mtdswap.c 33 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Swap block device support for MTDs
  4. * Turns an MTD device into a swap device with block wear leveling
  5. *
  6. * Copyright © 2007,2011 Nokia Corporation. All rights reserved.
  7. *
  8. * Authors: Jarkko Lavinen <[email protected]>
  9. *
  10. * Based on Richard Purdie's earlier implementation in 2007. Background
  11. * support and lock-less operation written by Adrian Hunter.
  12. */
  13. #include <linux/kernel.h>
  14. #include <linux/module.h>
  15. #include <linux/mtd/mtd.h>
  16. #include <linux/mtd/blktrans.h>
  17. #include <linux/rbtree.h>
  18. #include <linux/sched.h>
  19. #include <linux/slab.h>
  20. #include <linux/vmalloc.h>
  21. #include <linux/blkdev.h>
  22. #include <linux/swap.h>
  23. #include <linux/debugfs.h>
  24. #include <linux/seq_file.h>
  25. #include <linux/device.h>
  26. #include <linux/math64.h>
  27. #define MTDSWAP_PREFIX "mtdswap"
  28. /*
  29. * The number of free eraseblocks when GC should stop
  30. */
  31. #define CLEAN_BLOCK_THRESHOLD 20
  32. /*
  33. * Number of free eraseblocks below which GC can also collect low frag
  34. * blocks.
  35. */
  36. #define LOW_FRAG_GC_THRESHOLD 5
  37. /*
  38. * Wear level cost amortization. We want to do wear leveling on the background
  39. * without disturbing gc too much. This is made by defining max GC frequency.
  40. * Frequency value 6 means 1/6 of the GC passes will pick an erase block based
  41. * on the biggest wear difference rather than the biggest dirtiness.
  42. *
  43. * The lower freq2 should be chosen so that it makes sure the maximum erase
  44. * difference will decrease even if a malicious application is deliberately
  45. * trying to make erase differences large.
  46. */
  47. #define MAX_ERASE_DIFF 4000
  48. #define COLLECT_NONDIRTY_BASE MAX_ERASE_DIFF
  49. #define COLLECT_NONDIRTY_FREQ1 6
  50. #define COLLECT_NONDIRTY_FREQ2 4
  51. #define PAGE_UNDEF UINT_MAX
  52. #define BLOCK_UNDEF UINT_MAX
  53. #define BLOCK_ERROR (UINT_MAX - 1)
  54. #define BLOCK_MAX (UINT_MAX - 2)
  55. #define EBLOCK_BAD (1 << 0)
  56. #define EBLOCK_NOMAGIC (1 << 1)
  57. #define EBLOCK_BITFLIP (1 << 2)
  58. #define EBLOCK_FAILED (1 << 3)
  59. #define EBLOCK_READERR (1 << 4)
  60. #define EBLOCK_IDX_SHIFT 5
  61. struct swap_eb {
  62. struct rb_node rb;
  63. struct rb_root *root;
  64. unsigned int flags;
  65. unsigned int active_count;
  66. unsigned int erase_count;
  67. unsigned int pad; /* speeds up pointer decrement */
  68. };
  69. #define MTDSWAP_ECNT_MIN(rbroot) (rb_entry(rb_first(rbroot), struct swap_eb, \
  70. rb)->erase_count)
  71. #define MTDSWAP_ECNT_MAX(rbroot) (rb_entry(rb_last(rbroot), struct swap_eb, \
  72. rb)->erase_count)
  73. struct mtdswap_tree {
  74. struct rb_root root;
  75. unsigned int count;
  76. };
  77. enum {
  78. MTDSWAP_CLEAN,
  79. MTDSWAP_USED,
  80. MTDSWAP_LOWFRAG,
  81. MTDSWAP_HIFRAG,
  82. MTDSWAP_DIRTY,
  83. MTDSWAP_BITFLIP,
  84. MTDSWAP_FAILING,
  85. MTDSWAP_TREE_CNT,
  86. };
  87. struct mtdswap_dev {
  88. struct mtd_blktrans_dev *mbd_dev;
  89. struct mtd_info *mtd;
  90. struct device *dev;
  91. unsigned int *page_data;
  92. unsigned int *revmap;
  93. unsigned int eblks;
  94. unsigned int spare_eblks;
  95. unsigned int pages_per_eblk;
  96. unsigned int max_erase_count;
  97. struct swap_eb *eb_data;
  98. struct mtdswap_tree trees[MTDSWAP_TREE_CNT];
  99. unsigned long long sect_read_count;
  100. unsigned long long sect_write_count;
  101. unsigned long long mtd_write_count;
  102. unsigned long long mtd_read_count;
  103. unsigned long long discard_count;
  104. unsigned long long discard_page_count;
  105. unsigned int curr_write_pos;
  106. struct swap_eb *curr_write;
  107. char *page_buf;
  108. char *oob_buf;
  109. };
  110. struct mtdswap_oobdata {
  111. __le16 magic;
  112. __le32 count;
  113. } __packed;
  114. #define MTDSWAP_MAGIC_CLEAN 0x2095
  115. #define MTDSWAP_MAGIC_DIRTY (MTDSWAP_MAGIC_CLEAN + 1)
  116. #define MTDSWAP_TYPE_CLEAN 0
  117. #define MTDSWAP_TYPE_DIRTY 1
  118. #define MTDSWAP_OOBSIZE sizeof(struct mtdswap_oobdata)
  119. #define MTDSWAP_ERASE_RETRIES 3 /* Before marking erase block bad */
  120. #define MTDSWAP_IO_RETRIES 3
  121. enum {
  122. MTDSWAP_SCANNED_CLEAN,
  123. MTDSWAP_SCANNED_DIRTY,
  124. MTDSWAP_SCANNED_BITFLIP,
  125. MTDSWAP_SCANNED_BAD,
  126. };
  127. /*
  128. * In the worst case mtdswap_writesect() has allocated the last clean
  129. * page from the current block and is then pre-empted by the GC
  130. * thread. The thread can consume a full erase block when moving a
  131. * block.
