arm_pmu.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. #undef DEBUG
  3. /*
  4. * ARM performance counter support.
  5. *
  6. * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
  7. * Copyright (C) 2010 ARM Ltd., Will Deacon <[email protected]>
  8. *
  9. * This code is based on the sparc64 perf event code, which is in turn based
  10. * on the x86 code.
  11. */
  12. #define pr_fmt(fmt) "hw perfevents: " fmt
  13. #include <linux/bitmap.h>
  14. #include <linux/cpumask.h>
  15. #include <linux/cpu_pm.h>
  16. #include <linux/export.h>
  17. #include <linux/kernel.h>
  18. #include <linux/perf/arm_pmu.h>
  19. #include <linux/slab.h>
  20. #include <linux/sched/clock.h>
  21. #include <linux/spinlock.h>
  22. #include <linux/irq.h>
  23. #include <linux/irqdesc.h>
  24. #include <asm/irq_regs.h>
  25. static int armpmu_count_irq_users(const int irq);
  26. struct pmu_irq_ops {
  27. void (*enable_pmuirq)(unsigned int irq);
  28. void (*disable_pmuirq)(unsigned int irq);
  29. void (*free_pmuirq)(unsigned int irq, int cpu, void __percpu *devid);
  30. };
  31. static void armpmu_free_pmuirq(unsigned int irq, int cpu, void __percpu *devid)
  32. {
  33. free_irq(irq, per_cpu_ptr(devid, cpu));
  34. }
  35. static const struct pmu_irq_ops pmuirq_ops = {
  36. .enable_pmuirq = enable_irq,
  37. .disable_pmuirq = disable_irq_nosync,
  38. .free_pmuirq = armpmu_free_pmuirq
  39. };
  40. static void armpmu_free_pmunmi(unsigned int irq, int cpu, void __percpu *devid)
  41. {
  42. free_nmi(irq, per_cpu_ptr(devid, cpu));
  43. }
  44. static const struct pmu_irq_ops pmunmi_ops = {
  45. .enable_pmuirq = enable_nmi,
  46. .disable_pmuirq = disable_nmi_nosync,
  47. .free_pmuirq = armpmu_free_pmunmi
  48. };
  49. static void armpmu_enable_percpu_pmuirq(unsigned int irq)
  50. {
  51. enable_percpu_irq(irq, IRQ_TYPE_NONE);
  52. }
  53. static void armpmu_free_percpu_pmuirq(unsigned int irq, int cpu,
  54. void __percpu *devid)
  55. {
  56. if (armpmu_count_irq_users(irq) == 1)
  57. free_percpu_irq(irq, devid);
  58. }
  59. static const struct pmu_irq_ops percpu_pmuirq_ops = {
  60. .enable_pmuirq = armpmu_enable_percpu_pmuirq,
  61. .disable_pmuirq = disable_percpu_irq,
  62. .free_pmuirq = armpmu_free_percpu_pmuirq
  63. };
  64. static void armpmu_enable_percpu_pmunmi(unsigned int irq)
  65. {
  66. if (!prepare_percpu_nmi(irq))
  67. enable_percpu_nmi(irq, IRQ_TYPE_NONE);
  68. }
  69. static void armpmu_disable_percpu_pmunmi(unsigned int irq)
  70. {
  71. disable_percpu_nmi(irq);
  72. teardown_percpu_nmi(irq);
  73. }
  74. static void armpmu_free_percpu_pmunmi(unsigned int irq, int cpu,
  75. void __percpu *devid)
  76. {
  77. if (armpmu_count_irq_users(irq) == 1)
  78. free_percpu_nmi(irq, devid);
  79. }
  80. static const struct pmu_irq_ops percpu_pmunmi_ops = {
  81. .enable_pmuirq = armpmu_enable_percpu_pmunmi,
  82. .disable_pmuirq = armpmu_disable_percpu_pmunmi,
  83. .free_pmuirq = armpmu_free_percpu_pmunmi
  84. };
  85. static DEFINE_PER_CPU(struct arm_pmu *, cpu_armpmu);
  86. static DEFINE_PER_CPU(int, cpu_irq);
  87. static DEFINE_PER_CPU(const struct pmu_irq_ops *, cpu_irq_ops);
  88. static bool has_nmi;
  89. static inline u64 arm_pmu_event_max_period(struct perf_event *event)
  90. {
