gehc-achc.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * datasheet: https://www.nxp.com/docs/en/data-sheet/K20P144M120SF3.pdf
  4. *
  5. * Copyright (C) 2018-2021 Collabora
  6. * Copyright (C) 2018-2021 GE Healthcare
  7. */
  8. #include <linux/delay.h>
  9. #include <linux/firmware.h>
  10. #include <linux/gpio/consumer.h>
  11. #include <linux/kernel.h>
  12. #include <linux/module.h>
  13. #include <linux/of.h>
  14. #include <linux/spi/spi.h>
  15. #define ACHC_MAX_FREQ_HZ 300000
  16. #define ACHC_FAST_READ_FREQ_HZ 1000000
  17. struct achc_data {
  18. struct spi_device *main;
  19. struct spi_device *ezport;
  20. struct gpio_desc *reset;
  21. struct mutex device_lock; /* avoid concurrent device access */
  22. };
  23. #define EZPORT_RESET_DELAY_MS 100
  24. #define EZPORT_STARTUP_DELAY_MS 200
  25. #define EZPORT_WRITE_WAIT_MS 10
  26. #define EZPORT_TRANSFER_SIZE 2048
  27. #define EZPORT_CMD_SP 0x02 /* flash section program */
  28. #define EZPORT_CMD_RDSR 0x05 /* read status register */
  29. #define EZPORT_CMD_WREN 0x06 /* write enable */
  30. #define EZPORT_CMD_FAST_READ 0x0b /* flash read data at high speed */
  31. #define EZPORT_CMD_RESET 0xb9 /* reset chip */
  32. #define EZPORT_CMD_BE 0xc7 /* bulk erase */
  33. #define EZPORT_CMD_SE 0xd8 /* sector erase */
  34. #define EZPORT_SECTOR_SIZE 4096
  35. #define EZPORT_SECTOR_MASK (EZPORT_SECTOR_SIZE - 1)
  36. #define EZPORT_STATUS_WIP BIT(0) /* write in progress */
  37. #define EZPORT_STATUS_WEN BIT(1) /* write enable */
  38. #define EZPORT_STATUS_BEDIS BIT(2) /* bulk erase disable */
  39. #define EZPORT_STATUS_FLEXRAM BIT(3) /* FlexRAM mode */
  40. #define EZPORT_STATUS_WEF BIT(6) /* write error flag */
  41. #define EZPORT_STATUS_FS BIT(7) /* flash security */
  42. static void ezport_reset(struct gpio_desc *reset)
  43. {
  44. gpiod_set_value(reset, 1);
  45. msleep(EZPORT_RESET_DELAY_MS);
  46. gpiod_set_value(reset, 0);
  47. msleep(EZPORT_STARTUP_DELAY_MS);
  48. }
  49. static int ezport_start_programming(struct spi_device *spi, struct gpio_desc *reset)
  50. {
  51. struct spi_message msg;
  52. struct spi_transfer assert_cs = {
  53. .cs_change = 1,
  54. };
  55. struct spi_transfer release_cs = { };
  56. int ret;
  57. spi_bus_lock(spi->master);
  58. /* assert chip select */
  59. spi_message_init(&msg);
  60. spi_message_add_tail(&assert_cs, &msg);
  61. ret = spi_sync_locked(spi, &msg);
  62. if (ret)
  63. goto fail;
  64. msleep(EZPORT_STARTUP_DELAY_MS);
  65. /* reset with asserted chip select to switch into programming mode */
  66. ezport_reset(reset);
  67. /* release chip select */
  68. spi_message_init(&msg);
  69. spi_message_add_tail(&release_cs, &msg);
  70. ret = spi_sync_locked(spi, &msg);
  71. fail:
  72. spi_bus_unlock(spi->master);
  73. return ret;
  74. }
  75. static void ezport_stop_programming(struct spi_device *spi, struct gpio_desc *reset)
  76. {
  77. /* reset without asserted chip select to return into normal mode */
  78. spi_bus_lock(spi->master);
  79. ezport_reset(reset);
