devlink);
  3185. ptp_ocp_detach(bp);
  3186. pci_disable_device(pdev);
  3187. devlink_free(devlink);
  3188. }
  3189. static struct pci_driver ptp_ocp_driver = {
  3190. .name = KBUILD_MODNAME,
  3191. .id_table = ptp_ocp_pcidev_id,
  3192. .probe = ptp_ocp_probe,
  3193. .remove = ptp_ocp_remove,
  3194. };
  3195. static int
  3196. ptp_ocp_i2c_notifier_call(struct notifier_block *nb,
  3197. unsigned long action, void *data)
  3198. {
  3199. struct device *dev, *child = data;
  3200. struct ptp_ocp *bp;
  3201. bool add;
  3202. switch (action) {
  3203. case BUS_NOTIFY_ADD_DEVICE:
  3204. case BUS_NOTIFY_DEL_DEVICE:
  3205. add = action == BUS_NOTIFY_ADD_DEVICE;
  3206. break;
  3207. default:
  3208. return 0;
  3209. }
  3210. if (!i2c_verify_adapter(child))
  3211. return 0;
  3212. dev = child;
  3213. while ((dev = dev->parent))
  3214. if (dev->driver && !strcmp(dev->driver->name, KBUILD_MODNAME))
  3215. goto found;
  3216. return 0;
  3217. found:
  3218. bp = dev_get_drvdata(dev);
  3219. if (add)
  3220. ptp_ocp_symlink(bp, child, "i2c");
  3221. else
  3222. sysfs_remove_link(&bp->dev.kobj, "i2c");
  3223. return 0;
  3224. }
  3225. static struct notifier_block ptp_ocp_i2c_notifier = {
  3226. .notifier_call = ptp_ocp_i2c_notifier_call,
  3227. };
  3228. static int __init
  3229. ptp_ocp_init(void)
  3230. {
  3231. const char *what;
  3232. int err;
  3233. ptp_ocp_debugfs_init();
  3234. what = "timecard class";
  3235. err = class_register(&timecard_class);
  3236. if (err)
  3237. goto out;
  3238. what = "i2c notifier";
  3239. err = bus_register_notifier(&i2c_bus_type, &ptp_ocp_i2c_notifier);
  3240. if (err)
  3241. goto out_notifier;
  3242. what = "ptp_ocp driver";
  3243. err = pci_register_driver(&ptp_ocp_driver);
  3244. if (err)
  3245. goto out_register;
  3246. return 0;
  3247. out_register:
  3248. bus_unregister_notifier(&i2c_bus_type, &ptp_ocp_i2c_notifier);
  3249. out_notifier:
  3250. class_unregister(&timecard_class);
  3251. out:
  3252. ptp_ocp_debugfs_fini();
  3253. pr_err(KBUILD_MODNAME ": failed to register %s: %d\n", what, err);
  3254. return err;
  3255. }
  3256. static void __exit
  3257. ptp_ocp_fini(void)
  3258. {
  3259. bus_unregister_notifier(&i2c_bus_type, &ptp_ocp_i2c_notifier);
  3260. pci_unregister_driver(&ptp_ocp_driver);
  3261. class_unregister(&timecard_class);
  3262. ptp_ocp_debugfs_fini();
  3263. }
  3264. module_init(ptp_ocp_init);
  3265. module_exit(ptp_ocp_fini);
  3266. MODULE_DESCRIPTION("OpenCompute TimeCard driver");
  3267. MODULE_LICENSE("GPL v2");