  132. */
  133. #define MIN_SPARE_EBLOCKS 2
  134. #define MIN_ERASE_BLOCKS (MIN_SPARE_EBLOCKS + 1)
  135. #define TREE_ROOT(d, name) (&d->trees[MTDSWAP_ ## name].root)
  136. #define TREE_EMPTY(d, name) (TREE_ROOT(d, name)->rb_node == NULL)
  137. #define TREE_NONEMPTY(d, name) (!TREE_EMPTY(d, name))
  138. #define TREE_COUNT(d, name) (d->trees[MTDSWAP_ ## name].count)
  139. #define MTDSWAP_MBD_TO_MTDSWAP(dev) ((struct mtdswap_dev *)dev->priv)
  140. static char partitions[128] = "";
  141. module_param_string(partitions, partitions, sizeof(partitions), 0444);
  142. MODULE_PARM_DESC(partitions, "MTD partition numbers to use as swap "
  143. "partitions=\"1,3,5\"");
  144. static unsigned int spare_eblocks = 10;
  145. module_param(spare_eblocks, uint, 0444);
  146. MODULE_PARM_DESC(spare_eblocks, "Percentage of spare erase blocks for "
  147. "garbage collection (default 10%)");
  148. static bool header; /* false */
  149. module_param(header, bool, 0444);
  150. MODULE_PARM_DESC(header,
  151. "Include builtin swap header (default 0, without header)");
  152. static int mtdswap_gc(struct mtdswap_dev *d, unsigned int background);
  153. static loff_t mtdswap_eb_offset(struct mtdswap_dev *d, struct swap_eb *eb)
  154. {
  155. return (loff_t)(eb - d->eb_data) * d->mtd->erasesize;
  156. }
  157. static void mtdswap_eb_detach(struct mtdswap_dev *d, struct swap_eb *eb)
  158. {
  159. unsigned int oldidx;
  160. struct mtdswap_tree *tp;
  161. if (eb->root) {
  162. tp = container_of(eb->root, struct mtdswap_tree, root);
  163. oldidx = tp - &d->trees[0];
  164. d->trees[oldidx].count--;
  165. rb_erase(&eb->rb, eb->root);
  166. }
  167. }
  168. static void __mtdswap_rb_add(struct rb_root *root, struct swap_eb *eb)
  169. {
  170. struct rb_node **p, *parent = NULL;
  171. struct swap_eb *cur;
  172. p = &root->rb_node;
  173. while (*p) {
  174. parent = *p;
  175. cur = rb_entry(parent, struct swap_eb, rb);
  176. if (eb->erase_count > cur->erase_count)
  177. p = &(*p)->rb_right;
  178. else
  179. p = &(*p)->rb_left;
  180. }
  181. rb_link_node(&eb->rb, parent, p);
  182. rb_insert_color(&eb->rb, root);
  183. }
  184. static void mtdswap_rb_add(struct mtdswap_dev *d, struct swap_eb *eb, int idx)
  185. {
  186. struct rb_root *root;
  187. if (eb->root == &d->trees[idx].root)
  188. return;
  189. mtdswap_eb_detach(d, eb);
  190. root = &d->trees[idx].root;
  191. __mtdswap_rb_add(root, eb);
  192. eb->root = root;
  193. d->trees[idx].count++;
  194. }
  195. static struct rb_node *mtdswap_rb_index(struct rb_root *root, unsigned int idx)
  196. {
  197. struct rb_node *p;
  198. unsigned int i;
  199. p = rb_first(root);
  200. i = 0;
  201. while (i < idx && p) {
  202. p = rb_next(p);
  203. i++;
  204. }
  205. return p;
  206. }
  207. static int mtdswap_handle_badblock(struct mtdswap_dev *d, struct swap_eb *eb)
  208. {
  209. int ret;
  210. loff_t offset;
  211. d->spare_eblks--;
  212. eb->flags |= EBLOCK_BAD;
  213. mtdswap_eb_detach(d, eb);
  214. eb->root = NULL;
  215. /* badblocks not supported */
  216. if (!mtd_can_have_bb(d->mtd))
  217. return 1;
  218. offset = mtdswap_eb_offset(d, eb);
  219. dev_warn(d->dev, "Marking bad block at %08llx\n", offset);
  220. ret = mtd_block_markbad(d->mtd, offset);
  221. if (ret) {
  222. dev_warn(d->dev, "Mark block bad failed for block at %08llx "
  223. "error %d\n", offset, ret);
  224. return ret;
  225. }
  226. return 1;
  227. }
  228. static int mtdswap_handle_write_error(struct mtdswap_dev *d, struct swap_eb *eb)
  229. {
  230. unsigned int marked = eb->flags & EBLOCK_FAILED;
  231. struct swap_eb *curr_write = d->curr_write;
  232. eb->flags |= EBLOCK_FAILED;
  233. if (curr_write == eb) {
  234. d->curr_write = NULL;
  235. if (!marked && d->curr_write_pos != 0) {
  236. mtdswap_rb_add(d, eb, MTDSWAP_FAILING);
  237. return 0;
  238. }
  239. }
  240. return mtdswap_handle_badblock(d, eb);
  241. }
  242. static int mtdswap_read_oob(struct mtdswap_dev *d, loff_t from,
  243. struct mtd_oob_ops *ops)
  244. {
  245. int ret = mtd_read_oob(d->mtd, from, ops);
  246. if (mtd_is_bitflip(ret))
  247. return ret;
  248. if (ret) {
  249. dev_warn(d->dev, "Read OOB failed %d for block at %08llx\n",
  250. ret, from);
  251. return ret;
  252. }
  253. if (ops->oobretlen < ops->ooblen) {
  254. dev_warn(d->dev, "Read OOB return short read (%zd bytes not "
  255. "%zd) for block at %08llx\n",
  256. ops->oobretlen, ops->ooblen, from);
  257. return -EIO;
  258. }
  259. return 0;
  260. }
  261. static int mtdswap_read_markers(struct mtdswap_dev *d, struct swap_eb *eb)
  262. {
  263. struct mtdswap_oobdata *data, *data2;
  264. int ret;
  265. loff_t offset;
  266. struct mtd_oob_ops ops = { };
  267. offset = mtdswap_eb_offset(d, eb);
  268. /* Check first if the block is bad. */
  269. if (mtd_can_have_bb(d->mtd) && mtd_block_isbad(d->mtd, offset))
  270. return MTDSWAP_SCANNED_BAD;
  271. ops.ooblen = 2 * d->mtd->oobavail;
  272. ops.oobbuf = d->oob_buf;
  273. ops.ooboffs = 0;
  274. ops.datbuf = NULL;
  275. ops.mode = MTD_OPS_AUTO_OOB;
  276. ret = mtdswap_read_oob(d, offset, &ops);
  277. if (ret && !mtd_is_bitflip(ret))
  278. return ret;
  279. data = (struct mtdswap_oobdata *)d->oob_buf;
  280. data2 = (struct mtdswap_oobdata *)
  281. (d->oob_buf + d->mtd->oobavail);
  282. if (le16_to_cpu(data->magic) == MTDSWAP_MAGIC_CLEAN) {
  283. eb->erase_count = le32_to_cpu(data->count);
  284. if (mtd_is_bitflip(ret))
  285. ret = MTDSWAP_SCANNED_BITFLIP;
  286. else {
  287. if (le16_to_cpu(data2->magic) == MTDSWAP_MAGIC_DIRTY)
  288. ret = MTDSWAP_SCANNED_DIRTY;
  289. else
  290. ret = MTDSWAP_SCANNED_CLEAN;
  291. }
  292. } else {
  293. eb->flags |= EBLOCK_NOMAGIC;
  294. ret = MTDSWAP_SCANNED_DIRTY;
  295. }
  296. return ret;
  297. }
  298. static int mtdswap_write_marker(struct mtdswap_dev *d, struct swap_eb *eb,
  299. u16 marker)
  300. {
  301. struct mtdswap_oobdata n;
  302. int ret;
  303. loff_t offset;
  304. struct mtd_oob_ops ops = { };
  305. ops.ooboffs = 0;
  306. ops.oobbuf = (uint8_t *)&n;
  307. ops.mode = MTD_OPS_AUTO_OOB;
  308. ops.datbuf = NULL;
  309. if (marker == MTDSWAP_TYPE_CLEAN) {
  310. n.magic = cpu_to_le16(MTDSWAP_MAGIC_CLEAN);
  311. n.count = cpu_to_le32(eb->erase_count);
  312. ops.ooblen = MTDSWAP_OOBSIZE;
  313. offset = mtdswap_eb_offset(d, eb);
  314. } else {
  315. n.magic = cpu_to_le16(MTDSWAP_MAGIC_DIRTY);
  316. ops.ooblen = sizeof(n.magic);
  317. offset = mtdswap_eb_offset(d, eb) + d->mtd->writesize;
  318. }
  319. ret = mtd_write_oob(d->mtd, offset, &ops);
  320. if (ret) {
  321. dev_warn(d->dev, "Write OOB failed for block at %08llx "
  322. "error %d\n", offset, ret);
  323. if (ret == -EIO || mtd_is_eccerr(ret))
  324. mtdswap_handle_write_error(d, eb);
  325. return ret;
  326. }
  327. if (ops.oobretlen != ops.ooblen) {
  328. dev_warn(d->dev, "Short OOB write for block at %08llx: "
  329. "%zd not %zd\n",
  330. offset, ops.oobretlen, ops.ooblen);
  331. return ret;
  332. }
  333. return 0;
  334. }
  335. /*
  336. * Are there any erase blocks without MAGIC_CLEAN header, presumably
  337. * because power was cut off after erase but before header write? We
  338. * need to guestimate the erase count.