  80. spi_bus_unlock(spi->master);
  81. }
  82. static int ezport_get_status_register(struct spi_device *spi)
  83. {
  84. int ret;
  85. ret = spi_w8r8(spi, EZPORT_CMD_RDSR);
  86. if (ret < 0)
  87. return ret;
  88. if (ret == 0xff) {
  89. dev_err(&spi->dev, "Invalid EzPort status, EzPort is not functional!\n");
  90. return -EINVAL;
  91. }
  92. return ret;
  93. }
  94. static int ezport_soft_reset(struct spi_device *spi)
  95. {
  96. u8 cmd = EZPORT_CMD_RESET;
  97. int ret;
  98. ret = spi_write(spi, &cmd, 1);
  99. if (ret < 0)
  100. return ret;
  101. msleep(EZPORT_STARTUP_DELAY_MS);
  102. return 0;
  103. }
  104. static int ezport_send_simple(struct spi_device *spi, u8 cmd)
  105. {
  106. int ret;
  107. ret = spi_write(spi, &cmd, 1);
  108. if (ret < 0)
  109. return ret;
  110. return ezport_get_status_register(spi);
  111. }
  112. static int ezport_wait_write(struct spi_device *spi, u32 retries)
  113. {
  114. int ret;
  115. u32 i;
  116. for (i = 0; i < retries; i++) {
  117. ret = ezport_get_status_register(spi);
  118. if (ret >= 0 && !(ret & EZPORT_STATUS_WIP))
  119. break;
  120. msleep(EZPORT_WRITE_WAIT_MS);
  121. }
  122. return ret;
  123. }
  124. static int ezport_write_enable(struct spi_device *spi)
  125. {
  126. int ret = 0, retries = 3;
  127. for (retries = 0; retries < 3; retries++) {
  128. ret = ezport_send_simple(spi, EZPORT_CMD_WREN);
  129. if (ret > 0 && ret & EZPORT_STATUS_WEN)
  130. break;
  131. }
  132. if (!(ret & EZPORT_STATUS_WEN)) {
  133. dev_err(&spi->dev, "EzPort write enable timed out\n");
  134. return -ETIMEDOUT;
  135. }
  136. return 0;
  137. }
  138. static int ezport_bulk_erase(struct spi_device *spi)
  139. {
  140. int ret;
  141. static const u8 cmd = EZPORT_CMD_BE;
  142. dev_dbg(&spi->dev, "EzPort bulk erase...\n");
  143. ret = ezport_write_enable(spi);
  144. if (ret < 0)
  145. return ret;
  146. ret = spi_write(spi, &cmd, 1);
  147. if (ret < 0)
  148. return ret;
  149. ret = ezport_wait_write(spi, 1000);
  150. if (ret < 0)
  151. return ret;
  152. return 0;
  153. }
  154. static int ezport_section_erase(struct spi_device *spi, u32 address)
  155. {
  156. u8 query[] = {EZPORT_CMD_SE, (address >> 16) & 0xff, (address >> 8) & 0xff, address & 0xff};
  157. int ret;
  158. dev_dbg(&spi->dev, "Ezport section erase @ 0x%06x...\n", address);
  159. if (address & EZPORT_SECTOR_MASK)
  160. return -EINVAL;
  161. ret = ezport_write_enable(spi);
  162. if (ret < 0)
  163. return ret;
  164. ret = spi_write(spi, query, sizeof(query));
  165. if (ret < 0)
  166. return ret;
  167. return ezport_wait_write(spi, 200);
  168. }
  169. static int ezport_flash_transfer(struct spi_device *spi, u32 address,
  170. const u8 *payload, size_t payload_size)
  171. {
  172. struct spi_transfer xfers[2] = {};
  173. u8 *command;
  174. int ret;
  175. dev_dbg(&spi->dev, "EzPort write %zu bytes @ 0x%06x...\n", payload_size, address);
  176. ret = ezport_write_enable(spi);
  177. if (ret < 0)
  178. return ret;
  179. command = kmalloc(4, GFP_KERNEL | GFP_DMA);