  91. if (event->hw.flags & ARMPMU_EVT_64BIT)
  92. return GENMASK_ULL(63, 0);
  93. else if (event->hw.flags & ARMPMU_EVT_47BIT)
  94. return GENMASK_ULL(46, 0);
  95. else
  96. return GENMASK_ULL(31, 0);
  97. }
  98. static int
  99. armpmu_map_cache_event(const unsigned (*cache_map)
  100. [PERF_COUNT_HW_CACHE_MAX]
  101. [PERF_COUNT_HW_CACHE_OP_MAX]
  102. [PERF_COUNT_HW_CACHE_RESULT_MAX],
  103. u64 config)
  104. {
  105. unsigned int cache_type, cache_op, cache_result, ret;
  106. cache_type = (config >> 0) & 0xff;
  107. if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
  108. return -EINVAL;
  109. cache_op = (config >> 8) & 0xff;
  110. if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
  111. return -EINVAL;
  112. cache_result = (config >> 16) & 0xff;
  113. if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
  114. return -EINVAL;
  115. if (!cache_map)
  116. return -ENOENT;
  117. ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
  118. if (ret == CACHE_OP_UNSUPPORTED)
  119. return -ENOENT;
  120. return ret;
  121. }
  122. static int
  123. armpmu_map_hw_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
  124. {
  125. int mapping;
  126. if (config >= PERF_COUNT_HW_MAX)
  127. return -EINVAL;
  128. if (!event_map)
  129. return -ENOENT;
  130. mapping = (*event_map)[config];
  131. return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
  132. }
  133. static int
  134. armpmu_map_raw_event(u32 raw_event_mask, u64 config)
  135. {
  136. return (int)(config & raw_event_mask);
  137. }
  138. int
  139. armpmu_map_event(struct perf_event *event,
  140. const unsigned (*event_map)[PERF_COUNT_HW_MAX],
  141. const unsigned (*cache_map)
  142. [PERF_COUNT_HW_CACHE_MAX]
  143. [PERF_COUNT_HW_CACHE_OP_MAX]
  144. [PERF_COUNT_HW_CACHE_RESULT_MAX],
  145. u32 raw_event_mask)
  146. {
  147. u64 config = event->attr.config;
  148. int type = event->attr.type;
  149. if (type == event->pmu->type)
  150. return armpmu_map_raw_event(raw_event_mask, config);
  151. switch (type) {
  152. case PERF_TYPE_HARDWARE:
  153. return armpmu_map_hw_event(event_map, config);
  154. case PERF_TYPE_HW_CACHE:
  155. return armpmu_map_cache_event(cache_map, config);
  156. case PERF_TYPE_RAW:
  157. return armpmu_map_raw_event(raw_event_mask, config);
  158. }
  159. return -ENOENT;
  160. }
  161. int armpmu_event_set_period(struct perf_event *event)
  162. {
  163. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  164. struct hw_perf_event *hwc = &event->hw;
  165. s64 left = local64_read(&hwc->period_left);
  166. s64 period = hwc->sample_period;
  167. u64 max_period;
  168. int ret = 0;
  169. max_period = arm_pmu_event_max_period(event);
  170. if (unlikely(left <= -period)) {
  171. left = period;
  172. local64_set(&hwc->period_left, left);
  173. hwc->last_period = period;
  174. ret = 1;
  175. }
  176. if (unlikely(left <= 0)) {
  177. left += period;
  178. local64_set(&hwc->period_left, left);
  179. hwc->last_period = period;
  180. ret = 1;
  181. }
  182. /*
  183. * Limit the maximum period to prevent the counter value
  184. * from overtaking the one we are about to program. In
  185. * effect we are reducing max_period to account for
  186. * interrupt latency (and we are being very conservative).