  339. */
  340. static void mtdswap_check_counts(struct mtdswap_dev *d)
  341. {
  342. struct rb_root hist_root = RB_ROOT;
  343. struct rb_node *medrb;
  344. struct swap_eb *eb;
  345. unsigned int i, cnt, median;
  346. cnt = 0;
  347. for (i = 0; i < d->eblks; i++) {
  348. eb = d->eb_data + i;
  349. if (eb->flags & (EBLOCK_NOMAGIC | EBLOCK_BAD | EBLOCK_READERR))
  350. continue;
  351. __mtdswap_rb_add(&hist_root, eb);
  352. cnt++;
  353. }
  354. if (cnt == 0)
  355. return;
  356. medrb = mtdswap_rb_index(&hist_root, cnt / 2);
  357. median = rb_entry(medrb, struct swap_eb, rb)->erase_count;
  358. d->max_erase_count = MTDSWAP_ECNT_MAX(&hist_root);
  359. for (i = 0; i < d->eblks; i++) {
  360. eb = d->eb_data + i;
  361. if (eb->flags & (EBLOCK_NOMAGIC | EBLOCK_READERR))
  362. eb->erase_count = median;
  363. if (eb->flags & (EBLOCK_NOMAGIC | EBLOCK_BAD | EBLOCK_READERR))
  364. continue;
  365. rb_erase(&eb->rb, &hist_root);
  366. }
  367. }
  368. static void mtdswap_scan_eblks(struct mtdswap_dev *d)
  369. {
  370. int status;
  371. unsigned int i, idx;
  372. struct swap_eb *eb;
  373. for (i = 0; i < d->eblks; i++) {
  374. eb = d->eb_data + i;
  375. status = mtdswap_read_markers(d, eb);
  376. if (status < 0)
  377. eb->flags |= EBLOCK_READERR;
  378. else if (status == MTDSWAP_SCANNED_BAD) {
  379. eb->flags |= EBLOCK_BAD;
  380. continue;
  381. }
  382. switch (status) {
  383. case MTDSWAP_SCANNED_CLEAN:
  384. idx = MTDSWAP_CLEAN;
  385. break;
  386. case MTDSWAP_SCANNED_DIRTY:
  387. case MTDSWAP_SCANNED_BITFLIP:
  388. idx = MTDSWAP_DIRTY;
  389. break;
  390. default:
  391. idx = MTDSWAP_FAILING;
  392. }
  393. eb->flags |= (idx << EBLOCK_IDX_SHIFT);
  394. }
  395. mtdswap_check_counts(d);
  396. for (i = 0; i < d->eblks; i++) {
  397. eb = d->eb_data + i;
  398. if (eb->flags & EBLOCK_BAD)
  399. continue;
  400. idx = eb->flags >> EBLOCK_IDX_SHIFT;
  401. mtdswap_rb_add(d, eb, idx);
  402. }
  403. }
  404. /*
  405. * Place eblk into a tree corresponding to its number of active blocks
  406. * it contains.
