ptp_clock.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493
  1. // SPDX-License-Identifier: GPL-2.0-or-later
  2. /*
  3. * PTP 1588 clock support
  4. *
  5. * Copyright (C) 2010 OMICRON electronics GmbH
  6. */
  7. #include <linux/idr.h>
  8. #include <linux/device.h>
  9. #include <linux/err.h>
  10. #include <linux/init.h>
  11. #include <linux/kernel.h>
  12. #include <linux/module.h>
  13. #include <linux/posix-clock.h>
  14. #include <linux/pps_kernel.h>
  15. #include <linux/slab.h>
  16. #include <linux/syscalls.h>
  17. #include <linux/uaccess.h>
  18. #include <uapi/linux/sched/types.h>
  19. #include "ptp_private.h"
  20. #define PTP_MAX_ALARMS 4
  21. #define PTP_PPS_DEFAULTS (PPS_CAPTUREASSERT | PPS_OFFSETASSERT)
  22. #define PTP_PPS_EVENT PPS_CAPTUREASSERT
  23. #define PTP_PPS_MODE (PTP_PPS_DEFAULTS | PPS_CANWAIT | PPS_TSFMT_TSPEC)
  24. struct class *ptp_class;
  25. /* private globals */
  26. static dev_t ptp_devt;
  27. static DEFINE_IDA(ptp_clocks_map);
  28. /* time stamp event queue operations */
  29. static inline int queue_free(struct timestamp_event_queue *q)
  30. {
  31. return PTP_MAX_TIMESTAMPS - queue_cnt(q) - 1;
  32. }
  33. static void enqueue_external_timestamp(struct timestamp_event_queue *queue,
  34. struct ptp_clock_event *src)
  35. {
  36. struct ptp_extts_event *dst;
  37. unsigned long flags;
  38. s64 seconds;
  39. u32 remainder;
  40. seconds = div_u64_rem(src->timestamp, 1000000000, &remainder);
  41. spin_lock_irqsave(&queue->lock, flags);
  42. dst = &queue->buf[queue->tail];
  43. dst->index = src->index;
  44. dst->t.sec = seconds;
  45. dst->t.nsec = remainder;
  46. /* Both WRITE_ONCE() are paired with READ_ONCE() in queue_cnt() */
  47. if (!queue_free(queue))
  48. WRITE_ONCE(queue->head, (queue->head + 1) % PTP_MAX_TIMESTAMPS);
  49. WRITE_ONCE(queue->tail, (queue->tail + 1) % PTP_MAX_TIMESTAMPS);
  50. spin_unlock_irqrestore(&queue->lock, flags);
  51. }
  52. /* posix clock implementation */
  53. static int ptp_clock_getres(struct posix_clock *pc, struct timespec64 *tp)
  54. {
  55. tp->tv_sec = 0;
  56. tp->tv_nsec = 1;
  57. return 0;
  58. }
  59. static int ptp_clock_settime(struct posix_clock *pc, const struct timespec64 *tp)
  60. {
  61. struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
  62. if (ptp_clock_freerun(ptp)) {
  63. pr_err("ptp: physical clock is free running\n");
  64. return -EBUSY;
  65. }
  66. return ptp->info->settime64(ptp->info, tp);
  67. }
  68. static int ptp_clock_gettime(struct posix_clock *pc, struct timespec64 *tp)
  69. {
  70. struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
  71. int err;
  72. if (ptp->info->gettimex64)
  73. err = ptp->info->gettimex64(ptp->info, tp, NULL);
  74. else
  75. err = ptp->info->gettime64(ptp->info, tp);
  76. return err;
  77. }
  78. static int ptp_clock_adjtime(struct posix_clock *pc, struct __kernel_timex *tx)
  79. {
  80. struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
  81. struct ptp_clock_info *ops;
  82. int err = -EOPNOTSUPP;
  83. if (ptp_clock_freerun(ptp)) {
  84. pr_err("ptp: physical clock is free running\n");
  85. return -EBUSY;
  86. }
  87. ops = ptp->info;
  88. if (tx->modes & ADJ_SETOFFSET) {
  89. struct timespec64 ts;
  90. ktime_t kt;
  91. s64 delta;
  92. ts.tv_sec = tx->time.tv_sec;
  93. ts.tv_nsec = tx->time.tv_usec;
  94. if (!(tx->modes & ADJ_NANO))
  95. ts.tv_nsec *= 1000;
