db8500-prcmu.c 78 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * DB8500 PRCM Unit driver
  4. *
  5. * Copyright (C) STMicroelectronics 2009
  6. * Copyright (C) ST-Ericsson SA 2010
  7. *
  8. * Author: Kumar Sanghvi <[email protected]>
  9. * Author: Sundar Iyer <[email protected]>
  10. * Author: Mattias Nilsson <[email protected]>
  11. *
  12. * U8500 PRCM Unit interface driver
  13. */
  14. #include <linux/init.h>
  15. #include <linux/export.h>
  16. #include <linux/kernel.h>
  17. #include <linux/delay.h>
  18. #include <linux/errno.h>
  19. #include <linux/err.h>
  20. #include <linux/spinlock.h>
  21. #include <linux/io.h>
  22. #include <linux/slab.h>
  23. #include <linux/mutex.h>
  24. #include <linux/completion.h>
  25. #include <linux/irq.h>
  26. #include <linux/jiffies.h>
  27. #include <linux/bitops.h>
  28. #include <linux/fs.h>
  29. #include <linux/of.h>
  30. #include <linux/of_address.h>
  31. #include <linux/of_irq.h>
  32. #include <linux/platform_device.h>
  33. #include <linux/uaccess.h>
  34. #include <linux/mfd/core.h>
  35. #include <linux/mfd/dbx500-prcmu.h>
  36. #include <linux/mfd/abx500/ab8500.h>
  37. #include <linux/regulator/db8500-prcmu.h>
  38. #include <linux/regulator/machine.h>
  39. #include "db8500-prcmu-regs.h"
  40. /* Index of different voltages to be used when accessing AVSData */
  41. #define PRCM_AVS_BASE 0x2FC
  42. #define PRCM_AVS_VBB_RET (PRCM_AVS_BASE + 0x0)
  43. #define PRCM_AVS_VBB_MAX_OPP (PRCM_AVS_BASE + 0x1)
  44. #define PRCM_AVS_VBB_100_OPP (PRCM_AVS_BASE + 0x2)
  45. #define PRCM_AVS_VBB_50_OPP (PRCM_AVS_BASE + 0x3)
  46. #define PRCM_AVS_VARM_MAX_OPP (PRCM_AVS_BASE + 0x4)
  47. #define PRCM_AVS_VARM_100_OPP (PRCM_AVS_BASE + 0x5)
  48. #define PRCM_AVS_VARM_50_OPP (PRCM_AVS_BASE + 0x6)
  49. #define PRCM_AVS_VARM_RET (PRCM_AVS_BASE + 0x7)
  50. #define PRCM_AVS_VAPE_100_OPP (PRCM_AVS_BASE + 0x8)
  51. #define PRCM_AVS_VAPE_50_OPP (PRCM_AVS_BASE + 0x9)
  52. #define PRCM_AVS_VMOD_100_OPP (PRCM_AVS_BASE + 0xA)
  53. #define PRCM_AVS_VMOD_50_OPP (PRCM_AVS_BASE + 0xB)
  54. #define PRCM_AVS_VSAFE (PRCM_AVS_BASE + 0xC)
  55. #define PRCM_AVS_VOLTAGE 0
  56. #define PRCM_AVS_VOLTAGE_MASK 0x3f
  57. #define PRCM_AVS_ISSLOWSTARTUP 6
  58. #define PRCM_AVS_ISSLOWSTARTUP_MASK (1 << PRCM_AVS_ISSLOWSTARTUP)
  59. #define PRCM_AVS_ISMODEENABLE 7
  60. #define PRCM_AVS_ISMODEENABLE_MASK (1 << PRCM_AVS_ISMODEENABLE)
  61. #define PRCM_BOOT_STATUS 0xFFF
  62. #define PRCM_ROMCODE_A2P 0xFFE
  63. #define PRCM_ROMCODE_P2A 0xFFD
  64. #define PRCM_XP70_CUR_PWR_STATE 0xFFC /* 4 BYTES */
  65. #define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */
  66. #define _PRCM_MBOX_HEADER 0xFE8 /* 16 bytes */
  67. #define PRCM_MBOX_HEADER_REQ_MB0 (_PRCM_MBOX_HEADER + 0x0)
  68. #define PRCM_MBOX_HEADER_REQ_MB1 (_PRCM_MBOX_HEADER + 0x1)
  69. #define PRCM_MBOX_HEADER_REQ_MB2 (_PRCM_MBOX_HEADER + 0x2)
  70. #define PRCM_MBOX_HEADER_REQ_MB3 (_PRCM_MBOX_HEADER + 0x3)
  71. #define PRCM_MBOX_HEADER_REQ_MB4 (_PRCM_MBOX_HEADER + 0x4)
  72. #define PRCM_MBOX_HEADER_REQ_MB5 (_PRCM_MBOX_HEADER + 0x5)
  73. #define PRCM_MBOX_HEADER_ACK_MB0 (_PRCM_MBOX_HEADER + 0x8)
  74. /* Req Mailboxes */
  75. #define PRCM_REQ_MB0 0xFDC /* 12 bytes */
  76. #define PRCM_REQ_MB1 0xFD0 /* 12 bytes */
  77. #define PRCM_REQ_MB2 0xFC0 /* 16 bytes */
  78. #define PRCM_REQ_MB3 0xE4C /* 372 bytes */
  79. #define PRCM_REQ_MB4 0xE48 /* 4 bytes */
  80. #define PRCM_REQ_MB5 0xE44 /* 4 bytes */
  81. /* Ack Mailboxes */
  82. #define PRCM_ACK_MB0 0xE08 /* 52 bytes */
  83. #define PRCM_ACK_MB1 0xE04 /* 4 bytes */
  84. #define PRCM_ACK_MB2 0xE00 /* 4 bytes */
  85. #define PRCM_ACK_MB3 0xDFC /* 4 bytes */
  86. #define PRCM_ACK_MB4 0xDF8 /* 4 bytes */
  87. #define PRCM_ACK_MB5 0xDF4 /* 4 bytes */
  88. /* Mailbox 0 headers */
  89. #define MB0H_POWER_STATE_TRANS 0
  90. #define MB0H_CONFIG_WAKEUPS_EXE 1
  91. #define MB0H_READ_WAKEUP_ACK 3
  92. #define MB0H_CONFIG_WAKEUPS_SLEEP 4
  93. #define MB0H_WAKEUP_EXE 2
  94. #define MB0H_WAKEUP_SLEEP 5
  95. /* Mailbox 0 REQs */
  96. #define PRCM_REQ_MB0_AP_POWER_STATE (PRCM_REQ_MB0 + 0x0)
  97. #define PRCM_REQ_MB0_AP_PLL_STATE (PRCM_REQ_MB0 + 0x1)
  98. #define PRCM_REQ_MB0_ULP_CLOCK_STATE (PRCM_REQ_MB0 + 0x2)
  99. #define PRCM_REQ_MB0_DO_NOT_WFI (PRCM_REQ_MB0 + 0x3)
  100. #define PRCM_REQ_MB0_WAKEUP_8500 (PRCM_REQ_MB0 + 0x4)
  101. #define PRCM_REQ_MB0_WAKEUP_4500 (PRCM_REQ_MB0 + 0x8)
  102. /* Mailbox 0 ACKs */
  103. #define PRCM_ACK_MB0_AP_PWRSTTR_STATUS (PRCM_ACK_MB0 + 0x0)
  104. #define PRCM_ACK_MB0_READ_POINTER (PRCM_ACK_MB0 + 0x1)
  105. #define PRCM_ACK_MB0_WAKEUP_0_8500 (PRCM_ACK_MB0 + 0x4)
  106. #define PRCM_ACK_MB0_WAKEUP_0_4500 (PRCM_ACK_MB0 + 0x8)
  107. #define PRCM_ACK_MB0_WAKEUP_1_8500 (PRCM_ACK_MB0 + 0x1C)
  108. #define PRCM_ACK_MB0_WAKEUP_1_4500 (PRCM_ACK_MB0 + 0x20)
  109. #define PRCM_ACK_MB0_EVENT_4500_NUMBERS 20
  110. /* Mailbox 1 headers */
  111. #define MB1H_ARM_APE_OPP 0x0
  112. #define MB1H_RESET_MODEM 0x2
  113. #define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
  114. #define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
  115. #define MB1H_RELEASE_USB_WAKEUP 0x5
  116. #define MB1H_PLL_ON_OFF 0x6
  117. /* Mailbox 1 Requests */
  118. #define PRCM_REQ_MB1_ARM_OPP (PRCM_REQ_MB1 + 0x0)
  119. #define PRCM_REQ_MB1_APE_OPP (PRCM_REQ_MB1 + 0x1)
  120. #define PRCM_REQ_MB1_PLL_ON_OFF (PRCM_REQ_MB1 + 0x4)
  121. #define PLL_SOC0_OFF 0x1
  122. #define PLL_SOC0_ON 0x2
  123. #define PLL_SOC1_OFF 0x4
  124. #define PLL_SOC1_ON 0x8
  125. /* Mailbox 1 ACKs */
  126. #define PRCM_ACK_MB1_CURRENT_ARM_OPP (PRCM_ACK_MB1 + 0x0)
  127. #define PRCM_ACK_MB1_CURRENT_APE_OPP (PRCM_ACK_MB1 + 0x1)
  128. #define PRCM_ACK_MB1_APE_VOLTAGE_STATUS (PRCM_ACK_MB1 + 0x2)
  129. #define PRCM_ACK_MB1_DVFS_STATUS (PRCM_ACK_MB1 + 0x3)
  130. /* Mailbox 2 headers */
  131. #define MB2H_DPS 0x0
  132. #define MB2H_AUTO_PWR 0x1
  133. /* Mailbox 2 REQs */
  134. #define PRCM_REQ_MB2_SVA_MMDSP (PRCM_REQ_MB2 + 0x0)
  135. #define PRCM_REQ_MB2_SVA_PIPE (PRCM_REQ_MB2 + 0x1)
  136. #define PRCM_REQ_MB2_SIA_MMDSP (PRCM_REQ_MB2 + 0x2)
  137. #define PRCM_REQ_MB2_SIA_PIPE (PRCM_REQ_MB2 + 0x3)
  138. #define PRCM_REQ_MB2_SGA (PRCM_REQ_MB2 + 0x4)
  139. #define PRCM_REQ_MB2_B2R2_MCDE (PRCM_REQ_MB2 + 0x5)
  140. #define PRCM_REQ_MB2_ESRAM12 (PRCM_REQ_MB2 + 0x6)
  141. #define PRCM_REQ_MB2_ESRAM34 (PRCM_REQ_MB2 + 0x7)
  142. #define PRCM_REQ_MB2_AUTO_PM_SLEEP (PRCM_REQ_MB2 + 0x8)
  143. #define PRCM_REQ_MB2_AUTO_PM_IDLE (PRCM_REQ_MB2 + 0xC)
  144. /* Mailbox 2 ACKs */
  145. #define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
  146. #define HWACC_PWR_ST_OK 0xFE
  147. /* Mailbox 3 headers */
  148. #define MB3H_ANC 0x0
  149. #define MB3H_SIDETONE 0x1
  150. #define MB3H_SYSCLK 0xE
  151. /* Mailbox 3 Requests */
  152. #define PRCM_REQ_MB3_ANC_FIR_COEFF (PRCM_REQ_MB3 + 0x0)
  153. #define PRCM_REQ_MB3_ANC_IIR_COEFF (PRCM_REQ_MB3 + 0x20)
  154. #define PRCM_REQ_MB3_ANC_SHIFTER (PRCM_REQ_MB3 + 0x60)
  155. #define PRCM_REQ_MB3_ANC_WARP (PRCM_REQ_MB3 + 0x64)
  156. #define PRCM_REQ_MB3_SIDETONE_FIR_GAIN (PRCM_REQ_MB3 + 0x68)
  157. #define PRCM_REQ_MB3_SIDETONE_FIR_COEFF (PRCM_REQ_MB3 + 0x6C)
  158. #define PRCM_REQ_MB3_SYSCLK_MGT (PRCM_REQ_MB3 + 0x16C)
  159. /* Mailbox 4 headers */
  160. #define MB4H_DDR_INIT 0x0
  161. #define MB4H_MEM_ST 0x1
  162. #define MB4H_HOTDOG 0x12
  163. #define MB4H_HOTMON 0x13
  164. #define MB4H_HOT_PERIOD 0x14
  165. #define MB4H_A9WDOG_CONF 0x16
  166. #define MB4H_A9WDOG_EN 0x17
  167. #define MB4H_A9WDOG_DIS 0x18
  168. #define MB4H_A9WDOG_LOAD 0x19
  169. #define MB4H_A9WDOG_KICK 0x20
  170. /* Mailbox 4 Requests */
  171. #define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE (PRCM_REQ_MB4 + 0x0)
  172. #define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE (PRCM_REQ_MB4 + 0x1)
  173. #define PRCM_REQ_MB4_ESRAM0_ST (PRCM_REQ_MB4 + 0x3)
  174. #define PRCM_REQ_MB4_HOTDOG_THRESHOLD (PRCM_REQ_MB4 + 0x0)
  175. #define PRCM_REQ_MB4_HOTMON_LOW (PRCM_REQ_MB4 + 0x0)