  407. */
  408. static void mtdswap_store_eb(struct mtdswap_dev *d, struct swap_eb *eb)
  409. {
  410. unsigned int weight = eb->active_count;
  411. unsigned int maxweight = d->pages_per_eblk;
  412. if (eb == d->curr_write)
  413. return;
  414. if (eb->flags & EBLOCK_BITFLIP)
  415. mtdswap_rb_add(d, eb, MTDSWAP_BITFLIP);
  416. else if (eb->flags & (EBLOCK_READERR | EBLOCK_FAILED))
  417. mtdswap_rb_add(d, eb, MTDSWAP_FAILING);
  418. if (weight == maxweight)
  419. mtdswap_rb_add(d, eb, MTDSWAP_USED);
  420. else if (weight == 0)
  421. mtdswap_rb_add(d, eb, MTDSWAP_DIRTY);
  422. else if (weight > (maxweight/2))
  423. mtdswap_rb_add(d, eb, MTDSWAP_LOWFRAG);
  424. else
  425. mtdswap_rb_add(d, eb, MTDSWAP_HIFRAG);
  426. }
  427. static int mtdswap_erase_block(struct mtdswap_dev *d, struct swap_eb *eb)
  428. {
  429. struct mtd_info *mtd = d->mtd;
  430. struct erase_info erase;
  431. unsigned int retries = 0;
  432. int ret;
  433. eb->erase_count++;
  434. if (eb->erase_count > d->max_erase_count)
  435. d->max_erase_count = eb->erase_count;
  436. retry:
  437. memset(&erase, 0, sizeof(struct erase_info));
  438. erase.addr = mtdswap_eb_offset(d, eb);
  439. erase.len = mtd->erasesize;
  440. ret = mtd_erase(mtd, &erase);
  441. if (ret) {
  442. if (retries++ < MTDSWAP_ERASE_RETRIES) {
  443. dev_warn(d->dev,
  444. "erase of erase block %#llx on %s failed",
  445. erase.addr, mtd->name);
  446. yield();
  447. goto retry;
  448. }
  449. dev_err(d->dev, "Cannot erase erase block %#llx on %s\n",
  450. erase.addr, mtd->name);
  451. mtdswap_handle_badblock(d, eb);
  452. return -EIO;
  453. }
  454. return 0;
  455. }
  456. static int mtdswap_map_free_block(struct mtdswap_dev *d, unsigned int page,
  457. unsigned int *block)
  458. {
  459. int ret;
  460. struct swap_eb *old_eb = d->curr_write;
  461. struct rb_root *clean_root;
  462. struct swap_eb *eb;
  463. if (old_eb == NULL || d->curr_write_pos >= d->pages_per_eblk) {
  464. do {
  465. if (TREE_EMPTY(d, CLEAN))
  466. return -ENOSPC;
  467. clean_root = TREE_ROOT(d, CLEAN);
  468. eb = rb_entry(rb_first(clean_root), struct swap_eb, rb);
  469. rb_erase(&eb->rb, clean_root);
  470. eb->root = NULL;
  471. TREE_COUNT(d, CLEAN)--;
  472. ret = mtdswap_write_marker(d, eb, MTDSWAP_TYPE_DIRTY);
  473. } while (ret == -EIO || mtd_is_eccerr(ret));
  474. if (ret)
  475. return ret;
  476. d->curr_write_pos = 0;
  477. d->curr_write = eb;
  478. if (old_eb)
  479. mtdswap_store_eb(d, old_eb);
  480. }
  481. *block = (d->curr_write - d->eb_data) * d->pages_per_eblk +
  482. d->curr_write_pos;
  483. d->curr_write->active_count++;
  484. d->revmap[*block] = page;
  485. d->curr_write_pos++;
  486. return 0;
  487. }
  488. static unsigned int mtdswap_free_page_cnt(struct mtdswap_dev *d)
  489. {
  490. return TREE_COUNT(d, CLEAN) * d->pages_per_eblk +
  491. d->pages_per_eblk - d->curr_write_pos;
  492. }
  493. static unsigned int mtdswap_enough_free_pages(struct mtdswap_dev *d)
  494. {
  495. return mtdswap_free_page_cnt(d) > d->pages_per_eblk;
  496. }
  497. static int mtdswap_write_block(struct mtdswap_dev *d, char *buf,
  498. unsigned int page, unsigned int *bp, int gc_context)
  499. {
  500. struct mtd_info *mtd = d->mtd;
  501. struct swap_eb *eb;
  502. size_t retlen;
  503. loff_t writepos;
  504. int ret;
  505. retry:
  506. if (!gc_context)
  507. while (!mtdswap_enough_free_pages(d))
  508. if (mtdswap_gc(d, 0) > 0)
  509. return -ENOSPC;
  510. ret = mtdswap_map_free_block(d, page, bp);
  511. eb = d->eb_data + (*bp / d->pages_per_eblk);
  512. if (ret == -EIO || mtd_is_eccerr(ret)) {
  513. d->curr_write = NULL;
  514. eb->active_count--;
  515. d->revmap[*bp] = PAGE_UNDEF;
  516. goto retry;
  517. }
  518. if (ret < 0)
  519. return ret;
  520. writepos = (loff_t)*bp << PAGE_SHIFT;
  521. ret = mtd_write(mtd, writepos, PAGE_SIZE, &retlen, buf);
  522. if (ret == -EIO || mtd_is_eccerr(ret)) {
  523. d->curr_write_pos--;
  524. eb->active_count--;
  525. d->revmap[*bp] = PAGE_UNDEF;
  526. mtdswap_handle_write_error(d, eb);
  527. goto retry;
  528. }
  529. if (ret < 0) {
  530. dev_err(d->dev, "Write to MTD device failed: %d (%zd written)",
  531. ret, retlen);
  532. goto err;
  533. }
  534. if (retlen != PAGE_SIZE) {
  535. dev_err(d->dev, "Short write to MTD device: %zd written",
  536. retlen);
  537. ret = -EIO;
  538. goto err;
  539. }
  540. return ret;
  541. err:
  542. d->curr_write_pos--;
  543. eb->active_count--;
  544. d->revmap[*bp] = PAGE_UNDEF;
  545. return ret;
  546. }
  547. static int mtdswap_move_block(struct mtdswap_dev *d, unsigned int oldblock,
  548. unsigned int *newblock)
  549. {
  550. struct mtd_info *mtd = d->mtd;
  551. struct swap_eb *eb, *oldeb;
  552. int ret;
  553. size_t retlen;
  554. unsigned int page, retries;
  555. loff_t readpos;
  556. page = d->revmap[oldblock];
  557. readpos = (loff_t) oldblock << PAGE_SHIFT;
  558. retries = 0;
  559. retry:
  560. ret = mtd_read(mtd, readpos, PAGE_SIZE, &retlen, d->page_buf);
  561. if (ret < 0 && !mtd_is_bitflip(ret)) {
  562. oldeb = d->eb_data + oldblock / d->pages_per_eblk;
  563. oldeb->flags |= EBLOCK_READERR;
  564. dev_err(d->dev, "Read Error: %d (block %u)\n", ret,
  565. oldblock);
  566. retries++;
  567. if (retries < MTDSWAP_IO_RETRIES)
  568. goto retry;
  569. goto read_error;
  570. }
  571. if (retlen != PAGE_SIZE) {
  572. dev_err(d->dev, "Short read: %zd (block %u)\n", retlen,
  573. oldblock);
  574. ret = -EIO;
  575. goto read_error;
  576. }
  577. ret = mtdswap_write_block(d, d->page_buf, page, newblock, 1);
  578. if (ret < 0) {
  579. d->page_data[page] = BLOCK_ERROR;
  580. dev_err(d->dev, "Write error: %d\n", ret);
  581. return ret;
  582. }
  583. d->page_data[page] = *newblock;
  584. d->revmap[oldblock] = PAGE_UNDEF;
  585. eb = d->eb_data + oldblock / d->pages_per_eblk;
  586. eb->active_count--;
  587. return 0;
  588. read_error:
  589. d->page_data[page] = BLOCK_ERROR;
  590. d->revmap[oldblock] = PAGE_UNDEF;
  591. return ret;
  592. }
  593. static int mtdswap_gc_eblock(struct mtdswap_dev *d, struct swap_eb *eb)
  594. {
  595. unsigned int i, block, eblk_base, newblock;
  596. int ret, errcode;
  597. errcode = 0;
  598. eblk_base = (eb - d->eb_data) * d->pages_per_eblk;
  599. for (i = 0; i < d->pages_per_eblk; i++) {
  600. if (d->spare_eblks < MIN_SPARE_EBLOCKS)
  601. return -ENOSPC;
  602. block = eblk_base + i;
  603. if (d->revmap[block] == PAGE_UNDEF)
  604. continue;
  605. ret = mtdswap_move_block(d, block, &newblock);
  606. if (ret < 0 && !errcode)
  607. errcode = ret;
  608. }
  609. return errcode;
  610. }
  611. static int __mtdswap_choose_gc_tree(struct mtdswap_dev *d)
  612. {
  613. int idx, stopat;
  614. if (TREE_COUNT(d, CLEAN) < LOW_FRAG_GC_THRESHOLD)
  615. stopat = MTDSWAP_LOWFRAG;
  616. else
  617. stopat = MTDSWAP_HIFRAG;
  618. for (idx = MTDSWAP_BITFLIP; idx >= stopat; idx--)
  619. if (d->trees[idx].root.rb_node != NULL)
  620. return idx;
  621. return -1;
  622. }
  623. static int mtdswap_wlfreq(unsigned int maxdiff)
  624. {
  625. unsigned int h, x, y, dist, base;
  626. /*
  627. * Calculate linear ramp down from f1 to f2 when maxdiff goes from
  628. * MAX_ERASE_DIFF to MAX_ERASE_DIFF + COLLECT_NONDIRTY_BASE. Similar
  629. * to triangle with height f1 - f1 and width COLLECT_NONDIRTY_BASE.