  96. if ((unsigned long) ts.tv_nsec >= NSEC_PER_SEC)
  97. return -EINVAL;
  98. kt = timespec64_to_ktime(ts);
  99. delta = ktime_to_ns(kt);
  100. err = ops->adjtime(ops, delta);
  101. } else if (tx->modes & ADJ_FREQUENCY) {
  102. long ppb = scaled_ppm_to_ppb(tx->freq);
  103. if (ppb > ops->max_adj || ppb < -ops->max_adj)
  104. return -ERANGE;
  105. if (ops->adjfine)
  106. err = ops->adjfine(ops, tx->freq);
  107. else
  108. err = ops->adjfreq(ops, ppb);
  109. ptp->dialed_frequency = tx->freq;
  110. } else if (tx->modes & ADJ_OFFSET) {
  111. if (ops->adjphase) {
  112. s32 offset = tx->offset;
  113. if (!(tx->modes & ADJ_NANO))
  114. offset *= NSEC_PER_USEC;
  115. err = ops->adjphase(ops, offset);
  116. }
  117. } else if (tx->modes == 0) {
  118. tx->freq = ptp->dialed_frequency;
  119. err = 0;
  120. }
  121. return err;
  122. }
  123. static struct posix_clock_operations ptp_clock_ops = {
  124. .owner = THIS_MODULE,
  125. .clock_adjtime = ptp_clock_adjtime,
  126. .clock_gettime = ptp_clock_gettime,
  127. .clock_getres = ptp_clock_getres,
  128. .clock_settime = ptp_clock_settime,
  129. .ioctl = ptp_ioctl,
  130. .open = ptp_open,
  131. .poll = ptp_poll,
  132. .read = ptp_read,
  133. };
  134. static void ptp_clock_release(struct device *dev)
  135. {
  136. struct ptp_clock *ptp = container_of(dev, struct ptp_clock, dev);
  137. ptp_cleanup_pin_groups(ptp);
  138. kfree(ptp->vclock_index);
  139. mutex_destroy(&ptp->tsevq_mux);
  140. mutex_destroy(&ptp->pincfg_mux);
  141. mutex_destroy(&ptp->n_vclocks_mux);
  142. ida_free(&ptp_clocks_map, ptp->index);
  143. kfree(ptp);
  144. }
  145. static int ptp_getcycles64(struct ptp_clock_info *info, struct timespec64 *ts)
  146. {
  147. if (info->getcyclesx64)
  148. return info->getcyclesx64(info, ts, NULL);
  149. else
  150. return info->gettime64(info, ts);
  151. }
  152. static void ptp_aux_kworker(struct kthread_work *work)
  153. {
  154. struct ptp_clock *ptp = container_of(work, struct ptp_clock,
  155. aux_work.work);
  156. struct ptp_clock_info *info = ptp->info;
  157. long delay;
  158. delay = info->do_aux_work(info);
  159. if (delay >= 0)
  160. kthread_queue_delayed_work(ptp->kworker, &ptp->aux_work, delay);
  161. }
  162. /* public interface */
  163. struct ptp_clock *ptp_clock_register(struct ptp_clock_info *info,
  164. struct device *parent)
  165. {
  166. struct ptp_clock *ptp;
  167. int err = 0, index, major = MAJOR(ptp_devt);
  168. size_t size;
  169. if (info->n_alarm > PTP_MAX_ALARMS)
  170. return ERR_PTR(-EINVAL);
  171. /* Initialize a clock structure. */
  172. err = -ENOMEM;
  173. ptp = kzalloc(sizeof(struct ptp_clock), GFP_KERNEL);
  174. if (ptp == NULL)
  175. goto no_memory;
  176. index = ida_alloc_max(&ptp_clocks_map, MINORMASK, GFP_KERNEL);
  177. if (index < 0) {
  178. err = index;
  179. goto no_slot;
  180. }
  181. ptp->clock.ops = ptp_clock_ops;
  182. ptp->info = info;
  183. ptp->devid = MKDEV(major, index);
  184. ptp->index = index;
  185. spin_lock_init(&ptp->tsevq.lock);
  186. mutex_init(&ptp->tsevq_mux);
  187. mutex_init(&ptp->pincfg_mux);
  188. mutex_init(&ptp->n_vclocks_mux);
  189. init_waitqueue_head(&ptp->tsev_wq);
  190. if (ptp->info->getcycles64 || ptp->info->getcyclesx64) {
  191. ptp->has_cycles = true;
  192. if (!ptp->info->getcycles64 && ptp->info->getcyclesx64)
  193. ptp->info->getcycles64 = ptp_getcycles64;
  194. } else {
  195. /* Free running cycle counter not supported, use time. */