  176. #define PRCM_REQ_MB4_HOTMON_HIGH (PRCM_REQ_MB4 + 0x1)
  177. #define PRCM_REQ_MB4_HOTMON_CONFIG (PRCM_REQ_MB4 + 0x2)
  178. #define PRCM_REQ_MB4_HOT_PERIOD (PRCM_REQ_MB4 + 0x0)
  179. #define HOTMON_CONFIG_LOW BIT(0)
  180. #define HOTMON_CONFIG_HIGH BIT(1)
  181. #define PRCM_REQ_MB4_A9WDOG_0 (PRCM_REQ_MB4 + 0x0)
  182. #define PRCM_REQ_MB4_A9WDOG_1 (PRCM_REQ_MB4 + 0x1)
  183. #define PRCM_REQ_MB4_A9WDOG_2 (PRCM_REQ_MB4 + 0x2)
  184. #define PRCM_REQ_MB4_A9WDOG_3 (PRCM_REQ_MB4 + 0x3)
  185. #define A9WDOG_AUTO_OFF_EN BIT(7)
  186. #define A9WDOG_AUTO_OFF_DIS 0
  187. #define A9WDOG_ID_MASK 0xf
  188. /* Mailbox 5 Requests */
  189. #define PRCM_REQ_MB5_I2C_SLAVE_OP (PRCM_REQ_MB5 + 0x0)
  190. #define PRCM_REQ_MB5_I2C_HW_BITS (PRCM_REQ_MB5 + 0x1)
  191. #define PRCM_REQ_MB5_I2C_REG (PRCM_REQ_MB5 + 0x2)
  192. #define PRCM_REQ_MB5_I2C_VAL (PRCM_REQ_MB5 + 0x3)
  193. #define PRCMU_I2C_WRITE(slave) (((slave) << 1) | BIT(6))
  194. #define PRCMU_I2C_READ(slave) (((slave) << 1) | BIT(0) | BIT(6))
  195. #define PRCMU_I2C_STOP_EN BIT(3)
  196. /* Mailbox 5 ACKs */
  197. #define PRCM_ACK_MB5_I2C_STATUS (PRCM_ACK_MB5 + 0x1)
  198. #define PRCM_ACK_MB5_I2C_VAL (PRCM_ACK_MB5 + 0x3)
  199. #define I2C_WR_OK 0x1
  200. #define I2C_RD_OK 0x2
  201. #define NUM_MB 8
  202. #define MBOX_BIT BIT
  203. #define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)
  204. /*
  205. * Wakeups/IRQs
  206. */
  207. #define WAKEUP_BIT_RTC BIT(0)
  208. #define WAKEUP_BIT_RTT0 BIT(1)
  209. #define WAKEUP_BIT_RTT1 BIT(2)
  210. #define WAKEUP_BIT_HSI0 BIT(3)
  211. #define WAKEUP_BIT_HSI1 BIT(4)
  212. #define WAKEUP_BIT_CA_WAKE BIT(5)
  213. #define WAKEUP_BIT_USB BIT(6)
  214. #define WAKEUP_BIT_ABB BIT(7)
  215. #define WAKEUP_BIT_ABB_FIFO BIT(8)
  216. #define WAKEUP_BIT_SYSCLK_OK BIT(9)
  217. #define WAKEUP_BIT_CA_SLEEP BIT(10)
  218. #define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
  219. #define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
  220. #define WAKEUP_BIT_ANC_OK BIT(13)
  221. #define WAKEUP_BIT_SW_ERROR BIT(14)
  222. #define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
  223. #define WAKEUP_BIT_ARM BIT(17)
  224. #define WAKEUP_BIT_HOTMON_LOW BIT(18)
  225. #define WAKEUP_BIT_HOTMON_HIGH BIT(19)
  226. #define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
  227. #define WAKEUP_BIT_GPIO0 BIT(23)
  228. #define WAKEUP_BIT_GPIO1 BIT(24)
  229. #define WAKEUP_BIT_GPIO2 BIT(25)
  230. #define WAKEUP_BIT_GPIO3 BIT(26)
  231. #define WAKEUP_BIT_GPIO4 BIT(27)
  232. #define WAKEUP_BIT_GPIO5 BIT(28)
  233. #define WAKEUP_BIT_GPIO6 BIT(29)
  234. #define WAKEUP_BIT_GPIO7 BIT(30)
  235. #define WAKEUP_BIT_GPIO8 BIT(31)
  236. static struct {
  237. bool valid;
  238. struct prcmu_fw_version version;
  239. } fw_info;
  240. static struct irq_domain *db8500_irq_domain;
  241. /*
  242. * This vector maps irq numbers to the bits in the bit field used in
  243. * communication with the PRCMU firmware.
  244. *
  245. * The reason for having this is to keep the irq numbers contiguous even though
  246. * the bits in the bit field are not. (The bits also have a tendency to move
  247. * around, to further complicate matters.)
  248. */
  249. #define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name))
  250. #define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)
  251. #define IRQ_PRCMU_RTC 0
  252. #define IRQ_PRCMU_RTT0 1
  253. #define IRQ_PRCMU_RTT1 2
  254. #define IRQ_PRCMU_HSI0 3
  255. #define IRQ_PRCMU_HSI1 4
  256. #define IRQ_PRCMU_CA_WAKE 5
  257. #define IRQ_PRCMU_USB 6
  258. #define IRQ_PRCMU_ABB 7
  259. #define IRQ_PRCMU_ABB_FIFO 8
  260. #define IRQ_PRCMU_ARM 9
  261. #define IRQ_PRCMU_MODEM_SW_RESET_REQ 10
  262. #define IRQ_PRCMU_GPIO0 11
  263. #define IRQ_PRCMU_GPIO1 12
  264. #define IRQ_PRCMU_GPIO2 13
  265. #define IRQ_PRCMU_GPIO3 14
  266. #define IRQ_PRCMU_GPIO4 15
  267. #define IRQ_PRCMU_GPIO5 16
  268. #define IRQ_PRCMU_GPIO6 17
  269. #define IRQ_PRCMU_GPIO7 18
  270. #define IRQ_PRCMU_GPIO8 19
  271. #define IRQ_PRCMU_CA_SLEEP 20
  272. #define IRQ_PRCMU_HOTMON_LOW 21
  273. #define IRQ_PRCMU_HOTMON_HIGH 22
  274. #define NUM_PRCMU_WAKEUPS 23
  275. static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = {
  276. IRQ_ENTRY(RTC),
  277. IRQ_ENTRY(RTT0),
  278. IRQ_ENTRY(RTT1),
  279. IRQ_ENTRY(HSI0),
  280. IRQ_ENTRY(HSI1),
  281. IRQ_ENTRY(CA_WAKE),
  282. IRQ_ENTRY(USB),
  283. IRQ_ENTRY(ABB),
  284. IRQ_ENTRY(ABB_FIFO),
  285. IRQ_ENTRY(CA_SLEEP),
  286. IRQ_ENTRY(ARM),
  287. IRQ_ENTRY(HOTMON_LOW),
  288. IRQ_ENTRY(HOTMON_HIGH),
  289. IRQ_ENTRY(MODEM_SW_RESET_REQ),
  290. IRQ_ENTRY(GPIO0),
  291. IRQ_ENTRY(GPIO1),
  292. IRQ_ENTRY(GPIO2),
  293. IRQ_ENTRY(GPIO3),
  294. IRQ_ENTRY(GPIO4),
  295. IRQ_ENTRY(GPIO5),
  296. IRQ_ENTRY(GPIO6),
  297. IRQ_ENTRY(GPIO7),
  298. IRQ_ENTRY(GPIO8)
  299. };
  300. #define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
  301. #define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
  302. static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = {
  303. WAKEUP_ENTRY(RTC),
  304. WAKEUP_ENTRY(RTT0),
  305. WAKEUP_ENTRY(RTT1),
  306. WAKEUP_ENTRY(HSI0),
  307. WAKEUP_ENTRY(HSI1),
  308. WAKEUP_ENTRY(USB),
  309. WAKEUP_ENTRY(ABB),
  310. WAKEUP_ENTRY(ABB_FIFO),
  311. WAKEUP_ENTRY(ARM)
  312. };
  313. /*
  314. * mb0_transfer - state needed for mailbox 0 communication.
  315. * @lock: The transaction lock.
  316. * @dbb_events_lock: A lock used to handle concurrent access to (parts of)
  317. * the request data.
  318. * @mask_work: Work structure used for (un)masking wakeup interrupts.
  319. * @req: Request data that need to persist between requests.
  320. */
  321. static struct {
  322. spinlock_t lock;
  323. spinlock_t dbb_irqs_lock;
  324. struct work_struct mask_work;
  325. struct mutex ac_wake_lock;
  326. struct completion ac_wake_work;
  327. struct {
  328. u32 dbb_irqs;
  329. u32 dbb_wakeups;
  330. u32 abb_events;
  331. } req;
  332. } mb0_transfer;
  333. /*
  334. * mb1_transfer - state needed for mailbox 1 communication.
  335. * @lock: The transaction lock.
  336. * @work: The transaction completion structure.
  337. * @ape_opp: The current APE OPP.
  338. * @ack: Reply ("acknowledge") data.
  339. */
  340. static struct {
  341. struct mutex lock;
  342. struct completion work;
  343. u8 ape_opp;
  344. struct {
  345. u8 header;
  346. u8 arm_opp;
  347. u8 ape_opp;
  348. u8 ape_voltage_status;
  349. } ack;
  350. } mb1_transfer;
  351. /*
  352. * mb2_transfer - state needed for mailbox 2 communication.
  353. * @lock: The transaction lock.
  354. * @work: The transaction completion structure.
  355. * @auto_pm_lock: The autonomous power management configuration lock.
  356. * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled.
  357. * @req: Request data that need to persist between requests.
  358. * @ack: Reply ("acknowledge") data.
  359. */
  360. static struct {
  361. struct mutex lock;
  362. struct completion work;
  363. spinlock_t auto_pm_lock;
  364. bool auto_pm_enabled;
  365. struct {
  366. u8 status;
  367. } ack;
  368. } mb2_transfer;
  369. /*
  370. * mb3_transfer - state needed for mailbox 3 communication.
  371. * @lock: The request lock.
  372. * @sysclk_lock: A lock used to handle concurrent sysclk requests.
  373. * @sysclk_work: Work structure used for sysclk requests.
  374. */
  375. static struct {
  376. spinlock_t lock;
  377. struct mutex sysclk_lock;
  378. struct completion sysclk_work;
  379. } mb3_transfer;
  380. /*
  381. * mb4_transfer - state needed for mailbox 4 communication.
  382. * @lock: The transaction lock.
  383. * @work: The transaction completion structure.
  384. */
  385. static struct {
  386. struct mutex lock;
  387. struct completion work;
  388. } mb4_transfer;
  389. /*
  390. * mb5_transfer - state needed for mailbox 5 communication.
  391. * @lock: The transaction lock.
  392. * @work: The transaction completion structure.
  393. * @ack: Reply ("acknowledge") data.