  187. */
  188. if (left > (max_period >> 1))
  189. left = (max_period >> 1);
  190. local64_set(&hwc->prev_count, (u64)-left);
  191. armpmu->write_counter(event, (u64)(-left) & max_period);
  192. perf_event_update_userpage(event);
  193. return ret;
  194. }
  195. u64 armpmu_event_update(struct perf_event *event)
  196. {
  197. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  198. struct hw_perf_event *hwc = &event->hw;
  199. u64 delta, prev_raw_count, new_raw_count;
  200. u64 max_period = arm_pmu_event_max_period(event);
  201. again:
  202. prev_raw_count = local64_read(&hwc->prev_count);
  203. new_raw_count = armpmu->read_counter(event);
  204. if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
  205. new_raw_count) != prev_raw_count)
  206. goto again;
  207. delta = (new_raw_count - prev_raw_count) & max_period;
  208. local64_add(delta, &event->count);
  209. local64_sub(delta, &hwc->period_left);
  210. return new_raw_count;
  211. }
  212. static void
  213. armpmu_read(struct perf_event *event)
  214. {
  215. armpmu_event_update(event);
  216. }
  217. static void
  218. armpmu_stop(struct perf_event *event, int flags)
  219. {
  220. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  221. struct hw_perf_event *hwc = &event->hw;
  222. /*
  223. * ARM pmu always has to update the counter, so ignore
  224. * PERF_EF_UPDATE, see comments in armpmu_start().
  225. */
  226. if (!(hwc->state & PERF_HES_STOPPED)) {
  227. armpmu->disable(event);
  228. armpmu_event_update(event);
  229. hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
  230. }
  231. }
  232. static void armpmu_start(struct perf_event *event, int flags)
  233. {
  234. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  235. struct hw_perf_event *hwc = &event->hw;
  236. /*
  237. * ARM pmu always has to reprogram the period, so ignore
  238. * PERF_EF_RELOAD, see the comment below.
  239. */
  240. if (flags & PERF_EF_RELOAD)
  241. WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
  242. hwc->state = 0;
  243. /*
  244. * Set the period again. Some counters can't be stopped, so when we
  245. * were stopped we simply disabled the IRQ source and the counter
  246. * may have been left counting. If we don't do this step then we may
  247. * get an interrupt too soon or *way* too late if the overflow has
  248. * happened since disabling.
  249. */
  250. armpmu_event_set_period(event);
  251. armpmu->enable(event);
  252. }
  253. static void
  254. armpmu_del(struct perf_event *event, int flags)
  255. {
  256. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  257. struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
  258. struct hw_perf_event *hwc = &event->hw;
  259. int idx = hwc->idx;
  260. armpmu_stop(event, PERF_EF_UPDATE);
  261. hw_events->events[idx] = NULL;
  262. armpmu->clear_event_idx(hw_events, event);
  263. perf_event_update_userpage(event);
  264. /* Clear the allocated counter */
  265. hwc->idx = -1;
  266. }
  267. static int
  268. armpmu_add(struct perf_event *event, int flags)
  269. {
  270. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  271. struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
  272. struct hw_perf_event *hwc = &event->hw;
  273. int idx;
  274. /* An event following a process won't be stopped earlier */
  275. if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
  276. return -ENOENT;
  277. /* If we don't have a space for the counter then finish early. */
  278. idx = armpmu->get_event_idx(hw_events, event);
  279. if (idx < 0)
  280. return idx;
  281. /*
  282. * If there is an event in the counter we are going to use then make
  283. * sure it is disabled.
  284. */
  285. event->hw.idx = idx;
  286. armpmu->disable(event);
  287. hw_events->events[idx] = event;
  288. hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
  289. if (flags & PERF_EF_START)
  290. armpmu_start(event, PERF_EF_RELOAD);
  291. /* Propagate our changes to the userspace mapping. */
  292. perf_event_update_userpage(event);
  293. return 0;
  294. }
  295. static int
  296. validate_event(struct pmu *pmu, struct pmu_hw_events *hw_events,
  297. struct perf_event *event)
  298. {
  299. struct arm_pmu *armpmu;
  300. if (is_software_event(event))
  301. return 1;
  302. /*
  303. * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The
  304. * core perf code won't check that the pmu->ctx == leader->ctx
  305. * until after pmu->event_init(event).