  180. if (!command)
  181. return -ENOMEM;
  182. command[0] = EZPORT_CMD_SP;
  183. command[1] = address >> 16;
  184. command[2] = address >> 8;
  185. command[3] = address >> 0;
  186. xfers[0].tx_buf = command;
  187. xfers[0].len = 4;
  188. xfers[1].tx_buf = payload;
  189. xfers[1].len = payload_size;
  190. ret = spi_sync_transfer(spi, xfers, 2);
  191. kfree(command);
  192. if (ret < 0)
  193. return ret;
  194. return ezport_wait_write(spi, 40);
  195. }
  196. static int ezport_flash_compare(struct spi_device *spi, u32 address,
  197. const u8 *payload, size_t payload_size)
  198. {
  199. struct spi_transfer xfers[2] = {};
  200. u8 *buffer;
  201. int ret;
  202. buffer = kmalloc(payload_size + 5, GFP_KERNEL | GFP_DMA);
  203. if (!buffer)
  204. return -ENOMEM;
  205. buffer[0] = EZPORT_CMD_FAST_READ;
  206. buffer[1] = address >> 16;
  207. buffer[2] = address >> 8;
  208. buffer[3] = address >> 0;
  209. xfers[0].tx_buf = buffer;
  210. xfers[0].len = 4;
  211. xfers[0].speed_hz = ACHC_FAST_READ_FREQ_HZ;
  212. xfers[1].rx_buf = buffer + 4;
  213. xfers[1].len = payload_size + 1;
  214. xfers[1].speed_hz = ACHC_FAST_READ_FREQ_HZ;
  215. ret = spi_sync_transfer(spi, xfers, 2);
  216. if (ret)
  217. goto err;
  218. /* FAST_READ receives one dummy byte before the real data */
  219. ret = memcmp(payload, buffer + 4 + 1, payload_size);
  220. if (ret) {
  221. ret = -EBADMSG;
  222. dev_dbg(&spi->dev, "Verification failure @ %06x", address);
  223. print_hex_dump_bytes("fw: ", DUMP_PREFIX_OFFSET, payload, payload_size);
  224. print_hex_dump_bytes("dev: ", DUMP_PREFIX_OFFSET, buffer + 4, payload_size);
  225. }
  226. err:
  227. kfree(buffer);
  228. return ret;
  229. }
  230. static int ezport_firmware_compare_data(struct spi_device *spi,
  231. const u8 *data, size_t size)
  232. {
  233. int ret;
  234. size_t address = 0;
  235. size_t transfer_size;
  236. dev_dbg(&spi->dev, "EzPort compare data with %zu bytes...\n", size);
  237. ret = ezport_get_status_register(spi);
  238. if (ret < 0)
  239. return ret;
  240. if (ret & EZPORT_STATUS_FS) {
  241. dev_info(&spi->dev, "Device is in secure mode (status=0x%02x)!\n", ret);
  242. dev_info(&spi->dev, "FW verification is not possible\n");
  243. return -EACCES;
  244. }
  245. while (size - address > 0) {
  246. transfer_size = min((size_t) EZPORT_TRANSFER_SIZE, size - address);
  247. ret = ezport_flash_compare(spi, address, data+address, transfer_size);
  248. if (ret)
  249. return ret;
  250. address += transfer_size;
  251. }
  252. return 0;
  253. }
  254. static int ezport_firmware_flash_data(struct spi_device *spi,
  255. const u8 *data, size_t size)
  256. {
  257. int ret;
  258. size_t address = 0;
  259. size_t transfer_size;
  260. dev_dbg(&spi->dev, "EzPort flash data with %zu bytes...\n", size);
  261. ret = ezport_get_status_register(spi);
  262. if (ret < 0)
  263. return ret;
  264. if (ret & EZPORT_STATUS_FS) {
  265. ret = ezport_bulk_erase(spi);
  266. if (ret < 0)
  267. return ret;
  268. if (ret & EZPORT_STATUS_FS)