  394. */
  395. static struct {
  396. struct mutex lock;
  397. struct completion work;
  398. struct {
  399. u8 status;
  400. u8 value;
  401. } ack;
  402. } mb5_transfer;
  403. static atomic_t ac_wake_req_state = ATOMIC_INIT(0);
  404. /* Spinlocks */
  405. static DEFINE_SPINLOCK(prcmu_lock);
  406. static DEFINE_SPINLOCK(clkout_lock);
  407. /* Global var to runtime determine TCDM base for v2 or v1 */
  408. static __iomem void *tcdm_base;
  409. static __iomem void *prcmu_base;
  410. struct clk_mgt {
  411. u32 offset;
  412. u32 pllsw;
  413. int branch;
  414. bool clk38div;
  415. };
  416. enum {
  417. PLL_RAW,
  418. PLL_FIX,
  419. PLL_DIV
  420. };
  421. static DEFINE_SPINLOCK(clk_mgt_lock);
  422. #define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \
  423. { (PRCM_##_name##_MGT), 0 , _branch, _clk38div}
  424. static struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = {
  425. CLK_MGT_ENTRY(SGACLK, PLL_DIV, false),
  426. CLK_MGT_ENTRY(UARTCLK, PLL_FIX, true),
  427. CLK_MGT_ENTRY(MSP02CLK, PLL_FIX, true),
  428. CLK_MGT_ENTRY(MSP1CLK, PLL_FIX, true),
  429. CLK_MGT_ENTRY(I2CCLK, PLL_FIX, true),
  430. CLK_MGT_ENTRY(SDMMCCLK, PLL_DIV, true),
  431. CLK_MGT_ENTRY(SLIMCLK, PLL_FIX, true),
  432. CLK_MGT_ENTRY(PER1CLK, PLL_DIV, true),
  433. CLK_MGT_ENTRY(PER2CLK, PLL_DIV, true),
  434. CLK_MGT_ENTRY(PER3CLK, PLL_DIV, true),
  435. CLK_MGT_ENTRY(PER5CLK, PLL_DIV, true),
  436. CLK_MGT_ENTRY(PER6CLK, PLL_DIV, true),
  437. CLK_MGT_ENTRY(PER7CLK, PLL_DIV, true),
  438. CLK_MGT_ENTRY(LCDCLK, PLL_FIX, true),
  439. CLK_MGT_ENTRY(BMLCLK, PLL_DIV, true),
  440. CLK_MGT_ENTRY(HSITXCLK, PLL_DIV, true),
  441. CLK_MGT_ENTRY(HSIRXCLK, PLL_DIV, true),
  442. CLK_MGT_ENTRY(HDMICLK, PLL_FIX, false),
  443. CLK_MGT_ENTRY(APEATCLK, PLL_DIV, true),
  444. CLK_MGT_ENTRY(APETRACECLK, PLL_DIV, true),
  445. CLK_MGT_ENTRY(MCDECLK, PLL_DIV, true),
  446. CLK_MGT_ENTRY(IPI2CCLK, PLL_FIX, true),
  447. CLK_MGT_ENTRY(DSIALTCLK, PLL_FIX, false),
  448. CLK_MGT_ENTRY(DMACLK, PLL_DIV, true),
  449. CLK_MGT_ENTRY(B2R2CLK, PLL_DIV, true),
  450. CLK_MGT_ENTRY(TVCLK, PLL_FIX, true),
  451. CLK_MGT_ENTRY(SSPCLK, PLL_FIX, true),
  452. CLK_MGT_ENTRY(RNGCLK, PLL_FIX, true),
  453. CLK_MGT_ENTRY(UICCCLK, PLL_FIX, false),
  454. };
  455. struct dsiclk {
  456. u32 divsel_mask;
  457. u32 divsel_shift;
  458. u32 divsel;
  459. };
  460. static struct dsiclk dsiclk[2] = {
  461. {
  462. .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_MASK,
  463. .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_SHIFT,
  464. .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
  465. },
  466. {
  467. .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_MASK,
  468. .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_SHIFT,
  469. .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
  470. }
  471. };
  472. struct dsiescclk {
  473. u32 en;
  474. u32 div_mask;
  475. u32 div_shift;
  476. };
  477. static struct dsiescclk dsiescclk[3] = {
  478. {
  479. .en = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_EN,
  480. .div_mask = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_MASK,
  481. .div_shift = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_SHIFT,
  482. },
  483. {
  484. .en = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_EN,
  485. .div_mask = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_MASK,
  486. .div_shift = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_SHIFT,
  487. },
  488. {
  489. .en = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_EN,
  490. .div_mask = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_MASK,
  491. .div_shift = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_SHIFT,
  492. }
  493. };
  494. u32 db8500_prcmu_read(unsigned int reg)
  495. {
  496. return readl(prcmu_base + reg);
  497. }
  498. void db8500_prcmu_write(unsigned int reg, u32 value)
  499. {
  500. unsigned long flags;
  501. spin_lock_irqsave(&prcmu_lock, flags);
  502. writel(value, (prcmu_base + reg));
  503. spin_unlock_irqrestore(&prcmu_lock, flags);
  504. }
  505. void db8500_prcmu_write_masked(unsigned int reg, u32 mask, u32 value)
  506. {
  507. u32 val;
  508. unsigned long flags;
  509. spin_lock_irqsave(&prcmu_lock, flags);
  510. val = readl(prcmu_base + reg);
  511. val = ((val & ~mask) | (value & mask));
  512. writel(val, (prcmu_base + reg));
  513. spin_unlock_irqrestore(&prcmu_lock, flags);
  514. }
  515. struct prcmu_fw_version *prcmu_get_fw_version(void)
  516. {
  517. return fw_info.valid ? &fw_info.version : NULL;
  518. }
  519. static bool prcmu_is_ulppll_disabled(void)
  520. {
  521. struct prcmu_fw_version *ver;
  522. ver = prcmu_get_fw_version();
  523. return ver && ver->project == PRCMU_FW_PROJECT_U8420_SYSCLK;
  524. }
  525. bool prcmu_has_arm_maxopp(void)
  526. {
  527. return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) &
  528. PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK;
  529. }
  530. /**
  531. * prcmu_set_rc_a2p - This function is used to run few power state sequences
  532. * @val: Value to be set, i.e. transition requested
  533. * Returns: 0 on success, -EINVAL on invalid argument
  534. *
  535. * This function is used to run the following power state sequences -
  536. * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
  537. */
  538. int prcmu_set_rc_a2p(enum romcode_write val)
  539. {
  540. if (val < RDY_2_DS || val > RDY_2_XP70_RST)
  541. return -EINVAL;
  542. writeb(val, (tcdm_base + PRCM_ROMCODE_A2P));
  543. return 0;
  544. }
  545. /**
  546. * prcmu_get_rc_p2a - This function is used to get power state sequences
  547. * Returns: the power transition that has last happened
  548. *
  549. * This function can return the following transitions-
  550. * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
  551. */
  552. enum romcode_read prcmu_get_rc_p2a(void)
  553. {
  554. return readb(tcdm_base + PRCM_ROMCODE_P2A);
  555. }
  556. /**
  557. * prcmu_get_xp70_current_state - Return the current XP70 power mode
  558. * Returns: Returns the current AP(ARM) power mode: init,
  559. * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset
  560. */
  561. enum ap_pwrst prcmu_get_xp70_current_state(void)
  562. {
  563. return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE);
  564. }
  565. /**
  566. * prcmu_config_clkout - Configure one of the programmable clock outputs.
  567. * @clkout: The CLKOUT number (0 or 1).
  568. * @source: The clock to be used (one of the PRCMU_CLKSRC_*).
  569. * @div: The divider to be applied.
  570. *
  571. * Configures one of the programmable clock outputs (CLKOUTs).
  572. * @div should be in the range [1,63] to request a configuration, or 0 to
  573. * inform that the configuration is no longer requested.
  574. */
  575. int prcmu_config_clkout(u8 clkout, u8 source, u8 div)
  576. {
  577. static int requests[2];
  578. int r = 0;
  579. unsigned long flags;
  580. u32 val;
  581. u32 bits;
  582. u32 mask;
  583. u32 div_mask;
  584. BUG_ON(clkout > 1);
  585. BUG_ON(div > 63);
  586. BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009));
  587. if (!div && !requests[clkout])
  588. return -EINVAL;
  589. if (clkout == 0) {
  590. div_mask = PRCM_CLKOCR_CLKODIV0_MASK;
  591. mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK);
  592. bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) |
  593. (div << PRCM_CLKOCR_CLKODIV0_SHIFT));
  594. } else {
  595. div_mask = PRCM_CLKOCR_CLKODIV1_MASK;
  596. mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK |
  597. PRCM_CLKOCR_CLK1TYPE);
  598. bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) |
  599. (div << PRCM_CLKOCR_CLKODIV1_SHIFT));
  600. }
  601. bits &= mask;
  602. spin_lock_irqsave(&clkout_lock, flags);
  603. val = readl(PRCM_CLKOCR);
  604. if (val & div_mask) {
  605. if (div) {
  606. if ((val & mask) != bits) {
  607. r = -EBUSY;
  608. goto unlock_and_return;
  609. }
  610. } else {
  611. if ((val & mask & ~div_mask) != bits) {
  612. r = -EINVAL;
  613. goto unlock_and_return;
  614. }
  615. }
  616. }
  617. writel((bits | (val & ~mask)), PRCM_CLKOCR);
  618. requests[clkout] += (div ? 1 : -1);
  619. unlock_and_return:
  620. spin_unlock_irqrestore(&clkout_lock, flags);
  621. return r;
  622. }
  623. int db8500_prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll)
  624. {
  625. unsigned long flags;
  626. BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state));
  627. spin_lock_irqsave(&mb0_transfer.lock, flags);
  628. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
  629. cpu_relax();
  630. writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
  631. writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE));
  632. writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE));
  633. writeb((keep_ulp_clk ? 1 : 0),
  634. (tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE));
  635. writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI));
  636. writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
  637. spin_unlock_irqrestore(&mb0_transfer.lock, flags);
  638. return 0;
  639. }
  640. u8 db8500_prcmu_get_power_state_result(void)
  641. {
  642. return readb(tcdm_base + PRCM_ACK_MB0_AP_PWRSTTR_STATUS);
  643. }
  644. /* This function should only be called while mb0_transfer.lock is held. */
  645. static void config_wakeups(void)
  646. {
  647. const u8 header[2] = {
  648. MB0H_CONFIG_WAKEUPS_EXE,
  649. MB0H_CONFIG_WAKEUPS_SLEEP
  650. };
  651. static u32 last_dbb_events;
  652. static u32 last_abb_events;
  653. u32 dbb_events;
  654. u32 abb_events;
  655. unsigned int i;
  656. dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups;
  657. dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK);
  658. abb_events = mb0_transfer.req.abb_events;
  659. if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events))
  660. return;
  661. for (i = 0; i < 2; i++) {
  662. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
  663. cpu_relax();
  664. writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500));
  665. writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500));
  666. writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
  667. writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
  668. }
  669. last_dbb_events = dbb_events;
  670. last_abb_events = abb_events;
  671. }
  672. void db8500_prcmu_enable_wakeups(u32 wakeups)
  673. {
  674. unsigned long flags;
  675. u32 bits;
  676. int i;
  677. BUG_ON(wakeups != (wakeups & VALID_WAKEUPS));
  678. for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) {
  679. if (wakeups & BIT(i))
  680. bits |= prcmu_wakeup_bit[i];
  681. }
  682. spin_lock_irqsave(&mb0_transfer.lock, flags);
  683. mb0_transfer.req.dbb_wakeups = bits;
  684. config_wakeups();
  685. spin_unlock_irqrestore(&mb0_transfer.lock, flags);
  686. }
  687. void db8500_prcmu_config_abb_event_readout(u32 abb_events)
  688. {
  689. unsigned long flags;
  690. spin_lock_irqsave(&mb0_transfer.lock, flags);
  691. mb0_transfer.req.abb_events = abb_events;
  692. config_wakeups();
  693. spin_unlock_irqrestore(&mb0_transfer.lock, flags);
  694. }
  695. void db8500_prcmu_get_abb_event_buffer(void __iomem **buf)
  696. {
  697. if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
  698. *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500);
  699. else
  700. *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500);
  701. }
  702. /**
  703. * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP
  704. * @opp: The new ARM operating point to which transition is to be made
  705. * Returns: 0 on success, non-zero on failure
  706. *
  707. * This function sets the operating point of the ARM.