  306. */
  307. if (event->pmu != pmu)
  308. return 0;
  309. if (event->state < PERF_EVENT_STATE_OFF)
  310. return 1;
  311. if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
  312. return 1;
  313. armpmu = to_arm_pmu(event->pmu);
  314. return armpmu->get_event_idx(hw_events, event) >= 0;
  315. }
  316. static int
  317. validate_group(struct perf_event *event)
  318. {
  319. struct perf_event *sibling, *leader = event->group_leader;
  320. struct pmu_hw_events fake_pmu;
  321. /*
  322. * Initialise the fake PMU. We only need to populate the
  323. * used_mask for the purposes of validation.
  324. */
  325. memset(&fake_pmu.used_mask, 0, sizeof(fake_pmu.used_mask));
  326. if (!validate_event(event->pmu, &fake_pmu, leader))
  327. return -EINVAL;
  328. if (event == leader)
  329. return 0;
  330. for_each_sibling_event(sibling, leader) {
  331. if (!validate_event(event->pmu, &fake_pmu, sibling))
  332. return -EINVAL;
  333. }
  334. if (!validate_event(event->pmu, &fake_pmu, event))
  335. return -EINVAL;
  336. return 0;
  337. }
  338. static irqreturn_t armpmu_dispatch_irq(int irq, void *dev)
  339. {
  340. struct arm_pmu *armpmu;
  341. int ret;
  342. u64 start_clock, finish_clock;
  343. /*
  344. * we request the IRQ with a (possibly percpu) struct arm_pmu**, but
  345. * the handlers expect a struct arm_pmu*. The percpu_irq framework will
  346. * do any necessary shifting, we just need to perform the first
  347. * dereference.
  348. */
  349. armpmu = *(void **)dev;
  350. if (WARN_ON_ONCE(!armpmu))
  351. return IRQ_NONE;
  352. start_clock = sched_clock();
  353. ret = armpmu->handle_irq(armpmu);
  354. finish_clock = sched_clock();
  355. perf_sample_event_took(finish_clock - start_clock);
  356. return ret;
  357. }
  358. static int
  359. __hw_perf_event_init(struct perf_event *event)
  360. {
  361. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  362. struct hw_perf_event *hwc = &event->hw;
  363. int mapping;
  364. hwc->flags = 0;
  365. mapping = armpmu->map_event(event);
  366. if (mapping < 0) {
  367. pr_debug("event %x:%llx not supported\n", event->attr.type,
  368. event->attr.config);
  369. return mapping;
  370. }
  371. /*
  372. * We don't assign an index until we actually place the event onto
  373. * hardware. Use -1 to signify that we haven't decided where to put it
  374. * yet. For SMP systems, each core has it's own PMU so we can't do any
  375. * clever allocation or constraints checking at this point.
  376. */
  377. hwc->idx = -1;
  378. hwc->config_base = 0;
  379. hwc->config = 0;
  380. hwc->event_base = 0;
  381. /*
  382. * Check whether we need to exclude the counter from certain modes.
  383. */
  384. if (armpmu->set_event_filter &&
  385. armpmu->set_event_filter(hwc, &event->attr)) {
  386. pr_debug("ARM performance counters do not support "
  387. "mode exclusion\n");
  388. return -EOPNOTSUPP;
  389. }
  390. /*
  391. * Store the event encoding into the config_base field.
  392. */
  393. hwc->config_base |= (unsigned long)mapping;
  394. if (!is_sampling_event(event)) {
  395. /*
  396. * For non-sampling runs, limit the sample_period to half
  397. * of the counter width. That way, the new counter value
  398. * is far less likely to overtake the previous one unless
  399. * you have some serious IRQ latency issues.