  630. */
  631. dist = maxdiff - MAX_ERASE_DIFF;
  632. if (dist > COLLECT_NONDIRTY_BASE)
  633. dist = COLLECT_NONDIRTY_BASE;
  634. /*
  635. * Modelling the slop as right angular triangle with base
  636. * COLLECT_NONDIRTY_BASE and height freq1 - freq2. The ratio y/x is
  637. * equal to the ratio h/base.
  638. */
  639. h = COLLECT_NONDIRTY_FREQ1 - COLLECT_NONDIRTY_FREQ2;
  640. base = COLLECT_NONDIRTY_BASE;
  641. x = dist - base;
  642. y = (x * h + base / 2) / base;
  643. return COLLECT_NONDIRTY_FREQ2 + y;
  644. }
  645. static int mtdswap_choose_wl_tree(struct mtdswap_dev *d)
  646. {
  647. static unsigned int pick_cnt;
  648. unsigned int i, idx = -1, wear, max;
  649. struct rb_root *root;
  650. max = 0;
  651. for (i = 0; i <= MTDSWAP_DIRTY; i++) {
  652. root = &d->trees[i].root;
  653. if (root->rb_node == NULL)
  654. continue;
  655. wear = d->max_erase_count - MTDSWAP_ECNT_MIN(root);
  656. if (wear > max) {
  657. max = wear;
  658. idx = i;
  659. }
  660. }
  661. if (max > MAX_ERASE_DIFF && pick_cnt >= mtdswap_wlfreq(max) - 1) {
  662. pick_cnt = 0;
  663. return idx;
  664. }
  665. pick_cnt++;
  666. return -1;
  667. }
  668. static int mtdswap_choose_gc_tree(struct mtdswap_dev *d,
  669. unsigned int background)
  670. {
  671. int idx;
  672. if (TREE_NONEMPTY(d, FAILING) &&
  673. (background || (TREE_EMPTY(d, CLEAN) && TREE_EMPTY(d, DIRTY))))
  674. return MTDSWAP_FAILING;
  675. idx = mtdswap_choose_wl_tree(d);
  676. if (idx >= MTDSWAP_CLEAN)
  677. return idx;
  678. return __mtdswap_choose_gc_tree(d);
  679. }
  680. static struct swap_eb *mtdswap_pick_gc_eblk(struct mtdswap_dev *d,
  681. unsigned int background)
  682. {
  683. struct rb_root *rp = NULL;
  684. struct swap_eb *eb = NULL;
  685. int idx;
  686. if (background && TREE_COUNT(d, CLEAN) > CLEAN_BLOCK_THRESHOLD &&
  687. TREE_EMPTY(d, DIRTY) && TREE_EMPTY(d, FAILING))
  688. return NULL;
  689. idx = mtdswap_choose_gc_tree(d, background);
  690. if (idx < 0)
  691. return NULL;
  692. rp = &d->trees[idx].root;
  693. eb = rb_entry(rb_first(rp), struct swap_eb, rb);
  694. rb_erase(&eb->rb, rp);
  695. eb->root = NULL;
  696. d->trees[idx].count--;
  697. return eb;
  698. }
  699. static unsigned int mtdswap_test_patt(unsigned int i)
  700. {
  701. return i % 2 ? 0x55555555 : 0xAAAAAAAA;
  702. }
  703. static unsigned int mtdswap_eblk_passes(struct mtdswap_dev *d,
  704. struct swap_eb *eb)
  705. {
  706. struct mtd_info *mtd = d->mtd;
  707. unsigned int test, i, j, patt, mtd_pages;
  708. loff_t base, pos;
  709. unsigned int *p1 = (unsigned int *)d->page_buf;
  710. unsigned char *p2 = (unsigned char *)d->oob_buf;
  711. struct mtd_oob_ops ops = { };
  712. int ret;
  713. ops.mode = MTD_OPS_AUTO_OOB;
  714. ops.len = mtd->writesize;
  715. ops.ooblen = mtd->oobavail;
  716. ops.ooboffs = 0;
  717. ops.datbuf = d->page_buf;
  718. ops.oobbuf = d->oob_buf;
  719. base = mtdswap_eb_offset(d, eb);
  720. mtd_pages = d->pages_per_eblk * PAGE_SIZE / mtd->writesize;
  721. for (test = 0; test < 2; test++) {
  722. pos = base;
  723. for (i = 0; i < mtd_pages; i++) {
  724. patt = mtdswap_test_patt(test + i);
  725. memset(d->page_buf, patt, mtd->writesize);
  726. memset(d->oob_buf, patt, mtd->oobavail);
  727. ret = mtd_write_oob(mtd, pos, &ops);
  728. if (ret)
  729. goto error;
  730. pos += mtd->writesize;
  731. }
  732. pos = base;
  733. for (i = 0; i < mtd_pages; i++) {
  734. ret = mtd_read_oob(mtd, pos, &ops);
  735. if (ret)
  736. goto error;
  737. patt = mtdswap_test_patt(test + i);
  738. for (j = 0; j < mtd->writesize/sizeof(int); j++)
  739. if (p1[j] != patt)
  740. goto error;
  741. for (j = 0; j < mtd->oobavail; j++)
  742. if (p2[j] != (unsigned char)patt)
  743. goto error;
  744. pos += mtd->writesize;
  745. }
  746. ret = mtdswap_erase_block(d, eb);
  747. if (ret)
  748. goto error;
  749. }
  750. eb->flags &= ~EBLOCK_READERR;
  751. return 1;
  752. error:
  753. mtdswap_handle_badblock(d, eb);
  754. return 0;
  755. }
  756. static int mtdswap_gc(struct mtdswap_dev *d, unsigned int background)
  757. {
  758. struct swap_eb *eb;
  759. int ret;
  760. if (d->spare_eblks < MIN_SPARE_EBLOCKS)
  761. return 1;
  762. eb = mtdswap_pick_gc_eblk(d, background);
  763. if (!eb)
  764. return 1;
  765. ret = mtdswap_gc_eblock(d, eb);
  766. if (ret == -ENOSPC)
  767. return 1;
  768. if (eb->flags & EBLOCK_FAILED) {
  769. mtdswap_handle_badblock(d, eb);
  770. return 0;
  771. }
  772. eb->flags &= ~EBLOCK_BITFLIP;
  773. ret = mtdswap_erase_block(d, eb);
  774. if ((eb->flags & EBLOCK_READERR) &&
  775. (ret || !mtdswap_eblk_passes(d, eb)))
  776. return 0;
  777. if (ret == 0)
  778. ret = mtdswap_write_marker(d, eb, MTDSWAP_TYPE_CLEAN);