  708. */
  709. int db8500_prcmu_set_arm_opp(u8 opp)
  710. {
  711. int r;
  712. if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK)
  713. return -EINVAL;
  714. r = 0;
  715. mutex_lock(&mb1_transfer.lock);
  716. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
  717. cpu_relax();
  718. writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
  719. writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
  720. writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
  721. writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
  722. wait_for_completion(&mb1_transfer.work);
  723. if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
  724. (mb1_transfer.ack.arm_opp != opp))
  725. r = -EIO;
  726. mutex_unlock(&mb1_transfer.lock);
  727. return r;
  728. }
  729. /**
  730. * db8500_prcmu_get_arm_opp - get the current ARM OPP
  731. *
  732. * Returns: the current ARM OPP
  733. */
  734. int db8500_prcmu_get_arm_opp(void)
  735. {
  736. return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP);
  737. }
  738. /**
  739. * db8500_prcmu_get_ddr_opp - get the current DDR OPP
  740. *
  741. * Returns: the current DDR OPP
  742. */
  743. int db8500_prcmu_get_ddr_opp(void)
  744. {
  745. return readb(PRCM_DDR_SUBSYS_APE_MINBW);
  746. }
  747. /* Divide the frequency of certain clocks by 2 for APE_50_PARTLY_25_OPP. */
  748. static void request_even_slower_clocks(bool enable)
  749. {
  750. u32 clock_reg[] = {
  751. PRCM_ACLK_MGT,
  752. PRCM_DMACLK_MGT
  753. };
  754. unsigned long flags;
  755. unsigned int i;
  756. spin_lock_irqsave(&clk_mgt_lock, flags);
  757. /* Grab the HW semaphore. */
  758. while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
  759. cpu_relax();
  760. for (i = 0; i < ARRAY_SIZE(clock_reg); i++) {
  761. u32 val;
  762. u32 div;
  763. val = readl(prcmu_base + clock_reg[i]);
  764. div = (val & PRCM_CLK_MGT_CLKPLLDIV_MASK);
  765. if (enable) {
  766. if ((div <= 1) || (div > 15)) {
  767. pr_err("prcmu: Bad clock divider %d in %s\n",
  768. div, __func__);
  769. goto unlock_and_return;
  770. }
  771. div <<= 1;
  772. } else {
  773. if (div <= 2)
  774. goto unlock_and_return;
  775. div >>= 1;
  776. }
  777. val = ((val & ~PRCM_CLK_MGT_CLKPLLDIV_MASK) |
  778. (div & PRCM_CLK_MGT_CLKPLLDIV_MASK));
  779. writel(val, prcmu_base + clock_reg[i]);
  780. }
  781. unlock_and_return:
  782. /* Release the HW semaphore. */
  783. writel(0, PRCM_SEM);
  784. spin_unlock_irqrestore(&clk_mgt_lock, flags);
  785. }
  786. /**
  787. * db8500_prcmu_set_ape_opp - set the appropriate APE OPP
  788. * @opp: The new APE operating point to which transition is to be made
  789. * Returns: 0 on success, non-zero on failure
  790. *
  791. * This function sets the operating point of the APE.
  792. */
  793. int db8500_prcmu_set_ape_opp(u8 opp)
  794. {
  795. int r = 0;
  796. if (opp == mb1_transfer.ape_opp)
  797. return 0;
  798. mutex_lock(&mb1_transfer.lock);
  799. if (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)
  800. request_even_slower_clocks(false);
  801. if ((opp != APE_100_OPP) && (mb1_transfer.ape_opp != APE_100_OPP))
  802. goto skip_message;
  803. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
  804. cpu_relax();
  805. writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
  806. writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
  807. writeb(((opp == APE_50_PARTLY_25_OPP) ? APE_50_OPP : opp),
  808. (tcdm_base + PRCM_REQ_MB1_APE_OPP));
  809. writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
  810. wait_for_completion(&mb1_transfer.work);
  811. if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
  812. (mb1_transfer.ack.ape_opp != opp))
  813. r = -EIO;
  814. skip_message:
  815. if ((!r && (opp == APE_50_PARTLY_25_OPP)) ||
  816. (r && (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)))
  817. request_even_slower_clocks(true);
  818. if (!r)
  819. mb1_transfer.ape_opp = opp;
  820. mutex_unlock(&mb1_transfer.lock);
  821. return r;
  822. }
  823. /**
  824. * db8500_prcmu_get_ape_opp - get the current APE OPP
  825. *
  826. * Returns: the current APE OPP
  827. */
  828. int db8500_prcmu_get_ape_opp(void)
  829. {
  830. return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP);
  831. }
  832. /**
  833. * db8500_prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage
  834. * @enable: true to request the higher voltage, false to drop a request.
  835. *
  836. * Calls to this function to enable and disable requests must be balanced.
  837. */
  838. int db8500_prcmu_request_ape_opp_100_voltage(bool enable)
  839. {
  840. int r = 0;
  841. u8 header;
  842. static unsigned int requests;
  843. mutex_lock(&mb1_transfer.lock);
  844. if (enable) {
  845. if (0 != requests++)
  846. goto unlock_and_return;
  847. header = MB1H_REQUEST_APE_OPP_100_VOLT;
  848. } else {
  849. if (requests == 0) {
  850. r = -EIO;
  851. goto unlock_and_return;
  852. } else if (1 != requests--) {
  853. goto unlock_and_return;
  854. }
  855. header = MB1H_RELEASE_APE_OPP_100_VOLT;
  856. }
  857. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
  858. cpu_relax();
  859. writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
  860. writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
  861. wait_for_completion(&mb1_transfer.work);
  862. if ((mb1_transfer.ack.header != header) ||
  863. ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
  864. r = -EIO;
  865. unlock_and_return:
  866. mutex_unlock(&mb1_transfer.lock);
  867. return r;
  868. }
  869. /**
  870. * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup
  871. *
  872. * This function releases the power state requirements of a USB wakeup.
  873. */
  874. int prcmu_release_usb_wakeup_state(void)
  875. {
  876. int r = 0;
  877. mutex_lock(&mb1_transfer.lock);
  878. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
  879. cpu_relax();
  880. writeb(MB1H_RELEASE_USB_WAKEUP,
  881. (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
  882. writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
  883. wait_for_completion(&mb1_transfer.work);
  884. if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) ||
  885. ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
  886. r = -EIO;
  887. mutex_unlock(&mb1_transfer.lock);
  888. return r;
  889. }
  890. static int request_pll(u8 clock, bool enable)
  891. {
  892. int r = 0;
  893. if (clock == PRCMU_PLLSOC0)
  894. clock = (enable ? PLL_SOC0_ON : PLL_SOC0_OFF);
  895. else if (clock == PRCMU_PLLSOC1)
  896. clock = (enable ? PLL_SOC1_ON : PLL_SOC1_OFF);
  897. else
  898. return -EINVAL;
  899. mutex_lock(&mb1_transfer.lock);
  900. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
  901. cpu_relax();
  902. writeb(MB1H_PLL_ON_OFF, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
  903. writeb(clock, (tcdm_base + PRCM_REQ_MB1_PLL_ON_OFF));
  904. writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
  905. wait_for_completion(&mb1_transfer.work);
  906. if (mb1_transfer.ack.header != MB1H_PLL_ON_OFF)
  907. r = -EIO;
  908. mutex_unlock(&mb1_transfer.lock);
  909. return r;
  910. }
  911. /**
  912. * db8500_prcmu_set_epod - set the state of a EPOD (power domain)
  913. * @epod_id: The EPOD to set
  914. * @epod_state: The new EPOD state
  915. *
  916. * This function sets the state of a EPOD (power domain). It may not be called
  917. * from interrupt context.
  918. */
  919. int db8500_prcmu_set_epod(u16 epod_id, u8 epod_state)
  920. {
  921. int r = 0;
  922. bool ram_retention = false;
  923. int i;
  924. /* check argument */
  925. BUG_ON(epod_id >= NUM_EPOD_ID);
  926. /* set flag if retention is possible */
  927. switch (epod_id) {
  928. case EPOD_ID_SVAMMDSP:
  929. case EPOD_ID_SIAMMDSP:
  930. case EPOD_ID_ESRAM12:
  931. case EPOD_ID_ESRAM34:
  932. ram_retention = true;
  933. break;
  934. }
  935. /* check argument */
  936. BUG_ON(epod_state > EPOD_STATE_ON);
  937. BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention);
  938. /* get lock */
  939. mutex_lock(&mb2_transfer.lock);
  940. /* wait for mailbox */
  941. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2))
  942. cpu_relax();
  943. /* fill in mailbox */
  944. for (i = 0; i < NUM_EPOD_ID; i++)
  945. writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i));
  946. writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id));
  947. writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2));
  948. writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET);
  949. /*
  950. * The current firmware version does not handle errors correctly,
  951. * and we cannot recover if there is an error.
  952. * This is expected to change when the firmware is updated.
  953. */
  954. if (!wait_for_completion_timeout(&mb2_transfer.work,
  955. msecs_to_jiffies(20000))) {
  956. pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
  957. __func__);
  958. r = -EIO;
  959. goto unlock_and_return;
  960. }
  961. if (mb2_transfer.ack.status != HWACC_PWR_ST_OK)
  962. r = -EIO;
  963. unlock_and_return:
  964. mutex_unlock(&mb2_transfer.lock);
  965. return r;
  966. }
  967. /**
  968. * prcmu_configure_auto_pm - Configure autonomous power management.
  969. * @sleep: Configuration for ApSleep.
  970. * @idle: Configuration for ApIdle.
  971. */
  972. void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep,
  973. struct prcmu_auto_pm_config *idle)
  974. {
  975. u32 sleep_cfg;
  976. u32 idle_cfg;
  977. unsigned long flags;
  978. BUG_ON((sleep == NULL) || (idle == NULL));
  979. sleep_cfg = (sleep->sva_auto_pm_enable & 0xF);
  980. sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF));
  981. sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF));
  982. sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF));
  983. sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF));
  984. sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF));
  985. idle_cfg = (idle->sva_auto_pm_enable & 0xF);
  986. idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF));
  987. idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF));
  988. idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF));
  989. idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF));
  990. idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF));
  991. spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags);
  992. /*
  993. * The autonomous power management configuration is done through
  994. * fields in mailbox 2, but these fields are only used as shared
  995. * variables - i.e. there is no need to send a message.
  996. */
  997. writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP));
  998. writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE));
  999. mb2_transfer.auto_pm_enabled =
  1000. ((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
  1001. (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
  1002. (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
  1003. (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON));
  1004. spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags);
  1005. }
  1006. EXPORT_SYMBOL(prcmu_configure_auto_pm);
  1007. bool prcmu_is_auto_pm_enabled(void)
  1008. {
  1009. return mb2_transfer.auto_pm_enabled;
  1010. }
  1011. static int request_sysclk(bool enable)
  1012. {
  1013. int r;
  1014. unsigned long flags;
  1015. r = 0;
  1016. mutex_lock(&mb3_transfer.sysclk_lock);
  1017. spin_lock_irqsave(&mb3_transfer.lock, flags);
  1018. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3))
  1019. cpu_relax();
  1020. writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT));
  1021. writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3));
  1022. writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET);
  1023. spin_unlock_irqrestore(&mb3_transfer.lock, flags);
  1024. /*
  1025. * The firmware only sends an ACK if we want to enable the
  1026. * SysClk, and it succeeds.
  1027. */
  1028. if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work,
  1029. msecs_to_jiffies(20000))) {
  1030. pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
  1031. __func__);
  1032. r = -EIO;
  1033. }
  1034. mutex_unlock(&mb3_transfer.sysclk_lock);
  1035. return r;
  1036. }
  1037. static int request_timclk(bool enable)
  1038. {
  1039. u32 val;
  1040. /*
  1041. * On the U8420_CLKSEL firmware, the ULP (Ultra Low Power)
  1042. * PLL is disabled so we cannot use doze mode, this will
  1043. * stop the clock on this firmware.