  400. */
  401. hwc->sample_period = arm_pmu_event_max_period(event) >> 1;
  402. hwc->last_period = hwc->sample_period;
  403. local64_set(&hwc->period_left, hwc->sample_period);
  404. }
  405. return validate_group(event);
  406. }
  407. static int armpmu_event_init(struct perf_event *event)
  408. {
  409. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  410. /*
  411. * Reject CPU-affine events for CPUs that are of a different class to
  412. * that which this PMU handles. Process-following events (where
  413. * event->cpu == -1) can be migrated between CPUs, and thus we have to
  414. * reject them later (in armpmu_add) if they're scheduled on a
  415. * different class of CPU.
  416. */
  417. if (event->cpu != -1 &&
  418. !cpumask_test_cpu(event->cpu, &armpmu->supported_cpus))
  419. return -ENOENT;
  420. /* does not support taken branch sampling */
  421. if (has_branch_stack(event))
  422. return -EOPNOTSUPP;
  423. if (armpmu->map_event(event) == -ENOENT)
  424. return -ENOENT;
  425. return __hw_perf_event_init(event);
  426. }
  427. static void armpmu_enable(struct pmu *pmu)
  428. {
  429. struct arm_pmu *armpmu = to_arm_pmu(pmu);
  430. struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
  431. bool enabled = !bitmap_empty(hw_events->used_mask, armpmu->num_events);
  432. /* For task-bound events we may be called on other CPUs */
  433. if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
  434. return;
  435. if (enabled)
  436. armpmu->start(armpmu);
  437. }
  438. static void armpmu_disable(struct pmu *pmu)
  439. {
  440. struct arm_pmu *armpmu = to_arm_pmu(pmu);
  441. /* For task-bound events we may be called on other CPUs */
  442. if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
  443. return;
  444. armpmu->stop(armpmu);
  445. }
  446. /*
  447. * In heterogeneous systems, events are specific to a particular
  448. * microarchitecture, and aren't suitable for another. Thus, only match CPUs of
  449. * the same microarchitecture.
  450. */
  451. static int armpmu_filter_match(struct perf_event *event)
  452. {
  453. struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
  454. unsigned int cpu = smp_processor_id();
  455. int ret;
  456. ret = cpumask_test_cpu(cpu, &armpmu->supported_cpus);
  457. if (ret && armpmu->filter_match)
  458. return armpmu->filter_match(event);
  459. return ret;
  460. }
  461. static ssize_t cpus_show(struct device *dev,
  462. struct device_attribute *attr, char *buf)
  463. {
  464. struct arm_pmu *armpmu = to_arm_pmu(dev_get_drvdata(dev));
  465. return cpumap_print_to_pagebuf(true, buf, &armpmu->supported_cpus);
  466. }
  467. static DEVICE_ATTR_RO(cpus);
  468. static struct attribute *armpmu_common_attrs[] = {
  469. &dev_attr_cpus.attr,
  470. NULL,
  471. };
  472. static const struct attribute_group armpmu_common_attr_group = {
  473. .attrs = armpmu_common_attrs,
  474. };
  475. static int armpmu_count_irq_users(const int irq)
  476. {
  477. int cpu, count = 0;
  478. for_each_possible_cpu(cpu) {