  779. if (ret == 0)
  780. mtdswap_rb_add(d, eb, MTDSWAP_CLEAN);
  781. else if (ret != -EIO && !mtd_is_eccerr(ret))
  782. mtdswap_rb_add(d, eb, MTDSWAP_DIRTY);
  783. return 0;
  784. }
  785. static void mtdswap_background(struct mtd_blktrans_dev *dev)
  786. {
  787. struct mtdswap_dev *d = MTDSWAP_MBD_TO_MTDSWAP(dev);
  788. int ret;
  789. while (1) {
  790. ret = mtdswap_gc(d, 1);
  791. if (ret || mtd_blktrans_cease_background(dev))
  792. return;
  793. }
  794. }
  795. static void mtdswap_cleanup(struct mtdswap_dev *d)
  796. {
  797. vfree(d->eb_data);
  798. vfree(d->revmap);
  799. vfree(d->page_data);
  800. kfree(d->oob_buf);
  801. kfree(d->page_buf);
  802. }
  803. static int mtdswap_flush(struct mtd_blktrans_dev *dev)
  804. {
  805. struct mtdswap_dev *d = MTDSWAP_MBD_TO_MTDSWAP(dev);
  806. mtd_sync(d->mtd);
  807. return 0;
  808. }
  809. static unsigned int mtdswap_badblocks(struct mtd_info *mtd, uint64_t size)
  810. {
  811. loff_t offset;
  812. unsigned int badcnt;
  813. badcnt = 0;
  814. if (mtd_can_have_bb(mtd))
  815. for (offset = 0; offset < size; offset += mtd->erasesize)
  816. if (mtd_block_isbad(mtd, offset))
  817. badcnt++;
  818. return badcnt;
  819. }
  820. static int mtdswap_writesect(struct mtd_blktrans_dev *dev,
  821. unsigned long page, char *buf)
  822. {
  823. struct mtdswap_dev *d = MTDSWAP_MBD_TO_MTDSWAP(dev);
  824. unsigned int newblock, mapped;
  825. struct swap_eb *eb;
  826. int ret;
  827. d->sect_write_count++;
  828. if (d->spare_eblks < MIN_SPARE_EBLOCKS)
  829. return -ENOSPC;
  830. if (header) {
  831. /* Ignore writes to the header page */
  832. if (unlikely(page == 0))
  833. return 0;
  834. page--;
  835. }
  836. mapped = d->page_data[page];
  837. if (mapped <= BLOCK_MAX) {
  838. eb = d->eb_data + (mapped / d->pages_per_eblk);
  839. eb->active_count--;
  840. mtdswap_store_eb(d, eb);
  841. d->page_data[page] = BLOCK_UNDEF;
  842. d->revmap[mapped] = PAGE_UNDEF;
  843. }
  844. ret = mtdswap_write_block(d, buf, page, &newblock, 0);
  845. d->mtd_write_count++;
  846. if (ret < 0)
  847. return ret;
  848. d->page_data[page] = newblock;
  849. return 0;
  850. }
  851. /* Provide a dummy swap header for the kernel */
  852. static int mtdswap_auto_header(struct mtdswap_dev *d, char *buf)
  853. {
  854. union swap_header *hd = (union swap_header *)(buf);
  855. memset(buf, 0, PAGE_SIZE - 10);
  856. hd->info.version = 1;
  857. hd->info.last_page = d->mbd_dev->size - 1;
  858. hd->info.nr_badpages = 0;
  859. memcpy(buf + PAGE_SIZE - 10, "SWAPSPACE2", 10);
  860. return 0;
  861. }
  862. static int mtdswap_readsect(struct mtd_blktrans_dev *dev,
  863. unsigned long page, char *buf)
  864. {
  865. struct mtdswap_dev *d = MTDSWAP_MBD_TO_MTDSWAP(dev);
  866. struct mtd_info *mtd = d->mtd;
  867. unsigned int realblock, retries;
  868. loff_t readpos;
  869. struct swap_eb *eb;
  870. size_t retlen;
  871. int ret;
  872. d->sect_read_count++;
  873. if (header) {
  874. if (unlikely(page == 0))
  875. return mtdswap_auto_header(d, buf);
  876. page--;
  877. }
  878. realblock = d->page_data[page];
  879. if (realblock > BLOCK_MAX) {
  880. memset(buf, 0x0, PAGE_SIZE);
  881. if (realblock == BLOCK_UNDEF)
  882. return 0;
  883. else
  884. return -EIO;
  885. }
  886. eb = d->eb_data + (realblock / d->pages_per_eblk);
  887. BUG_ON(d->revmap[realblock] == PAGE_UNDEF);
  888. readpos = (loff_t)realblock << PAGE_SHIFT;
  889. retries = 0;
  890. retry:
  891. ret = mtd_read(mtd, readpos, PAGE_SIZE, &retlen, buf);
  892. d->mtd_read_count++;
  893. if (mtd_is_bitflip(ret)) {
  894. eb->flags |= EBLOCK_BITFLIP;
  895. mtdswap_rb_add(d, eb, MTDSWAP_BITFLIP);
  896. ret = 0;
  897. }
  898. if (ret < 0) {
  899. dev_err(d->dev, "Read error %d\n", ret);
  900. eb->flags |= EBLOCK_READERR;
  901. mtdswap_rb_add(d, eb, MTDSWAP_FAILING);
  902. retries++;
  903. if (retries < MTDSWAP_IO_RETRIES)
  904. goto retry;
  905. return ret;
  906. }
  907. if (retlen != PAGE_SIZE) {
  908. dev_err(d->dev, "Short read %zd\n", retlen);
  909. return -EIO;
  910. }
  911. return 0;
  912. }
  913. static int mtdswap_discard(struct mtd_blktrans_dev *dev, unsigned long first,
  914. unsigned nr_pages)
  915. {
  916. struct mtdswap_dev *d = MTDSWAP_MBD_TO_MTDSWAP(dev);
  917. unsigned long page;
  918. struct swap_eb *eb;
  919. unsigned int mapped;
  920. d->discard_count++;
  921. for (page = first; page < first + nr_pages; page++) {
  922. mapped = d->page_data[page];
  923. if (mapped <= BLOCK_MAX) {
  924. eb = d->eb_data + (mapped / d->pages_per_eblk);
  925. eb->active_count--;
  926. mtdswap_store_eb(d, eb);
  927. d->page_data[page] = BLOCK_UNDEF;
  928. d->revmap[mapped] = PAGE_UNDEF;