  1044. */
  1045. if (prcmu_is_ulppll_disabled())
  1046. val = 0;
  1047. else
  1048. val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK);
  1049. if (!enable)
  1050. val |= PRCM_TCR_STOP_TIMERS |
  1051. PRCM_TCR_DOZE_MODE |
  1052. PRCM_TCR_TENSEL_MASK;
  1053. writel(val, PRCM_TCR);
  1054. return 0;
  1055. }
  1056. static int request_clock(u8 clock, bool enable)
  1057. {
  1058. u32 val;
  1059. unsigned long flags;
  1060. spin_lock_irqsave(&clk_mgt_lock, flags);
  1061. /* Grab the HW semaphore. */
  1062. while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
  1063. cpu_relax();
  1064. val = readl(prcmu_base + clk_mgt[clock].offset);
  1065. if (enable) {
  1066. val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw);
  1067. } else {
  1068. clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
  1069. val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK);
  1070. }
  1071. writel(val, prcmu_base + clk_mgt[clock].offset);
  1072. /* Release the HW semaphore. */
  1073. writel(0, PRCM_SEM);
  1074. spin_unlock_irqrestore(&clk_mgt_lock, flags);
  1075. return 0;
  1076. }
  1077. static int request_sga_clock(u8 clock, bool enable)
  1078. {
  1079. u32 val;
  1080. int ret;
  1081. if (enable) {
  1082. val = readl(PRCM_CGATING_BYPASS);
  1083. writel(val | PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
  1084. }
  1085. ret = request_clock(clock, enable);
  1086. if (!ret && !enable) {
  1087. val = readl(PRCM_CGATING_BYPASS);
  1088. writel(val & ~PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
  1089. }
  1090. return ret;
  1091. }
  1092. static inline bool plldsi_locked(void)
  1093. {
  1094. return (readl(PRCM_PLLDSI_LOCKP) &
  1095. (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
  1096. PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3)) ==
  1097. (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
  1098. PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3);
  1099. }
  1100. static int request_plldsi(bool enable)
  1101. {
  1102. int r = 0;
  1103. u32 val;
  1104. writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
  1105. PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), (enable ?
  1106. PRCM_MMIP_LS_CLAMP_CLR : PRCM_MMIP_LS_CLAMP_SET));
  1107. val = readl(PRCM_PLLDSI_ENABLE);
  1108. if (enable)
  1109. val |= PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
  1110. else
  1111. val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
  1112. writel(val, PRCM_PLLDSI_ENABLE);
  1113. if (enable) {
  1114. unsigned int i;
  1115. bool locked = plldsi_locked();
  1116. for (i = 10; !locked && (i > 0); --i) {
  1117. udelay(100);
  1118. locked = plldsi_locked();
  1119. }
  1120. if (locked) {
  1121. writel(PRCM_APE_RESETN_DSIPLL_RESETN,
  1122. PRCM_APE_RESETN_SET);
  1123. } else {
  1124. writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
  1125. PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI),
  1126. PRCM_MMIP_LS_CLAMP_SET);
  1127. val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
  1128. writel(val, PRCM_PLLDSI_ENABLE);
  1129. r = -EAGAIN;
  1130. }
  1131. } else {
  1132. writel(PRCM_APE_RESETN_DSIPLL_RESETN, PRCM_APE_RESETN_CLR);
  1133. }
  1134. return r;
  1135. }
  1136. static int request_dsiclk(u8 n, bool enable)
  1137. {
  1138. u32 val;
  1139. val = readl(PRCM_DSI_PLLOUT_SEL);
  1140. val &= ~dsiclk[n].divsel_mask;
  1141. val |= ((enable ? dsiclk[n].divsel : PRCM_DSI_PLLOUT_SEL_OFF) <<
  1142. dsiclk[n].divsel_shift);
  1143. writel(val, PRCM_DSI_PLLOUT_SEL);
  1144. return 0;
  1145. }
  1146. static int request_dsiescclk(u8 n, bool enable)
  1147. {
  1148. u32 val;
  1149. val = readl(PRCM_DSITVCLK_DIV);
  1150. enable ? (val |= dsiescclk[n].en) : (val &= ~dsiescclk[n].en);
  1151. writel(val, PRCM_DSITVCLK_DIV);
  1152. return 0;
  1153. }
  1154. /**
  1155. * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled.
  1156. * @clock: The clock for which the request is made.
  1157. * @enable: Whether the clock should be enabled (true) or disabled (false).
  1158. *
  1159. * This function should only be used by the clock implementation.
  1160. * Do not use it from any other place!
  1161. */
  1162. int db8500_prcmu_request_clock(u8 clock, bool enable)
  1163. {
  1164. if (clock == PRCMU_SGACLK)
  1165. return request_sga_clock(clock, enable);
  1166. else if (clock < PRCMU_NUM_REG_CLOCKS)
  1167. return request_clock(clock, enable);
  1168. else if (clock == PRCMU_TIMCLK)
  1169. return request_timclk(enable);
  1170. else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
  1171. return request_dsiclk((clock - PRCMU_DSI0CLK), enable);
  1172. else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
  1173. return request_dsiescclk((clock - PRCMU_DSI0ESCCLK), enable);
  1174. else if (clock == PRCMU_PLLDSI)
  1175. return request_plldsi(enable);
  1176. else if (clock == PRCMU_SYSCLK)
  1177. return request_sysclk(enable);
  1178. else if ((clock == PRCMU_PLLSOC0) || (clock == PRCMU_PLLSOC1))
  1179. return request_pll(clock, enable);
  1180. else
  1181. return -EINVAL;
  1182. }
  1183. static unsigned long pll_rate(void __iomem *reg, unsigned long src_rate,
  1184. int branch)
  1185. {
  1186. u64 rate;
  1187. u32 val;
  1188. u32 d;
  1189. u32 div = 1;
  1190. val = readl(reg);
  1191. rate = src_rate;
  1192. rate *= ((val & PRCM_PLL_FREQ_D_MASK) >> PRCM_PLL_FREQ_D_SHIFT);
  1193. d = ((val & PRCM_PLL_FREQ_N_MASK) >> PRCM_PLL_FREQ_N_SHIFT);
  1194. if (d > 1)
  1195. div *= d;
  1196. d = ((val & PRCM_PLL_FREQ_R_MASK) >> PRCM_PLL_FREQ_R_SHIFT);
  1197. if (d > 1)
  1198. div *= d;
  1199. if (val & PRCM_PLL_FREQ_SELDIV2)
  1200. div *= 2;
  1201. if ((branch == PLL_FIX) || ((branch == PLL_DIV) &&
  1202. (val & PRCM_PLL_FREQ_DIV2EN) &&
  1203. ((reg == PRCM_PLLSOC0_FREQ) ||
  1204. (reg == PRCM_PLLARM_FREQ) ||
  1205. (reg == PRCM_PLLDDR_FREQ))))
  1206. div *= 2;
  1207. (void)do_div(rate, div);
  1208. return (unsigned long)rate;
  1209. }
  1210. #define ROOT_CLOCK_RATE 38400000
  1211. static unsigned long clock_rate(u8 clock)
  1212. {
  1213. u32 val;
  1214. u32 pllsw;
  1215. unsigned long rate = ROOT_CLOCK_RATE;
  1216. val = readl(prcmu_base + clk_mgt[clock].offset);
  1217. if (val & PRCM_CLK_MGT_CLK38) {
  1218. if (clk_mgt[clock].clk38div && (val & PRCM_CLK_MGT_CLK38DIV))
  1219. rate /= 2;
  1220. return rate;
  1221. }
  1222. val |= clk_mgt[clock].pllsw;
  1223. pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
  1224. if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC0)
  1225. rate = pll_rate(PRCM_PLLSOC0_FREQ, rate, clk_mgt[clock].branch);
  1226. else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC1)
  1227. rate = pll_rate(PRCM_PLLSOC1_FREQ, rate, clk_mgt[clock].branch);
  1228. else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_DDR)
  1229. rate = pll_rate(PRCM_PLLDDR_FREQ, rate, clk_mgt[clock].branch);
  1230. else
  1231. return 0;
  1232. if ((clock == PRCMU_SGACLK) &&
  1233. (val & PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN)) {
  1234. u64 r = (rate * 10);
  1235. (void)do_div(r, 25);
  1236. return (unsigned long)r;
  1237. }
  1238. val &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
  1239. if (val)
  1240. return rate / val;
  1241. else
  1242. return 0;
  1243. }
  1244. static unsigned long armss_rate(void)
  1245. {
  1246. u32 r;
  1247. unsigned long rate;
  1248. r = readl(PRCM_ARM_CHGCLKREQ);
  1249. if (r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_CHGCLKREQ) {
  1250. /* External ARMCLKFIX clock */
  1251. rate = pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_FIX);
  1252. /* Check PRCM_ARM_CHGCLKREQ divider */
  1253. if (!(r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_DIVSEL))
  1254. rate /= 2;
  1255. /* Check PRCM_ARMCLKFIX_MGT divider */
  1256. r = readl(PRCM_ARMCLKFIX_MGT);
  1257. r &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
  1258. rate /= r;
  1259. } else {/* ARM PLL */
  1260. rate = pll_rate(PRCM_PLLARM_FREQ, ROOT_CLOCK_RATE, PLL_DIV);
  1261. }
  1262. return rate;
  1263. }
  1264. static unsigned long dsiclk_rate(u8 n)
  1265. {
  1266. u32 divsel;
  1267. u32 div = 1;
  1268. divsel = readl(PRCM_DSI_PLLOUT_SEL);
  1269. divsel = ((divsel & dsiclk[n].divsel_mask) >> dsiclk[n].divsel_shift);
  1270. if (divsel == PRCM_DSI_PLLOUT_SEL_OFF)
  1271. divsel = dsiclk[n].divsel;
  1272. else
  1273. dsiclk[n].divsel = divsel;
  1274. switch (divsel) {
  1275. case PRCM_DSI_PLLOUT_SEL_PHI_4:
  1276. div *= 2;
  1277. fallthrough;
  1278. case PRCM_DSI_PLLOUT_SEL_PHI_2:
  1279. div *= 2;
  1280. fallthrough;
  1281. case PRCM_DSI_PLLOUT_SEL_PHI:
  1282. return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
  1283. PLL_RAW) / div;
  1284. default:
  1285. return 0;
  1286. }
  1287. }
  1288. static unsigned long dsiescclk_rate(u8 n)
  1289. {
  1290. u32 div;
  1291. div = readl(PRCM_DSITVCLK_DIV);
  1292. div = ((div & dsiescclk[n].div_mask) >> (dsiescclk[n].div_shift));
  1293. return clock_rate(PRCMU_TVCLK) / max((u32)1, div);
  1294. }
  1295. unsigned long prcmu_clock_rate(u8 clock)
  1296. {
  1297. if (clock < PRCMU_NUM_REG_CLOCKS)
  1298. return clock_rate(clock);
  1299. else if (clock == PRCMU_TIMCLK)
  1300. return prcmu_is_ulppll_disabled() ?