  479. if (per_cpu(cpu_irq, cpu) == irq)
  480. count++;
  481. }
  482. return count;
  483. }
  484. static const struct pmu_irq_ops *armpmu_find_irq_ops(int irq)
  485. {
  486. const struct pmu_irq_ops *ops = NULL;
  487. int cpu;
  488. for_each_possible_cpu(cpu) {
  489. if (per_cpu(cpu_irq, cpu) != irq)
  490. continue;
  491. ops = per_cpu(cpu_irq_ops, cpu);
  492. if (ops)
  493. break;
  494. }
  495. return ops;
  496. }
  497. void armpmu_free_irq(int irq, int cpu)
  498. {
  499. if (per_cpu(cpu_irq, cpu) == 0)
  500. return;
  501. if (WARN_ON(irq != per_cpu(cpu_irq, cpu)))
  502. return;
  503. per_cpu(cpu_irq_ops, cpu)->free_pmuirq(irq, cpu, &cpu_armpmu);
  504. per_cpu(cpu_irq, cpu) = 0;
  505. per_cpu(cpu_irq_ops, cpu) = NULL;
  506. }
  507. int armpmu_request_irq(int irq, int cpu)
  508. {
  509. int err = 0;
  510. const irq_handler_t handler = armpmu_dispatch_irq;
  511. const struct pmu_irq_ops *irq_ops;
  512. if (!irq)
  513. return 0;
  514. if (!irq_is_percpu_devid(irq)) {
  515. unsigned long irq_flags;
  516. err = irq_force_affinity(irq, cpumask_of(cpu));
  517. if (err && num_possible_cpus() > 1) {
  518. pr_warn("unable to set irq affinity (irq=%d, cpu=%u)\n",
  519. irq, cpu);
  520. goto err_out;
  521. }
  522. irq_flags = IRQF_PERCPU |
  523. IRQF_NOBALANCING | IRQF_NO_AUTOEN |
  524. IRQF_NO_THREAD;
  525. err = request_nmi(irq, handler, irq_flags, "arm-pmu",
  526. per_cpu_ptr(&cpu_armpmu, cpu));
  527. /* If cannot get an NMI, get a normal interrupt */
  528. if (err) {
  529. err = request_irq(irq, handler, irq_flags, "arm-pmu",
  530. per_cpu_ptr(&cpu_armpmu, cpu));
  531. irq_ops = &pmuirq_ops;
  532. } else {
  533. has_nmi = true;
  534. irq_ops = &pmunmi_ops;
  535. }
  536. } else if (armpmu_count_irq_users(irq) == 0) {
  537. err = request_percpu_nmi(irq, handler, "arm-pmu", &cpu_armpmu);
  538. /* If cannot get an NMI, get a normal interrupt */
  539. if (err) {
  540. err = request_percpu_irq(irq, handler, "arm-pmu",
  541. &cpu_armpmu);
  542. irq_ops = &percpu_pmuirq_ops;
  543. } else {
  544. has_nmi = true;
  545. irq_ops = &percpu_pmunmi_ops;
  546. }
  547. } else {
  548. /* Per cpudevid irq was already requested by another CPU */
  549. irq_ops = armpmu_find_irq_ops(irq);
  550. if (WARN_ON(!irq_ops))
  551. err = -EINVAL;
  552. }
  553. if (err)
  554. goto err_out;
  555. per_cpu(cpu_irq, cpu) = irq;
  556. per_cpu(cpu_irq_ops, cpu) = irq_ops;
  557. return 0;
  558. err_out:
  559. pr_err("unable to request IRQ%d for ARM PMU counters\n", irq);
  560. return err;
  561. }
  562. static int armpmu_get_cpu_irq(struct arm_pmu *pmu, int cpu)
  563. {
  564. struct pmu_hw_events __percpu *hw_events = pmu->hw_events;
  565. return per_cpu(hw_events->irq, cpu);
  566. }
  567. /*
  568. * PMU hardware loses all context when a CPU goes offline.
  569. * When a CPU is hotplugged back in, since some hardware registers are
  570. * UNKNOWN at reset, the PMU must be explicitly reset to avoid reading
  571. * junk values out of them.