  196. ptp->info->getcycles64 = ptp_getcycles64;
  197. if (ptp->info->gettimex64)
  198. ptp->info->getcyclesx64 = ptp->info->gettimex64;
  199. if (ptp->info->getcrosststamp)
  200. ptp->info->getcrosscycles = ptp->info->getcrosststamp;
  201. }
  202. if (ptp->info->do_aux_work) {
  203. kthread_init_delayed_work(&ptp->aux_work, ptp_aux_kworker);
  204. ptp->kworker = kthread_create_worker(0, "ptp%d", ptp->index);
  205. if (IS_ERR(ptp->kworker)) {
  206. err = PTR_ERR(ptp->kworker);
  207. pr_err("failed to create ptp aux_worker %d\n", err);
  208. goto kworker_err;
  209. }
  210. }
  211. /* PTP virtual clock is being registered under physical clock */
  212. if (parent && parent->class && parent->class->name &&
  213. strcmp(parent->class->name, "ptp") == 0)
  214. ptp->is_virtual_clock = true;
  215. if (!ptp->is_virtual_clock) {
  216. ptp->max_vclocks = PTP_DEFAULT_MAX_VCLOCKS;
  217. size = sizeof(int) * ptp->max_vclocks;
  218. ptp->vclock_index = kzalloc(size, GFP_KERNEL);
  219. if (!ptp->vclock_index) {
  220. err = -ENOMEM;
  221. goto no_mem_for_vclocks;
  222. }
  223. }
  224. err = ptp_populate_pin_groups(ptp);
  225. if (err)
  226. goto no_pin_groups;
  227. /* Register a new PPS source. */
  228. if (info->pps) {
  229. struct pps_source_info pps;
  230. memset(&pps, 0, sizeof(pps));
  231. snprintf(pps.name, PPS_MAX_NAME_LEN, "ptp%d", index);
  232. pps.mode = PTP_PPS_MODE;
  233. pps.owner = info->owner;
  234. ptp->pps_source = pps_register_source(&pps, PTP_PPS_DEFAULTS);
  235. if (IS_ERR(ptp->pps_source)) {
  236. err = PTR_ERR(ptp->pps_source);
  237. pr_err("failed to register pps source\n");
  238. goto no_pps;
  239. }
  240. ptp->pps_source->lookup_cookie = ptp;
  241. }
  242. /* Initialize a new device of our class in our clock structure. */
  243. device_initialize(&ptp->dev);
  244. ptp->dev.devt = ptp->devid;
  245. ptp->dev.class = ptp_class;
  246. ptp->dev.parent = parent;
  247. ptp->dev.groups = ptp->pin_attr_groups;
  248. ptp->dev.release = ptp_clock_release;
  249. dev_set_drvdata(&ptp->dev, ptp);
  250. dev_set_name(&ptp->dev, "ptp%d", ptp->index);
  251. /* Create a posix clock and link it to the device. */
  252. err = posix_clock_register(&ptp->clock, &ptp->dev);
  253. if (err) {
  254. if (ptp->pps_source)
  255. pps_unregister_source(ptp->pps_source);
  256. if (ptp->kworker)
  257. kthread_destroy_worker(ptp->kworker);
  258. put_device(&ptp->dev);
  259. pr_err("failed to create posix clock\n");
  260. return ERR_PTR(err);
  261. }
  262. return ptp;
  263. no_pps:
  264. ptp_cleanup_pin_groups(ptp);
  265. no_pin_groups:
  266. kfree(ptp->vclock_index);
  267. no_mem_for_vclocks:
  268. if (ptp->kworker)
  269. kthread_destroy_worker(ptp->kworker);
  270. kworker_err:
  271. mutex_destroy(&ptp->tsevq_mux);
  272. mutex_destroy(&ptp->pincfg_mux);
  273. mutex_destroy(&ptp->n_vclocks_mux);
  274. ida_free(&ptp_clocks_map, index);
  275. no_slot:
  276. kfree(ptp);
  277. no_memory:
  278. return ERR_PTR(err);
  279. }
  280. EXPORT_SYMBOL(ptp_clock_register);
  281. static int unregister_vclock(struct device *dev, void *data)
  282. {
  283. struct ptp_clock *ptp = dev_get_drvdata(dev);
  284. ptp_vclock_unregister(info_to_vclock(ptp->info));
  285. return 0;
  286. }
  287. int ptp_clock_unregister(struct ptp_clock *ptp)
  288. {
  289. if (ptp_vclock_in_use(ptp)) {
  290. device_for_each_child(&ptp->dev, NULL, unregister_vclock);