  1301. 32768 : ROOT_CLOCK_RATE / 16;
  1302. else if (clock == PRCMU_SYSCLK)
  1303. return ROOT_CLOCK_RATE;
  1304. else if (clock == PRCMU_PLLSOC0)
  1305. return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
  1306. else if (clock == PRCMU_PLLSOC1)
  1307. return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
  1308. else if (clock == PRCMU_ARMSS)
  1309. return armss_rate();
  1310. else if (clock == PRCMU_PLLDDR)
  1311. return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
  1312. else if (clock == PRCMU_PLLDSI)
  1313. return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
  1314. PLL_RAW);
  1315. else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
  1316. return dsiclk_rate(clock - PRCMU_DSI0CLK);
  1317. else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
  1318. return dsiescclk_rate(clock - PRCMU_DSI0ESCCLK);
  1319. else
  1320. return 0;
  1321. }
  1322. static unsigned long clock_source_rate(u32 clk_mgt_val, int branch)
  1323. {
  1324. if (clk_mgt_val & PRCM_CLK_MGT_CLK38)
  1325. return ROOT_CLOCK_RATE;
  1326. clk_mgt_val &= PRCM_CLK_MGT_CLKPLLSW_MASK;
  1327. if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC0)
  1328. return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, branch);
  1329. else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC1)
  1330. return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, branch);
  1331. else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_DDR)
  1332. return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, branch);
  1333. else
  1334. return 0;
  1335. }
  1336. static u32 clock_divider(unsigned long src_rate, unsigned long rate)
  1337. {
  1338. u32 div;
  1339. div = (src_rate / rate);
  1340. if (div == 0)
  1341. return 1;
  1342. if (rate < (src_rate / div))
  1343. div++;
  1344. return div;
  1345. }
  1346. static long round_clock_rate(u8 clock, unsigned long rate)
  1347. {
  1348. u32 val;
  1349. u32 div;
  1350. unsigned long src_rate;
  1351. long rounded_rate;
  1352. val = readl(prcmu_base + clk_mgt[clock].offset);
  1353. src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
  1354. clk_mgt[clock].branch);
  1355. div = clock_divider(src_rate, rate);
  1356. if (val & PRCM_CLK_MGT_CLK38) {
  1357. if (clk_mgt[clock].clk38div) {
  1358. if (div > 2)
  1359. div = 2;
  1360. } else {
  1361. div = 1;
  1362. }
  1363. } else if ((clock == PRCMU_SGACLK) && (div == 3)) {
  1364. u64 r = (src_rate * 10);
  1365. (void)do_div(r, 25);
  1366. if (r <= rate)
  1367. return (unsigned long)r;
  1368. }
  1369. rounded_rate = (src_rate / min(div, (u32)31));
  1370. return rounded_rate;
  1371. }
  1372. static const unsigned long db8500_armss_freqs[] = {
  1373. 199680000,
  1374. 399360000,
  1375. 798720000,
  1376. 998400000
  1377. };
  1378. /* The DB8520 has slightly higher ARMSS max frequency */
  1379. static const unsigned long db8520_armss_freqs[] = {
  1380. 199680000,
  1381. 399360000,
  1382. 798720000,
  1383. 1152000000
  1384. };
  1385. static long round_armss_rate(unsigned long rate)
  1386. {
  1387. unsigned long freq = 0;
  1388. const unsigned long *freqs;
  1389. int nfreqs;
  1390. int i;
  1391. if (fw_info.version.project == PRCMU_FW_PROJECT_U8520) {
  1392. freqs = db8520_armss_freqs;
  1393. nfreqs = ARRAY_SIZE(db8520_armss_freqs);
  1394. } else {
  1395. freqs = db8500_armss_freqs;
  1396. nfreqs = ARRAY_SIZE(db8500_armss_freqs);
  1397. }
  1398. /* Find the corresponding arm opp from the cpufreq table. */
  1399. for (i = 0; i < nfreqs; i++) {
  1400. freq = freqs[i];
  1401. if (rate <= freq)
  1402. break;
  1403. }
  1404. /* Return the last valid value, even if a match was not found. */
  1405. return freq;
  1406. }
  1407. #define MIN_PLL_VCO_RATE 600000000ULL
  1408. #define MAX_PLL_VCO_RATE 1680640000ULL
  1409. static long round_plldsi_rate(unsigned long rate)
  1410. {
  1411. long rounded_rate = 0;
  1412. unsigned long src_rate;
  1413. unsigned long rem;
  1414. u32 r;
  1415. src_rate = clock_rate(PRCMU_HDMICLK);
  1416. rem = rate;
  1417. for (r = 7; (rem > 0) && (r > 0); r--) {
  1418. u64 d;
  1419. d = (r * rate);
  1420. (void)do_div(d, src_rate);
  1421. if (d < 6)
  1422. d = 6;
  1423. else if (d > 255)
  1424. d = 255;
  1425. d *= src_rate;
  1426. if (((2 * d) < (r * MIN_PLL_VCO_RATE)) ||
  1427. ((r * MAX_PLL_VCO_RATE) < (2 * d)))
  1428. continue;
  1429. (void)do_div(d, r);
  1430. if (rate < d) {
  1431. if (rounded_rate == 0)
  1432. rounded_rate = (long)d;
  1433. break;
  1434. }
  1435. if ((rate - d) < rem) {
  1436. rem = (rate - d);
  1437. rounded_rate = (long)d;
  1438. }
  1439. }
  1440. return rounded_rate;
  1441. }
  1442. static long round_dsiclk_rate(unsigned long rate)
  1443. {
  1444. u32 div;
  1445. unsigned long src_rate;
  1446. long rounded_rate;
  1447. src_rate = pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
  1448. PLL_RAW);
  1449. div = clock_divider(src_rate, rate);
  1450. rounded_rate = (src_rate / ((div > 2) ? 4 : div));
  1451. return rounded_rate;
  1452. }
  1453. static long round_dsiescclk_rate(unsigned long rate)
  1454. {
  1455. u32 div;
  1456. unsigned long src_rate;
  1457. long rounded_rate;
  1458. src_rate = clock_rate(PRCMU_TVCLK);
  1459. div = clock_divider(src_rate, rate);
  1460. rounded_rate = (src_rate / min(div, (u32)255));
  1461. return rounded_rate;
  1462. }
  1463. long prcmu_round_clock_rate(u8 clock, unsigned long rate)
  1464. {
  1465. if (clock < PRCMU_NUM_REG_CLOCKS)
  1466. return round_clock_rate(clock, rate);
  1467. else if (clock == PRCMU_ARMSS)
  1468. return round_armss_rate(rate);
  1469. else if (clock == PRCMU_PLLDSI)
  1470. return round_plldsi_rate(rate);
  1471. else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
  1472. return round_dsiclk_rate(rate);
  1473. else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
  1474. return round_dsiescclk_rate(rate);
  1475. else
  1476. return (long)prcmu_clock_rate(clock);
  1477. }
  1478. static void set_clock_rate(u8 clock, unsigned long rate)
  1479. {
  1480. u32 val;
  1481. u32 div;
  1482. unsigned long src_rate;
  1483. unsigned long flags;
  1484. spin_lock_irqsave(&clk_mgt_lock, flags);
  1485. /* Grab the HW semaphore. */
  1486. while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
  1487. cpu_relax();
  1488. val = readl(prcmu_base + clk_mgt[clock].offset);
  1489. src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
  1490. clk_mgt[clock].branch);
  1491. div = clock_divider(src_rate, rate);
  1492. if (val & PRCM_CLK_MGT_CLK38) {
  1493. if (clk_mgt[clock].clk38div) {
  1494. if (div > 1)
  1495. val |= PRCM_CLK_MGT_CLK38DIV;
  1496. else
  1497. val &= ~PRCM_CLK_MGT_CLK38DIV;
  1498. }
  1499. } else if (clock == PRCMU_SGACLK) {
  1500. val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK |
  1501. PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN);
  1502. if (div == 3) {
  1503. u64 r = (src_rate * 10);
  1504. (void)do_div(r, 25);
  1505. if (r <= rate) {
  1506. val |= PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN;
  1507. div = 0;
  1508. }
  1509. }
  1510. val |= min(div, (u32)31);
  1511. } else {
  1512. val &= ~PRCM_CLK_MGT_CLKPLLDIV_MASK;
  1513. val |= min(div, (u32)31);
  1514. }
  1515. writel(val, prcmu_base + clk_mgt[clock].offset);
  1516. /* Release the HW semaphore. */
  1517. writel(0, PRCM_SEM);
  1518. spin_unlock_irqrestore(&clk_mgt_lock, flags);
  1519. }
  1520. static int set_armss_rate(unsigned long rate)
  1521. {
  1522. unsigned long freq;
  1523. u8 opps[] = { ARM_EXTCLK, ARM_50_OPP, ARM_100_OPP, ARM_MAX_OPP };
  1524. const unsigned long *freqs;
  1525. int nfreqs;
  1526. int i;
  1527. if (fw_info.version.project == PRCMU_FW_PROJECT_U8520) {
  1528. freqs = db8520_armss_freqs;
  1529. nfreqs = ARRAY_SIZE(db8520_armss_freqs);
  1530. } else {
  1531. freqs = db8500_armss_freqs;
  1532. nfreqs = ARRAY_SIZE(db8500_armss_freqs);
  1533. }
  1534. /* Find the corresponding arm opp from the cpufreq table. */
  1535. for (i = 0; i < nfreqs; i++) {
  1536. freq = freqs[i];
  1537. if (rate == freq)
  1538. break;
  1539. }
  1540. if (rate != freq)
  1541. return -EINVAL;
  1542. /* Set the new arm opp. */
  1543. pr_debug("SET ARM OPP 0x%02x\n", opps[i]);
  1544. return db8500_prcmu_set_arm_opp(opps[i]);
  1545. }
  1546. static int set_plldsi_rate(unsigned long rate)
  1547. {
  1548. unsigned long src_rate;
  1549. unsigned long rem;
  1550. u32 pll_freq = 0;
  1551. u32 r;
  1552. src_rate = clock_rate(PRCMU_HDMICLK);
  1553. rem = rate;
  1554. for (r = 7; (rem > 0) && (r > 0); r--) {
  1555. u64 d;
  1556. u64 hwrate;
  1557. d = (r * rate);
  1558. (void)do_div(d, src_rate);
  1559. if (d < 6)
  1560. d = 6;
  1561. else if (d > 255)
  1562. d = 255;
  1563. hwrate = (d * src_rate);
  1564. if (((2 * hwrate) < (r * MIN_PLL_VCO_RATE)) ||
  1565. ((r * MAX_PLL_VCO_RATE) < (2 * hwrate)))
  1566. continue;
  1567. (void)do_div(hwrate, r);
  1568. if (rate < hwrate) {
  1569. if (pll_freq == 0)
  1570. pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
  1571. (r << PRCM_PLL_FREQ_R_SHIFT));
  1572. break;
  1573. }
  1574. if ((rate - hwrate) < rem) {
  1575. rem = (rate - hwrate);
  1576. pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
  1577. (r << PRCM_PLL_FREQ_R_SHIFT));
  1578. }
  1579. }
  1580. if (pll_freq == 0)
  1581. return -EINVAL;
  1582. pll_freq |= (1 << PRCM_PLL_FREQ_N_SHIFT);
  1583. writel(pll_freq, PRCM_PLLDSI_FREQ);
  1584. return 0;
  1585. }
  1586. static void set_dsiclk_rate(u8 n, unsigned long rate)
  1587. {
  1588. u32 val;
  1589. u32 div;
  1590. div = clock_divider(pll_rate(PRCM_PLLDSI_FREQ,
  1591. clock_rate(PRCMU_HDMICLK), PLL_RAW), rate);
  1592. dsiclk[n].divsel = (div == 1) ? PRCM_DSI_PLLOUT_SEL_PHI :
  1593. (div == 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2 :
  1594. /* else */ PRCM_DSI_PLLOUT_SEL_PHI_4;
  1595. val = readl(PRCM_DSI_PLLOUT_SEL);
  1596. val &= ~dsiclk[n].divsel_mask;
  1597. val |= (dsiclk[n].divsel << dsiclk[n].divsel_shift);
  1598. writel(val, PRCM_DSI_PLLOUT_SEL);
  1599. }
  1600. static void set_dsiescclk_rate(u8 n, unsigned long rate)
  1601. {
  1602. u32 val;
  1603. u32 div;
  1604. div = clock_divider(clock_rate(PRCMU_TVCLK), rate);
  1605. val = readl(PRCM_DSITVCLK_DIV);
  1606. val &= ~dsiescclk[n].div_mask;
  1607. val |= (min(div, (u32)255) << dsiescclk[n].div_shift);
  1608. writel(val, PRCM_DSITVCLK_DIV);
  1609. }
  1610. int prcmu_set_clock_rate(u8 clock, unsigned long rate)
  1611. {
  1612. if (clock < PRCMU_NUM_REG_CLOCKS)
  1613. set_clock_rate(clock, rate);
  1614. else if (clock == PRCMU_ARMSS)
  1615. return set_armss_rate(rate);
  1616. else if (clock == PRCMU_PLLDSI)
  1617. return set_plldsi_rate(rate);
  1618. else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
  1619. set_dsiclk_rate((clock - PRCMU_DSI0CLK), rate);
  1620. else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
  1621. set_dsiescclk_rate((clock - PRCMU_DSI0ESCCLK), rate);
  1622. return 0;
  1623. }
  1624. int db8500_prcmu_config_esram0_deep_sleep(u8 state)
  1625. {
  1626. if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) ||
  1627. (state < ESRAM0_DEEP_SLEEP_STATE_OFF))
  1628. return -EINVAL;
  1629. mutex_lock(&mb4_transfer.lock);
  1630. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
  1631. cpu_relax();
  1632. writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
  1633. writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON),
  1634. (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE));
  1635. writeb(DDR_PWR_STATE_ON,
  1636. (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE));
  1637. writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST));
  1638. writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
  1639. wait_for_completion(&mb4_transfer.work);
  1640. mutex_unlock(&mb4_transfer.lock);
  1641. return 0;
  1642. }
  1643. int db8500_prcmu_config_hotdog(u8 threshold)
  1644. {
  1645. mutex_lock(&mb4_transfer.lock);
  1646. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
  1647. cpu_relax();
  1648. writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD));
  1649. writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
  1650. writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
  1651. wait_for_completion(&mb4_transfer.work);
  1652. mutex_unlock(&mb4_transfer.lock);
  1653. return 0;
  1654. }
  1655. int db8500_prcmu_config_hotmon(u8 low, u8 high)
  1656. {
  1657. mutex_lock(&mb4_transfer.lock);
  1658. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
  1659. cpu_relax();
  1660. writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW));
  1661. writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH));
  1662. writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH),
  1663. (tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG));
  1664. writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
  1665. writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
  1666. wait_for_completion(&mb4_transfer.work);
  1667. mutex_unlock(&mb4_transfer.lock);
  1668. return 0;
  1669. }
  1670. EXPORT_SYMBOL_GPL(db8500_prcmu_config_hotmon);
  1671. static int config_hot_period(u16 val)
  1672. {
  1673. mutex_lock(&mb4_transfer.lock);
  1674. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
  1675. cpu_relax();
  1676. writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD));
  1677. writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
  1678. writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
  1679. wait_for_completion(&mb4_transfer.work);
  1680. mutex_unlock(&mb4_transfer.lock);
  1681. return 0;
  1682. }
  1683. int db8500_prcmu_start_temp_sense(u16 cycles32k)
  1684. {
  1685. if (cycles32k == 0xFFFF)
  1686. return -EINVAL;
  1687. return config_hot_period(cycles32k);
  1688. }
  1689. EXPORT_SYMBOL_GPL(db8500_prcmu_start_temp_sense);
  1690. int db8500_prcmu_stop_temp_sense(void)
  1691. {
  1692. return config_hot_period(0xFFFF);
  1693. }
  1694. EXPORT_SYMBOL_GPL(db8500_prcmu_stop_temp_sense);
  1695. static int prcmu_a9wdog(u8 cmd, u8 d0, u8 d1, u8 d2, u8 d3)
  1696. {
  1697. mutex_lock(&mb4_transfer.lock);
  1698. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
  1699. cpu_relax();
  1700. writeb(d0, (tcdm_base + PRCM_REQ_MB4_A9WDOG_0));
  1701. writeb(d1, (tcdm_base + PRCM_REQ_MB4_A9WDOG_1));
  1702. writeb(d2, (tcdm_base + PRCM_REQ_MB4_A9WDOG_2));
  1703. writeb(d3, (tcdm_base + PRCM_REQ_MB4_A9WDOG_3));
  1704. writeb(cmd, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
  1705. writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
  1706. wait_for_completion(&mb4_transfer.work);
  1707. mutex_unlock(&mb4_transfer.lock);
  1708. return 0;
  1709. }
  1710. int db8500_prcmu_config_a9wdog(u8 num, bool sleep_auto_off)
  1711. {
  1712. BUG_ON(num == 0 || num > 0xf);
  1713. return prcmu_a9wdog(MB4H_A9WDOG_CONF, num, 0, 0,
  1714. sleep_auto_off ? A9WDOG_AUTO_OFF_EN :
  1715. A9WDOG_AUTO_OFF_DIS);
  1716. }
  1717. EXPORT_SYMBOL(db8500_prcmu_config_a9wdog);
  1718. int db8500_prcmu_enable_a9wdog(u8 id)
  1719. {
  1720. return prcmu_a9wdog(MB4H_A9WDOG_EN, id, 0, 0, 0);
  1721. }
  1722. EXPORT_SYMBOL(db8500_prcmu_enable_a9wdog);
  1723. int db8500_prcmu_disable_a9wdog(u8 id)
  1724. {
  1725. return prcmu_a9wdog(MB4H_A9WDOG_DIS, id, 0, 0, 0);
  1726. }
  1727. EXPORT_SYMBOL(db8500_prcmu_disable_a9wdog);
  1728. int db8500_prcmu_kick_a9wdog(u8 id)
  1729. {
  1730. return prcmu_a9wdog(MB4H_A9WDOG_KICK, id, 0, 0, 0);
  1731. }
  1732. EXPORT_SYMBOL(db8500_prcmu_kick_a9wdog);
  1733. /*
  1734. * timeout is 28 bit, in ms.