  572. */
  573. static int arm_perf_starting_cpu(unsigned int cpu, struct hlist_node *node)
  574. {
  575. struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
  576. int irq;
  577. if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
  578. return 0;
  579. if (pmu->reset)
  580. pmu->reset(pmu);
  581. per_cpu(cpu_armpmu, cpu) = pmu;
  582. irq = armpmu_get_cpu_irq(pmu, cpu);
  583. if (irq)
  584. per_cpu(cpu_irq_ops, cpu)->enable_pmuirq(irq);
  585. return 0;
  586. }
  587. static int arm_perf_teardown_cpu(unsigned int cpu, struct hlist_node *node)
  588. {
  589. struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
  590. int irq;
  591. if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
  592. return 0;
  593. irq = armpmu_get_cpu_irq(pmu, cpu);
  594. if (irq)
  595. per_cpu(cpu_irq_ops, cpu)->disable_pmuirq(irq);
  596. per_cpu(cpu_armpmu, cpu) = NULL;
  597. return 0;
  598. }
  599. #ifdef CONFIG_CPU_PM
  600. static void cpu_pm_pmu_setup(struct arm_pmu *armpmu, unsigned long cmd)
  601. {
  602. struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
  603. struct perf_event *event;
  604. int idx;
  605. for (idx = 0; idx < armpmu->num_events; idx++) {
  606. event = hw_events->events[idx];
  607. if (!event)
  608. continue;
  609. switch (cmd) {
  610. case CPU_PM_ENTER:
  611. /*
  612. * Stop and update the counter
  613. */
  614. armpmu_stop(event, PERF_EF_UPDATE);
  615. break;
  616. case CPU_PM_EXIT:
  617. case CPU_PM_ENTER_FAILED:
  618. /*
  619. * Restore and enable the counter.
  620. * armpmu_start() indirectly calls
  621. *
  622. * perf_event_update_userpage()
  623. *
  624. * that requires RCU read locking to be functional,
  625. * wrap the call within RCU_NONIDLE to make the
  626. * RCU subsystem aware this cpu is not idle from
  627. * an RCU perspective for the armpmu_start() call
  628. * duration.
  629. */
  630. RCU_NONIDLE(armpmu_start(event, PERF_EF_RELOAD));
  631. break;
  632. default:
  633. break;
  634. }
  635. }
  636. }
  637. static int cpu_pm_pmu_notify(struct notifier_block *b, unsigned long cmd,
  638. void *v)
  639. {
  640. struct arm_pmu *armpmu = container_of(b, struct arm_pmu, cpu_pm_nb);
  641. struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
  642. bool enabled = !bitmap_empty(hw_events->used_mask, armpmu->num_events);
  643. if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
  644. return NOTIFY_DONE;
  645. /*
  646. * Always reset the PMU registers on power-up even if
  647. * there are no events running.
  648. */
  649. if (cmd == CPU_PM_EXIT && armpmu->reset)
  650. armpmu->reset(armpmu);
  651. if (!enabled)
  652. return NOTIFY_OK;
  653. switch (cmd) {
  654. case CPU_PM_ENTER:
  655. armpmu->stop(armpmu);
  656. cpu_pm_pmu_setup(armpmu, cmd);
  657. break;
  658. case CPU_PM_EXIT:
  659. case CPU_PM_ENTER_FAILED:
  660. cpu_pm_pmu_setup(armpmu, cmd);
  661. armpmu->start(armpmu);
  662. break;
  663. default:
  664. return NOTIFY_DONE;
  665. }
  666. return NOTIFY_OK;
  667. }
  668. static int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu)
  669. {
  670. cpu_pmu->cpu_pm_nb.notifier_call = cpu_pm_pmu_notify;
  671. return cpu_pm_register_notifier(&cpu_pmu->cpu_pm_nb);
  672. }
  673. static void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu)
  674. {
  675. cpu_pm_unregister_notifier(&cpu_pmu->cpu_pm_nb);
  676. }
  677. #else
  678. static inline int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu) { return 0; }
  679. static inline void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu) { }