  269. return -EINVAL;
  270. }
  271. while (size - address > 0) {
  272. if (!(address & EZPORT_SECTOR_MASK)) {
  273. ret = ezport_section_erase(spi, address);
  274. if (ret < 0)
  275. return ret;
  276. if (ret & EZPORT_STATUS_WIP || ret & EZPORT_STATUS_WEF)
  277. return -EIO;
  278. }
  279. transfer_size = min((size_t) EZPORT_TRANSFER_SIZE, size - address);
  280. ret = ezport_flash_transfer(spi, address,
  281. data+address, transfer_size);
  282. if (ret < 0)
  283. return ret;
  284. else if (ret & EZPORT_STATUS_WIP)
  285. return -ETIMEDOUT;
  286. else if (ret & EZPORT_STATUS_WEF)
  287. return -EIO;
  288. address += transfer_size;
  289. }
  290. dev_dbg(&spi->dev, "EzPort verify flashed data...\n");
  291. ret = ezport_firmware_compare_data(spi, data, size);
  292. /* allow missing FW verfication in secure mode */
  293. if (ret == -EACCES)
  294. ret = 0;
  295. if (ret < 0)
  296. dev_err(&spi->dev, "Failed to verify flashed data: %d\n", ret);
  297. ret = ezport_soft_reset(spi);
  298. if (ret < 0)
  299. dev_warn(&spi->dev, "EzPort reset failed!\n");
  300. return ret;
  301. }
  302. static int ezport_firmware_load(struct spi_device *spi, const char *fwname)
  303. {
  304. const struct firmware *fw;
  305. int ret;
  306. ret = request_firmware(&fw, fwname, &spi->dev);
  307. if (ret) {
  308. dev_err(&spi->dev, "Could not get firmware: %d\n", ret);
  309. return ret;
  310. }
  311. ret = ezport_firmware_flash_data(spi, fw->data, fw->size);
  312. release_firmware(fw);
  313. return ret;
  314. }
  315. /**
  316. * ezport_flash - flash device firmware
  317. * @spi: SPI device for NXP EzPort interface
  318. * @reset: the gpio connected to the device reset pin
  319. * @fwname: filename of the firmware that should be flashed
  320. *
  321. * Context: can sleep
  322. *
  323. * Return: 0 on success; negative errno on failure
  324. */
  325. static int ezport_flash(struct spi_device *spi, struct gpio_desc *reset, const char *fwname)
  326. {
  327. int ret;
  328. ret = ezport_start_programming(spi, reset);
  329. if (ret)
  330. return ret;
  331. ret = ezport_firmware_load(spi, fwname);
  332. ezport_stop_programming(spi, reset);
  333. if (ret)
  334. dev_err(&spi->dev, "Failed to flash firmware: %d\n", ret);
  335. else
  336. dev_dbg(&spi->dev, "Finished FW flashing!\n");
  337. return ret;
  338. }
  339. static ssize_t update_firmware_store(struct device *dev, struct device_attribute *attr,
  340. const char *buf, size_t count)
  341. {
  342. struct achc_data *achc = dev_get_drvdata(dev);
  343. unsigned long value;
  344. int ret;
  345. ret = kstrtoul(buf, 0, &value);
  346. if (ret < 0 || value != 1)
  347. return -EINVAL;
  348. mutex_lock(&achc->device_lock);
  349. ret = ezport_flash(achc->ezport, achc->reset, "achc.bin");
  350. mutex_unlock(&achc->device_lock);
  351. if (ret < 0)
  352. return ret;
  353. return count;
  354. }
  355. static DEVICE_ATTR_WO(update_firmware);
  356. static ssize_t reset_show(struct device *dev, struct device_attribute *attr, char *buf)