  1735. */
  1736. int db8500_prcmu_load_a9wdog(u8 id, u32 timeout)
  1737. {
  1738. return prcmu_a9wdog(MB4H_A9WDOG_LOAD,
  1739. (id & A9WDOG_ID_MASK) |
  1740. /*
  1741. * Put the lowest 28 bits of timeout at
  1742. * offset 4. Four first bits are used for id.
  1743. */
  1744. (u8)((timeout << 4) & 0xf0),
  1745. (u8)((timeout >> 4) & 0xff),
  1746. (u8)((timeout >> 12) & 0xff),
  1747. (u8)((timeout >> 20) & 0xff));
  1748. }
  1749. EXPORT_SYMBOL(db8500_prcmu_load_a9wdog);
  1750. /**
  1751. * prcmu_abb_read() - Read register value(s) from the ABB.
  1752. * @slave: The I2C slave address.
  1753. * @reg: The (start) register address.
  1754. * @value: The read out value(s).
  1755. * @size: The number of registers to read.
  1756. *
  1757. * Reads register value(s) from the ABB.
  1758. * @size has to be 1 for the current firmware version.
  1759. */
  1760. int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size)
  1761. {
  1762. int r;
  1763. if (size != 1)
  1764. return -EINVAL;
  1765. mutex_lock(&mb5_transfer.lock);
  1766. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
  1767. cpu_relax();
  1768. writeb(0, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
  1769. writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
  1770. writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
  1771. writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
  1772. writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
  1773. writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
  1774. if (!wait_for_completion_timeout(&mb5_transfer.work,
  1775. msecs_to_jiffies(20000))) {
  1776. pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
  1777. __func__);
  1778. r = -EIO;
  1779. } else {
  1780. r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO);
  1781. }
  1782. if (!r)
  1783. *value = mb5_transfer.ack.value;
  1784. mutex_unlock(&mb5_transfer.lock);
  1785. return r;
  1786. }
  1787. /**
  1788. * prcmu_abb_write_masked() - Write masked register value(s) to the ABB.
  1789. * @slave: The I2C slave address.
  1790. * @reg: The (start) register address.
  1791. * @value: The value(s) to write.
  1792. * @mask: The mask(s) to use.
  1793. * @size: The number of registers to write.
  1794. *
  1795. * Writes masked register value(s) to the ABB.
  1796. * For each @value, only the bits set to 1 in the corresponding @mask
  1797. * will be written. The other bits are not changed.
  1798. * @size has to be 1 for the current firmware version.
  1799. */
  1800. int prcmu_abb_write_masked(u8 slave, u8 reg, u8 *value, u8 *mask, u8 size)
  1801. {
  1802. int r;
  1803. if (size != 1)
  1804. return -EINVAL;
  1805. mutex_lock(&mb5_transfer.lock);
  1806. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
  1807. cpu_relax();
  1808. writeb(~*mask, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
  1809. writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
  1810. writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
  1811. writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
  1812. writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
  1813. writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
  1814. if (!wait_for_completion_timeout(&mb5_transfer.work,
  1815. msecs_to_jiffies(20000))) {
  1816. pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
  1817. __func__);
  1818. r = -EIO;
  1819. } else {
  1820. r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO);
  1821. }
  1822. mutex_unlock(&mb5_transfer.lock);
  1823. return r;
  1824. }
  1825. /**
  1826. * prcmu_abb_write() - Write register value(s) to the ABB.
  1827. * @slave: The I2C slave address.
  1828. * @reg: The (start) register address.
  1829. * @value: The value(s) to write.
  1830. * @size: The number of registers to write.
  1831. *
  1832. * Writes register value(s) to the ABB.
  1833. * @size has to be 1 for the current firmware version.
  1834. */
  1835. int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size)
  1836. {
  1837. u8 mask = ~0;
  1838. return prcmu_abb_write_masked(slave, reg, value, &mask, size);
  1839. }
  1840. /**
  1841. * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem
  1842. */
  1843. int prcmu_ac_wake_req(void)
  1844. {
  1845. u32 val;
  1846. int ret = 0;
  1847. mutex_lock(&mb0_transfer.ac_wake_lock);
  1848. val = readl(PRCM_HOSTACCESS_REQ);
  1849. if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)
  1850. goto unlock_and_return;
  1851. atomic_set(&ac_wake_req_state, 1);
  1852. /*
  1853. * Force Modem Wake-up before hostaccess_req ping-pong.
  1854. * It prevents Modem to enter in Sleep while acking the hostaccess
  1855. * request. The 31us delay has been calculated by HWI.
  1856. */
  1857. val |= PRCM_HOSTACCESS_REQ_WAKE_REQ;
  1858. writel(val, PRCM_HOSTACCESS_REQ);
  1859. udelay(31);
  1860. val |= PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ;
  1861. writel(val, PRCM_HOSTACCESS_REQ);
  1862. if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
  1863. msecs_to_jiffies(5000))) {
  1864. pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
  1865. __func__);
  1866. ret = -EFAULT;
  1867. }
  1868. unlock_and_return:
  1869. mutex_unlock(&mb0_transfer.ac_wake_lock);
  1870. return ret;
  1871. }
  1872. /**
  1873. * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem
  1874. */
  1875. void prcmu_ac_sleep_req(void)
  1876. {
  1877. u32 val;
  1878. mutex_lock(&mb0_transfer.ac_wake_lock);
  1879. val = readl(PRCM_HOSTACCESS_REQ);
  1880. if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ))
  1881. goto unlock_and_return;
  1882. writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ),
  1883. PRCM_HOSTACCESS_REQ);
  1884. if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
  1885. msecs_to_jiffies(5000))) {
  1886. pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
  1887. __func__);
  1888. }
  1889. atomic_set(&ac_wake_req_state, 0);
  1890. unlock_and_return:
  1891. mutex_unlock(&mb0_transfer.ac_wake_lock);
  1892. }
  1893. bool db8500_prcmu_is_ac_wake_requested(void)
  1894. {
  1895. return (atomic_read(&ac_wake_req_state) != 0);
  1896. }
  1897. /**
  1898. * db8500_prcmu_system_reset - System reset
  1899. *
  1900. * Saves the reset reason code and then sets the APE_SOFTRST register which
  1901. * fires interrupt to fw
  1902. *
  1903. * @reset_code: The reason for system reset
  1904. */
  1905. void db8500_prcmu_system_reset(u16 reset_code)
  1906. {
  1907. writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON));
  1908. writel(1, PRCM_APE_SOFTRST);
  1909. }
  1910. /**
  1911. * db8500_prcmu_get_reset_code - Retrieve SW reset reason code
  1912. *
  1913. * Retrieves the reset reason code stored by prcmu_system_reset() before
  1914. * last restart.