  680. #endif
  681. static int cpu_pmu_init(struct arm_pmu *cpu_pmu)
  682. {
  683. int err;
  684. err = cpuhp_state_add_instance(CPUHP_AP_PERF_ARM_STARTING,
  685. &cpu_pmu->node);
  686. if (err)
  687. goto out;
  688. err = cpu_pm_pmu_register(cpu_pmu);
  689. if (err)
  690. goto out_unregister;
  691. return 0;
  692. out_unregister:
  693. cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
  694. &cpu_pmu->node);
  695. out:
  696. return err;
  697. }
  698. static void cpu_pmu_destroy(struct arm_pmu *cpu_pmu)
  699. {
  700. cpu_pm_pmu_unregister(cpu_pmu);
  701. cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
  702. &cpu_pmu->node);
  703. }
  704. static struct arm_pmu *__armpmu_alloc(gfp_t flags)
  705. {
  706. struct arm_pmu *pmu;
  707. int cpu;
  708. pmu = kzalloc(sizeof(*pmu), flags);
  709. if (!pmu)
  710. goto out;
  711. pmu->hw_events = alloc_percpu_gfp(struct pmu_hw_events, flags);
  712. if (!pmu->hw_events) {
  713. pr_info("failed to allocate per-cpu PMU data.\n");
  714. goto out_free_pmu;
  715. }
  716. pmu->pmu = (struct pmu) {
  717. .pmu_enable = armpmu_enable,
  718. .pmu_disable = armpmu_disable,
  719. .event_init = armpmu_event_init,
  720. .add = armpmu_add,
  721. .del = armpmu_del,
  722. .start = armpmu_start,
  723. .stop = armpmu_stop,
  724. .read = armpmu_read,
  725. .filter_match = armpmu_filter_match,
  726. .attr_groups = pmu->attr_groups,
  727. /*
  728. * This is a CPU PMU potentially in a heterogeneous
  729. * configuration (e.g. big.LITTLE). This is not an uncore PMU,
  730. * and we have taken ctx sharing into account (e.g. with our
  731. * pmu::filter_match callback and pmu::event_init group
  732. * validation).
  733. */
  734. .capabilities = PERF_PMU_CAP_HETEROGENEOUS_CPUS | PERF_PMU_CAP_EXTENDED_REGS,
  735. };
  736. pmu->attr_groups[ARMPMU_ATTR_GROUP_COMMON] =
  737. &armpmu_common_attr_group;
  738. for_each_possible_cpu(cpu) {
  739. struct pmu_hw_events *events;
  740. events = per_cpu_ptr(pmu->hw_events, cpu);
  741. raw_spin_lock_init(&events->pmu_lock);
  742. events->percpu_pmu = pmu;
  743. }
  744. return pmu;
  745. out_free_pmu:
  746. kfree(pmu);
  747. out:
  748. return NULL;
  749. }
  750. struct arm_pmu *armpmu_alloc(void)
  751. {
  752. return __armpmu_alloc(GFP_KERNEL);
  753. }
  754. struct arm_pmu *armpmu_alloc_atomic(void)
  755. {
  756. return __armpmu_alloc(GFP_ATOMIC);
  757. }
  758. void armpmu_free(struct arm_pmu *pmu)
  759. {
  760. free_percpu(pmu->hw_events);
  761. kfree(pmu);
  762. }
  763. int armpmu_register(struct arm_pmu *pmu)
  764. {
  765. int ret;
  766. ret = cpu_pmu_init(pmu);
  767. if (ret)
  768. return ret;
  769. if (!pmu->set_event_filter)
  770. pmu->pmu.capabilities |= PERF_PMU_CAP_NO_EXCLUDE;
  771. ret = perf_pmu_register(&pmu->pmu, pmu->name, -1);
  772. if (ret)
  773. goto out_destroy;
  774. pr_info("enabled with %s PMU driver, %d counters available%s\n",
  775. pmu->name, pmu->num_events,
  776. has_nmi ? ", using NMIs" : "");
  777. kvm_host_pmu_init(pmu);
  778. return 0;
  779. out_destroy:
  780. cpu_pmu_destroy(pmu);
  781. return ret;
  782. }
  783. static int arm_pmu_hp_init(void)
  784. {
  785. int ret;
  786. ret = cpuhp_setup_state_multi(CPUHP_AP_PERF_ARM_STARTING,
  787. "perf/arm/pmu:starting",
  788. arm_perf_starting_cpu,
  789. arm_perf_teardown_cpu);
  790. if (ret)
  791. pr_err("CPU hotplug notifier for ARM PMU could not be registered: %d\n",
  792. ret);
  793. return ret;
  794. }
  795. subsys_initcall(arm_pmu_hp_init);