  291. }
  292. ptp->defunct = 1;
  293. wake_up_interruptible(&ptp->tsev_wq);
  294. if (ptp->kworker) {
  295. kthread_cancel_delayed_work_sync(&ptp->aux_work);
  296. kthread_destroy_worker(ptp->kworker);
  297. }
  298. /* Release the clock's resources. */
  299. if (ptp->pps_source)
  300. pps_unregister_source(ptp->pps_source);
  301. posix_clock_unregister(&ptp->clock);
  302. return 0;
  303. }
  304. EXPORT_SYMBOL(ptp_clock_unregister);
  305. void ptp_clock_event(struct ptp_clock *ptp, struct ptp_clock_event *event)
  306. {
  307. struct pps_event_time evt;
  308. switch (event->type) {
  309. case PTP_CLOCK_ALARM:
  310. break;
  311. case PTP_CLOCK_EXTTS:
  312. enqueue_external_timestamp(&ptp->tsevq, event);
  313. wake_up_interruptible(&ptp->tsev_wq);
  314. break;
  315. case PTP_CLOCK_PPS:
  316. pps_get_ts(&evt);
  317. pps_event(ptp->pps_source, &evt, PTP_PPS_EVENT, NULL);
  318. break;
  319. case PTP_CLOCK_PPSUSR:
  320. pps_event(ptp->pps_source, &event->pps_times,
  321. PTP_PPS_EVENT, NULL);
  322. break;
  323. }
  324. }
  325. EXPORT_SYMBOL(ptp_clock_event);
  326. int ptp_clock_index(struct ptp_clock *ptp)
  327. {
  328. return ptp->index;
  329. }
  330. EXPORT_SYMBOL(ptp_clock_index);
  331. int ptp_find_pin(struct ptp_clock *ptp,
  332. enum ptp_pin_function func, unsigned int chan)
  333. {
  334. struct ptp_pin_desc *pin = NULL;
  335. int i;
  336. for (i = 0; i < ptp->info->n_pins; i++) {
  337. if (ptp->info->pin_config[i].func == func &&
  338. ptp->info->pin_config[i].chan == chan) {
  339. pin = &ptp->info->pin_config[i];
  340. break;
  341. }
  342. }
  343. return pin ? i : -1;
  344. }
  345. EXPORT_SYMBOL(ptp_find_pin);
  346. int ptp_find_pin_unlocked(struct ptp_clock *ptp,
  347. enum ptp_pin_function func, unsigned int chan)
  348. {
  349. int result;
  350. mutex_lock(&ptp->pincfg_mux);
  351. result = ptp_find_pin(ptp, func, chan);
  352. mutex_unlock(&ptp->pincfg_mux);
  353. return result;
  354. }
  355. EXPORT_SYMBOL(ptp_find_pin_unlocked);
  356. int ptp_schedule_worker(struct ptp_clock *ptp, unsigned long delay)
  357. {
  358. return kthread_mod_delayed_work(ptp->kworker, &ptp->aux_work, delay);
  359. }
  360. EXPORT_SYMBOL(ptp_schedule_worker);
  361. void ptp_cancel_worker_sync(struct ptp_clock *ptp)
  362. {
  363. kthread_cancel_delayed_work_sync(&ptp->aux_work);
  364. }
  365. EXPORT_SYMBOL(ptp_cancel_worker_sync);
  366. /* module operations */
  367. static void __exit ptp_exit(void)
  368. {
  369. class_destroy(ptp_class);
  370. unregister_chrdev_region(ptp_devt, MINORMASK + 1);
  371. ida_destroy(&ptp_clocks_map);
  372. }
  373. static int __init ptp_init(void)
  374. {
  375. int err;
  376. ptp_class = class_create(THIS_MODULE, "ptp");
  377. if (IS_ERR(ptp_class)) {
  378. pr_err("ptp: failed to allocate class\n");
  379. return PTR_ERR(ptp_class);
  380. }
  381. err = alloc_chrdev_region(&ptp_devt, 0, MINORMASK + 1, "ptp");
  382. if (err < 0) {
  383. pr_err("ptp: failed to allocate device region\n");
  384. goto no_region;
  385. }
  386. ptp_class->dev_groups = ptp_groups;
  387. pr_info("PTP clock support registered\n");
  388. return 0;
  389. no_region:
  390. class_destroy(ptp_class);
  391. return err;
  392. }
  393. subsys_initcall(ptp_init);
  394. module_exit(ptp_exit);
  395. MODULE_AUTHOR("Richard Cochran <[email protected]>");
  396. MODULE_DESCRIPTION("PTP clocks support");
  397. MODULE_LICENSE("GPL");