  929. d->discard_page_count++;
  930. } else if (mapped == BLOCK_ERROR) {
  931. d->page_data[page] = BLOCK_UNDEF;
  932. d->discard_page_count++;
  933. }
  934. }
  935. return 0;
  936. }
  937. static int mtdswap_show(struct seq_file *s, void *data)
  938. {
  939. struct mtdswap_dev *d = (struct mtdswap_dev *) s->private;
  940. unsigned long sum;
  941. unsigned int count[MTDSWAP_TREE_CNT];
  942. unsigned int min[MTDSWAP_TREE_CNT];
  943. unsigned int max[MTDSWAP_TREE_CNT];
  944. unsigned int i, cw = 0, cwp = 0, cwecount = 0, bb_cnt, mapped, pages;
  945. uint64_t use_size;
  946. static const char * const name[] = {
  947. "clean", "used", "low", "high", "dirty", "bitflip", "failing"
  948. };
  949. mutex_lock(&d->mbd_dev->lock);
  950. for (i = 0; i < MTDSWAP_TREE_CNT; i++) {
  951. struct rb_root *root = &d->trees[i].root;
  952. if (root->rb_node) {
  953. count[i] = d->trees[i].count;
  954. min[i] = MTDSWAP_ECNT_MIN(root);
  955. max[i] = MTDSWAP_ECNT_MAX(root);
  956. } else
  957. count[i] = 0;
  958. }
  959. if (d->curr_write) {
  960. cw = 1;
  961. cwp = d->curr_write_pos;
  962. cwecount = d->curr_write->erase_count;
  963. }
  964. sum = 0;
  965. for (i = 0; i < d->eblks; i++)
  966. sum += d->eb_data[i].erase_count;
  967. use_size = (uint64_t)d->eblks * d->mtd->erasesize;
  968. bb_cnt = mtdswap_badblocks(d->mtd, use_size);
  969. mapped = 0;
  970. pages = d->mbd_dev->size;
  971. for (i = 0; i < pages; i++)
  972. if (d->page_data[i] != BLOCK_UNDEF)
  973. mapped++;
  974. mutex_unlock(&d->mbd_dev->lock);
  975. for (i = 0; i < MTDSWAP_TREE_CNT; i++) {
  976. if (!count[i])
  977. continue;
  978. if (min[i] != max[i])
  979. seq_printf(s, "%s:\t%5d erase blocks, erased min %d, "
  980. "max %d times\n",
  981. name[i], count[i], min[i], max[i]);
  982. else
  983. seq_printf(s, "%s:\t%5d erase blocks, all erased %d "
  984. "times\n", name[i], count[i], min[i]);
  985. }
  986. if (bb_cnt)
  987. seq_printf(s, "bad:\t%5u erase blocks\n", bb_cnt);
  988. if (cw)
  989. seq_printf(s, "current erase block: %u pages used, %u free, "
  990. "erased %u times\n",
  991. cwp, d->pages_per_eblk - cwp, cwecount);
  992. seq_printf(s, "total erasures: %lu\n", sum);
  993. seq_puts(s, "\n");
  994. seq_printf(s, "mtdswap_readsect count: %llu\n", d->sect_read_count);
  995. seq_printf(s, "mtdswap_writesect count: %llu\n", d->sect_write_count);
  996. seq_printf(s, "mtdswap_discard count: %llu\n", d->discard_count);
  997. seq_printf(s, "mtd read count: %llu\n", d->mtd_read_count);
  998. seq_printf(s, "mtd write count: %llu\n", d->mtd_write_count);
  999. seq_printf(s, "discarded pages count: %llu\n", d->discard_page_count);
  1000. seq_puts(s, "\n");
  1001. seq_printf(s, "total pages: %u\n", pages);
  1002. seq_printf(s, "pages mapped: %u\n", mapped);
  1003. return 0;
  1004. }
  1005. DEFINE_SHOW_ATTRIBUTE(mtdswap);
  1006. static int mtdswap_add_debugfs(struct mtdswap_dev *d)
  1007. {
  1008. struct dentry *root = d->mtd->dbg.dfs_dir;
  1009. if (!IS_ENABLED(CONFIG_DEBUG_FS))
  1010. return 0;
  1011. if (IS_ERR_OR_NULL(root))
  1012. return -1;
  1013. debugfs_create_file("mtdswap_stats", S_IRUSR, root, d, &mtdswap_fops);
  1014. return 0;
  1015. }
  1016. static int mtdswap_init(struct mtdswap_dev *d, unsigned int eblocks,
  1017. unsigned int spare_cnt)
  1018. {
  1019. struct mtd_info *mtd = d->mbd_dev->mtd;
  1020. unsigned int i, eblk_bytes, pages, blocks;
  1021. int ret = -ENOMEM;
  1022. d->mtd = mtd;
  1023. d->eblks = eblocks;
  1024. d->spare_eblks = spare_cnt;
  1025. d->pages_per_eblk = mtd->erasesize >> PAGE_SHIFT;
  1026. pages = d->mbd_dev->size;
  1027. blocks = eblocks * d->pages_per_eblk;
  1028. for (i = 0; i < MTDSWAP_TREE_CNT; i++)
  1029. d->trees[i].root = RB_ROOT;
  1030. d->page_data = vmalloc(array_size(pages, sizeof(int)));
  1031. if (!d->page_data)
  1032. goto page_data_fail;
  1033. d->revmap = vmalloc(array_size(blocks, sizeof(int)));
  1034. if (!d->revmap)
  1035. goto revmap_fail;
  1036. eblk_bytes = sizeof(struct swap_eb)*d->eblks;
  1037. d->eb_data = vzalloc(eblk_bytes);
  1038. if (!d->eb_data)
  1039. goto eb_data_fail;
  1040. for (i = 0; i < pages; i++)
  1041. d->page_data[i] = BLOCK_UNDEF;
  1042. for (i = 0; i < blocks; i++)
  1043. d->revmap[i] = PAGE_UNDEF;
  1044. d->page_buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
  1045. if (!d->page_buf)
  1046. goto page_buf_fail;
  1047. d->oob_buf = kmalloc_array(2, mtd->oobavail, GFP_KERNEL);
  1048. if (!d->oob_buf)
  1049. goto oob_buf_fail;
  1050. mtdswap_scan_eblks(d);
  1051. return 0;
  1052. oob_buf_fail:
  1053. kfree(d->page_buf);
  1054. page_buf_fail:
  1055. vfree(d->eb_data);
  1056. eb_data_fail:
  1057. vfree(d->revmap);
  1058. revmap_fail:
  1059. vfree(d->page_data);
  1060. page_data_fail:
  1061. printk(KERN_ERR "%s: init failed (%d)\n", MTDSWAP_PREFIX, ret);
  1062. return ret;
  1063. }
  1064. static void mtdswap_add_mtd(struct mtd_blktrans_ops *tr, struct mtd_info *mtd)
  1065. {
  1066. struct mtdswap_dev *d;
  1067. struct mtd_blktrans_dev *mbd_dev;
  1068. char *parts;
  1069. char *this_opt;
  1070. unsigned long part;
  1071. unsigned int eblocks, eavailable, bad_blocks, spare_cnt;
  1072. uint64_t swap_size, use_size, size_limit;
  1073. int ret;
  1074. parts = &partitions[0];
  1075. if (!*parts)
  1076. return;
  1077. while ((this_opt = strsep(&parts, ",")) != NULL) {
  1078. if (kstrtoul(this_opt, 0, &part) < 0)
  1079. return;
  1080. if (mtd->index == part)
  1081. break;
  1082. }
  1083. if (mtd->index != part)
  1084. return;
  1085. if (mtd->erasesize < PAGE_SIZE || mtd->erasesize % PAGE_SIZE) {
  1086. printk(KERN_ERR "%s: Erase size %u not multiple of PAGE_SIZE "
  1087. "%lu\n", MTDSWAP_PREFIX, mtd->erasesize, PAGE_SIZE);
  1088. return;
  1089. }
  1090. if (PAGE_SIZE % mtd->writesize || mtd->writesize > PAGE_SIZE) {
  1091. printk(KERN_ERR "%s: PAGE_SIZE %lu not multiple of write size"
  1092. " %u\n", MTDSWAP_PREFIX, PAGE_SIZE, mtd->writesize);
  1093. return;
  1094. }
  1095. if (!mtd->oobsize || mtd->oobavail < MTDSWAP_OOBSIZE) {
  1096. printk(KERN_ERR "%s: Not enough free bytes in OOB, "
  1097. "%d available, %zu needed.\n",
  1098. MTDSWAP_PREFIX, mtd->oobavail, MTDSWAP_OOBSIZE);
  1099. return;
  1100. }
  1101. if (spare_eblocks > 100)
  1102. spare_eblocks = 100;
  1103. use_size = mtd->size;
  1104. size_limit = (uint64_t) BLOCK_MAX * PAGE_SIZE;
  1105. if (mtd->size > size_limit) {
  1106. printk(KERN_WARNING "%s: Device too large. Limiting size to "
  1107. "%llu bytes\n", MTDSWAP_PREFIX, size_limit);
  1108. use_size = size_limit;
  1109. }
  1110. eblocks = mtd_div_by_eb(use_size, mtd);
  1111. use_size = (uint64_t)eblocks * mtd->erasesize;
  1112. bad_blocks = mtdswap_badblocks(mtd, use_size);
  1113. eavailable = eblocks - bad_blocks;
  1114. if (eavailable < MIN_ERASE_BLOCKS) {
  1115. printk(KERN_ERR "%s: Not enough erase blocks. %u available, "
  1116. "%d needed\n", MTDSWAP_PREFIX, eavailable,
  1117. MIN_ERASE_BLOCKS);
  1118. return;
  1119. }
  1120. spare_cnt = div_u64((uint64_t)eavailable * spare_eblocks, 100);
  1121. if (spare_cnt < MIN_SPARE_EBLOCKS)
  1122. spare_cnt = MIN_SPARE_EBLOCKS;
  1123. if (spare_cnt > eavailable - 1)
  1124. spare_cnt = eavailable - 1;
  1125. swap_size = (uint64_t)(eavailable - spare_cnt) * mtd->erasesize +
  1126. (header ? PAGE_SIZE : 0);
  1127. printk(KERN_INFO "%s: Enabling MTD swap on device %lu, size %llu KB, "
  1128. "%u spare, %u bad blocks\n",
  1129. MTDSWAP_PREFIX, part, swap_size / 1024, spare_cnt, bad_blocks);
  1130. d = kzalloc(sizeof(struct mtdswap_dev), GFP_KERNEL);
  1131. if (!d)
  1132. return;
  1133. mbd_dev = kzalloc(sizeof(struct mtd_blktrans_dev), GFP_KERNEL);
  1134. if (!mbd_dev) {
  1135. kfree(d);
  1136. return;
  1137. }
  1138. d->mbd_dev = mbd_dev;
  1139. mbd_dev->priv = d;
  1140. mbd_dev->mtd = mtd;
  1141. mbd_dev->devnum = mtd->index;
  1142. mbd_dev->size = swap_size >> PAGE_SHIFT;
  1143. mbd_dev->tr = tr;
  1144. if (!(mtd->flags & MTD_WRITEABLE))
  1145. mbd_dev->readonly = 1;
  1146. if (mtdswap_init(d, eblocks, spare_cnt) < 0)
  1147. goto init_failed;
  1148. if (add_mtd_blktrans_dev(mbd_dev) < 0)
  1149. goto cleanup;
  1150. d->dev = disk_to_dev(mbd_dev->disk);
  1151. ret = mtdswap_add_debugfs(d);
  1152. if (ret < 0)
  1153. goto debugfs_failed;
  1154. return;
  1155. debugfs_failed:
  1156. del_mtd_blktrans_dev(mbd_dev);
  1157. cleanup:
  1158. mtdswap_cleanup(d);
  1159. init_failed:
  1160. kfree(mbd_dev);
  1161. kfree(d);
  1162. }
  1163. static void mtdswap_remove_dev(struct mtd_blktrans_dev *dev)
  1164. {
  1165. struct mtdswap_dev *d = MTDSWAP_MBD_TO_MTDSWAP(dev);
  1166. del_mtd_blktrans_dev(dev);
  1167. mtdswap_cleanup(d);
  1168. kfree(d);
  1169. }
  1170. static struct mtd_blktrans_ops mtdswap_ops = {
  1171. .name = "mtdswap",
  1172. .major = 0,
  1173. .part_bits = 0,
  1174. .blksize = PAGE_SIZE,
  1175. .flush = mtdswap_flush,
  1176. .readsect = mtdswap_readsect,
  1177. .writesect = mtdswap_writesect,
  1178. .discard = mtdswap_discard,
  1179. .background = mtdswap_background,
  1180. .add_mtd = mtdswap_add_mtd,
  1181. .remove_dev = mtdswap_remove_dev,
  1182. .owner = THIS_MODULE,
  1183. };
  1184. module_mtd_blktrans(mtdswap_ops);
  1185. MODULE_LICENSE("GPL");
  1186. MODULE_AUTHOR("Jarkko Lavinen <[email protected]>");
  1187. MODULE_DESCRIPTION("Block device access to an MTD suitable for using as "
  1188. "swap space");