  357. {
  358. struct achc_data *achc = dev_get_drvdata(dev);
  359. int ret;
  360. mutex_lock(&achc->device_lock);
  361. ret = gpiod_get_value(achc->reset);
  362. mutex_unlock(&achc->device_lock);
  363. if (ret < 0)
  364. return ret;
  365. return sysfs_emit(buf, "%d\n", ret);
  366. }
  367. static ssize_t reset_store(struct device *dev, struct device_attribute *attr,
  368. const char *buf, size_t count)
  369. {
  370. struct achc_data *achc = dev_get_drvdata(dev);
  371. unsigned long value;
  372. int ret;
  373. ret = kstrtoul(buf, 0, &value);
  374. if (ret < 0 || value > 1)
  375. return -EINVAL;
  376. mutex_lock(&achc->device_lock);
  377. gpiod_set_value(achc->reset, value);
  378. mutex_unlock(&achc->device_lock);
  379. return count;
  380. }
  381. static DEVICE_ATTR_RW(reset);
  382. static struct attribute *gehc_achc_attrs[] = {
  383. &dev_attr_update_firmware.attr,
  384. &dev_attr_reset.attr,
  385. NULL,
  386. };
  387. ATTRIBUTE_GROUPS(gehc_achc);
  388. static void unregister_ezport(void *data)
  389. {
  390. struct spi_device *ezport = data;
  391. spi_unregister_device(ezport);
  392. }
  393. static int gehc_achc_probe(struct spi_device *spi)
  394. {
  395. struct achc_data *achc;
  396. int ezport_reg, ret;
  397. spi->max_speed_hz = ACHC_MAX_FREQ_HZ;
  398. spi->bits_per_word = 8;
  399. spi->mode = SPI_MODE_0;
  400. achc = devm_kzalloc(&spi->dev, sizeof(*achc), GFP_KERNEL);
  401. if (!achc)
  402. return -ENOMEM;
  403. spi_set_drvdata(spi, achc);
  404. achc->main = spi;
  405. mutex_init(&achc->device_lock);
  406. ret = of_property_read_u32_index(spi->dev.of_node, "reg", 1, &ezport_reg);
  407. if (ret)
  408. return dev_err_probe(&spi->dev, ret, "missing second reg entry!\n");
  409. achc->ezport = spi_new_ancillary_device(spi, ezport_reg);
  410. if (IS_ERR(achc->ezport))
  411. return PTR_ERR(achc->ezport);
  412. ret = devm_add_action_or_reset(&spi->dev, unregister_ezport, achc->ezport);
  413. if (ret)
  414. return ret;
  415. achc->reset = devm_gpiod_get(&spi->dev, "reset", GPIOD_OUT_LOW);
  416. if (IS_ERR(achc->reset))
  417. return dev_err_probe(&spi->dev, PTR_ERR(achc->reset), "Could not get reset gpio\n");
  418. return 0;
  419. }
  420. static const struct spi_device_id gehc_achc_id[] = {
  421. { "ge,achc", 0 },
  422. { "achc", 0 },
  423. { }
  424. };
  425. MODULE_DEVICE_TABLE(spi, gehc_achc_id);
  426. static const struct of_device_id gehc_achc_of_match[] = {
  427. { .compatible = "ge,achc" },
  428. { /* sentinel */ }
  429. };
  430. MODULE_DEVICE_TABLE(of, gehc_achc_of_match);
  431. static struct spi_driver gehc_achc_spi_driver = {
  432. .driver = {
  433. .name = "gehc-achc",
  434. .of_match_table = gehc_achc_of_match,
  435. .dev_groups = gehc_achc_groups,
  436. },
  437. .probe = gehc_achc_probe,
  438. .id_table = gehc_achc_id,
  439. };
  440. module_spi_driver(gehc_achc_spi_driver);
  441. MODULE_DESCRIPTION("GEHC ACHC driver");
  442. MODULE_AUTHOR("Sebastian Reichel <[email protected]>");
  443. MODULE_LICENSE("GPL");