  1915. */
  1916. u16 db8500_prcmu_get_reset_code(void)
  1917. {
  1918. return readw(tcdm_base + PRCM_SW_RST_REASON);
  1919. }
  1920. /**
  1921. * db8500_prcmu_modem_reset - ask the PRCMU to reset modem
  1922. */
  1923. void db8500_prcmu_modem_reset(void)
  1924. {
  1925. mutex_lock(&mb1_transfer.lock);
  1926. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
  1927. cpu_relax();
  1928. writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
  1929. writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
  1930. wait_for_completion(&mb1_transfer.work);
  1931. /*
  1932. * No need to check return from PRCMU as modem should go in reset state
  1933. * This state is already managed by upper layer
  1934. */
  1935. mutex_unlock(&mb1_transfer.lock);
  1936. }
  1937. static void ack_dbb_wakeup(void)
  1938. {
  1939. unsigned long flags;
  1940. spin_lock_irqsave(&mb0_transfer.lock, flags);
  1941. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
  1942. cpu_relax();
  1943. writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
  1944. writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
  1945. spin_unlock_irqrestore(&mb0_transfer.lock, flags);
  1946. }
  1947. static inline void print_unknown_header_warning(u8 n, u8 header)
  1948. {
  1949. pr_warn("prcmu: Unknown message header (%d) in mailbox %d\n",
  1950. header, n);
  1951. }
  1952. static bool read_mailbox_0(void)
  1953. {
  1954. bool r;
  1955. u32 ev;
  1956. unsigned int n;
  1957. u8 header;
  1958. header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0);
  1959. switch (header) {
  1960. case MB0H_WAKEUP_EXE:
  1961. case MB0H_WAKEUP_SLEEP:
  1962. if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
  1963. ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500);
  1964. else
  1965. ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500);
  1966. if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK))
  1967. complete(&mb0_transfer.ac_wake_work);
  1968. if (ev & WAKEUP_BIT_SYSCLK_OK)
  1969. complete(&mb3_transfer.sysclk_work);
  1970. ev &= mb0_transfer.req.dbb_irqs;
  1971. for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) {
  1972. if (ev & prcmu_irq_bit[n])
  1973. generic_handle_domain_irq(db8500_irq_domain, n);
  1974. }
  1975. r = true;
  1976. break;
  1977. default:
  1978. print_unknown_header_warning(0, header);
  1979. r = false;
  1980. break;
  1981. }
  1982. writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR);
  1983. return r;
  1984. }
  1985. static bool read_mailbox_1(void)
  1986. {
  1987. mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1);
  1988. mb1_transfer.ack.arm_opp = readb(tcdm_base +
  1989. PRCM_ACK_MB1_CURRENT_ARM_OPP);
  1990. mb1_transfer.ack.ape_opp = readb(tcdm_base +
  1991. PRCM_ACK_MB1_CURRENT_APE_OPP);
  1992. mb1_transfer.ack.ape_voltage_status = readb(tcdm_base +
  1993. PRCM_ACK_MB1_APE_VOLTAGE_STATUS);
  1994. writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR);
  1995. complete(&mb1_transfer.work);
  1996. return false;
  1997. }
  1998. static bool read_mailbox_2(void)
  1999. {
  2000. mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS);
  2001. writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR);
  2002. complete(&mb2_transfer.work);
  2003. return false;
  2004. }
  2005. static bool read_mailbox_3(void)
  2006. {
  2007. writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR);
  2008. return false;
  2009. }
  2010. static bool read_mailbox_4(void)
  2011. {
  2012. u8 header;
  2013. bool do_complete = true;
  2014. header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4);
  2015. switch (header) {
  2016. case MB4H_MEM_ST:
  2017. case MB4H_HOTDOG:
  2018. case MB4H_HOTMON:
  2019. case MB4H_HOT_PERIOD:
  2020. case MB4H_A9WDOG_CONF:
  2021. case MB4H_A9WDOG_EN:
  2022. case MB4H_A9WDOG_DIS:
  2023. case MB4H_A9WDOG_LOAD:
  2024. case MB4H_A9WDOG_KICK:
  2025. break;
  2026. default:
  2027. print_unknown_header_warning(4, header);
  2028. do_complete = false;
  2029. break;
  2030. }
  2031. writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR);
  2032. if (do_complete)
  2033. complete(&mb4_transfer.work);
  2034. return false;
  2035. }
  2036. static bool read_mailbox_5(void)
  2037. {
  2038. mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS);
  2039. mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL);
  2040. writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR);
  2041. complete(&mb5_transfer.work);
  2042. return false;
  2043. }
  2044. static bool read_mailbox_6(void)
  2045. {
  2046. writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR);
  2047. return false;
  2048. }
  2049. static bool read_mailbox_7(void)
  2050. {
  2051. writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR);
  2052. return false;
  2053. }
  2054. static bool (* const read_mailbox[NUM_MB])(void) = {
  2055. read_mailbox_0,
  2056. read_mailbox_1,
  2057. read_mailbox_2,
  2058. read_mailbox_3,
  2059. read_mailbox_4,
  2060. read_mailbox_5,
  2061. read_mailbox_6,
  2062. read_mailbox_7
  2063. };
  2064. static irqreturn_t prcmu_irq_handler(int irq, void *data)
  2065. {
  2066. u32 bits;
  2067. u8 n;
  2068. irqreturn_t r;
  2069. bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS);
  2070. if (unlikely(!bits))
  2071. return IRQ_NONE;
  2072. r = IRQ_HANDLED;
  2073. for (n = 0; bits; n++) {
  2074. if (bits & MBOX_BIT(n)) {
  2075. bits -= MBOX_BIT(n);
  2076. if (read_mailbox[n]())
  2077. r = IRQ_WAKE_THREAD;
  2078. }
  2079. }
  2080. return r;
  2081. }
  2082. static irqreturn_t prcmu_irq_thread_fn(int irq, void *data)
  2083. {
  2084. ack_dbb_wakeup();
  2085. return IRQ_HANDLED;
  2086. }
  2087. static void prcmu_mask_work(struct work_struct *work)
  2088. {
  2089. unsigned long flags;
  2090. spin_lock_irqsave(&mb0_transfer.lock, flags);
  2091. config_wakeups();
  2092. spin_unlock_irqrestore(&mb0_transfer.lock, flags);
  2093. }
  2094. static void prcmu_irq_mask(struct irq_data *d)
  2095. {
  2096. unsigned long flags;
  2097. spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
  2098. mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->hwirq];
  2099. spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
  2100. if (d->irq != IRQ_PRCMU_CA_SLEEP)
  2101. schedule_work(&mb0_transfer.mask_work);
  2102. }
  2103. static void prcmu_irq_unmask(struct irq_data *d)
  2104. {
  2105. unsigned long flags;
  2106. spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
  2107. mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->hwirq];
  2108. spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
  2109. if (d->irq != IRQ_PRCMU_CA_SLEEP)
  2110. schedule_work(&mb0_transfer.mask_work);
  2111. }
  2112. static void noop(struct irq_data *d)
  2113. {
  2114. }
  2115. static struct irq_chip prcmu_irq_chip = {
  2116. .name = "prcmu",
  2117. .irq_disable = prcmu_irq_mask,
  2118. .irq_ack = noop,
  2119. .irq_mask = prcmu_irq_mask,
  2120. .irq_unmask = prcmu_irq_unmask,
  2121. };
  2122. static char *fw_project_name(u32 project)
  2123. {
  2124. switch (project) {
  2125. case PRCMU_FW_PROJECT_U8500:
  2126. return "U8500";
  2127. case PRCMU_FW_PROJECT_U8400:
  2128. return "U8400";
  2129. case PRCMU_FW_PROJECT_U9500:
  2130. return "U9500";
  2131. case PRCMU_FW_PROJECT_U8500_MBB:
  2132. return "U8500 MBB";
  2133. case PRCMU_FW_PROJECT_U8500_C1:
  2134. return "U8500 C1";
  2135. case PRCMU_FW_PROJECT_U8500_C2:
  2136. return "U8500 C2";
  2137. case PRCMU_FW_PROJECT_U8500_C3:
  2138. return "U8500 C3";
  2139. case PRCMU_FW_PROJECT_U8500_C4:
  2140. return "U8500 C4";
  2141. case PRCMU_FW_PROJECT_U9500_MBL:
  2142. return "U9500 MBL";
  2143. case PRCMU_FW_PROJECT_U8500_SSG1:
  2144. return "U8500 Samsung 1";
  2145. case PRCMU_FW_PROJECT_U8500_MBL2:
  2146. return "U8500 MBL2";
  2147. case PRCMU_FW_PROJECT_U8520:
  2148. return "U8520 MBL";
  2149. case PRCMU_FW_PROJECT_U8420:
  2150. return "U8420";
  2151. case PRCMU_FW_PROJECT_U8500_SSG2:
  2152. return "U8500 Samsung 2";
  2153. case PRCMU_FW_PROJECT_U8420_SYSCLK:
  2154. return "U8420-sysclk";
  2155. case PRCMU_FW_PROJECT_U9540:
  2156. return "U9540";
  2157. case PRCMU_FW_PROJECT_A9420:
  2158. return "A9420";
  2159. case PRCMU_FW_PROJECT_L8540:
  2160. return "L8540";
  2161. case PRCMU_FW_PROJECT_L8580:
  2162. return "L8580";
  2163. default:
  2164. return "Unknown";
  2165. }
  2166. }
  2167. static int db8500_irq_map(struct irq_domain *d, unsigned int virq,
  2168. irq_hw_number_t hwirq)
  2169. {
  2170. irq_set_chip_and_handler(virq, &prcmu_irq_chip,
  2171. handle_simple_irq);
  2172. return 0;
  2173. }
  2174. static const struct irq_domain_ops db8500_irq_ops = {
  2175. .map = db8500_irq_map,
  2176. .xlate = irq_domain_xlate_twocell,
  2177. };
  2178. static int db8500_irq_init(struct device_node *np)
  2179. {
  2180. int i;
  2181. db8500_irq_domain = irq_domain_add_simple(
  2182. np, NUM_PRCMU_WAKEUPS, 0,
  2183. &db8500_irq_ops, NULL);
  2184. if (!db8500_irq_domain) {
  2185. pr_err("Failed to create irqdomain\n");
  2186. return -ENOSYS;
  2187. }
  2188. /* All wakeups will be used, so create mappings for all */
  2189. for (i = 0; i < NUM_PRCMU_WAKEUPS; i++)
  2190. irq_create_mapping(db8500_irq_domain, i);
  2191. return 0;
  2192. }
  2193. static void dbx500_fw_version_init(struct device_node *np)
  2194. {
  2195. void __iomem *tcpm_base;
  2196. u32 version;
  2197. tcpm_base = of_iomap(np, 1);
  2198. if (!tcpm_base) {
  2199. pr_err("no prcmu tcpm mem region provided\n");
  2200. return;
  2201. }
  2202. version = readl(tcpm_base + DB8500_PRCMU_FW_VERSION_OFFSET);
  2203. fw_info.version.project = (version & 0xFF);
  2204. fw_info.version.api_version = (version >> 8) & 0xFF;
  2205. fw_info.version.func_version = (version >> 16) & 0xFF;
  2206. fw_info.version.errata = (version >> 24) & 0xFF;
  2207. strncpy(fw_info.version.project_name,
  2208. fw_project_name(fw_info.version.project),
  2209. PRCMU_FW_PROJECT_NAME_LEN);
  2210. fw_info.valid = true;
  2211. pr_info("PRCMU firmware: %s(%d), version %d.%d.%d\n",
  2212. fw_info.version.project_name,
  2213. fw_info.version.project,
  2214. fw_info.version.api_version,
  2215. fw_info.version.func_version,
  2216. fw_info.version.errata);
  2217. iounmap(tcpm_base);
  2218. }
  2219. void __init db8500_prcmu_early_init(void)
  2220. {
  2221. /*
  2222. * This is a temporary remap to bring up the clocks. It is
  2223. * subsequently replaces with a real remap. After the merge of
  2224. * the mailbox subsystem all of this early code goes away, and the
  2225. * clock driver can probe independently. An early initcall will
  2226. * still be needed, but it can be diverted into drivers/clk/ux500.
  2227. */
  2228. struct device_node *np;
  2229. np = of_find_compatible_node(NULL, NULL, "stericsson,db8500-prcmu");
  2230. prcmu_base = of_iomap(np, 0);
  2231. if (!prcmu_base) {
  2232. of_node_put(np);
  2233. pr_err("%s: ioremap() of prcmu registers failed!\n", __func__);
  2234. return;
  2235. }
  2236. dbx500_fw_version_init(np);
  2237. of_node_put(np);
  2238. spin_lock_init(&mb0_transfer.lock);
  2239. spin_lock_init(&mb0_transfer.dbb_irqs_lock);
  2240. mutex_init(&mb0_transfer.ac_wake_lock);
  2241. init_completion(&mb0_transfer.ac_wake_work);
  2242. mutex_init(&mb1_transfer.lock);
  2243. init_completion(&mb1_transfer.work);
  2244. mb1_transfer.ape_opp = APE_NO_CHANGE;
  2245. mutex_init(&mb2_transfer.lock);
  2246. init_completion(&mb2_transfer.work);
  2247. spin_lock_init(&mb2_transfer.auto_pm_lock);
  2248. spin_lock_init(&mb3_transfer.lock);
  2249. mutex_init(&mb3_transfer.sysclk_lock);
  2250. init_completion(&mb3_transfer.sysclk_work);
  2251. mutex_init(&mb4_transfer.lock);
  2252. init_completion(&mb4_transfer.work);
  2253. mutex_init(&mb5_transfer.lock);
  2254. init_completion(&mb5_transfer.work);
  2255. INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work);
  2256. }
  2257. static void init_prcm_registers(void)
  2258. {
  2259. u32 val;
  2260. val = readl(PRCM_A9PL_FORCE_CLKEN);
  2261. val &= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN |
  2262. PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN);
  2263. writel(val, (PRCM_A9PL_FORCE_CLKEN));
  2264. }
  2265. /*
  2266. * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC
  2267. */
  2268. static struct regulator_consumer_supply db8500_vape_consumers[] = {
  2269. REGULATOR_SUPPLY("v-ape", NULL),
  2270. REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
  2271. REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
  2272. REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
  2273. REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
  2274. REGULATOR_SUPPLY("v-i2c", "nmk-i2c.4"),
  2275. /* "v-mmc" changed to "vcore" in the mainline kernel */
  2276. REGULATOR_SUPPLY("vcore", "sdi0"),
  2277. REGULATOR_SUPPLY("vcore", "sdi1"),
  2278. REGULATOR_SUPPLY("vcore", "sdi2"),
  2279. REGULATOR_SUPPLY("vcore", "sdi3"),
  2280. REGULATOR_SUPPLY("vcore", "sdi4"),
  2281. REGULATOR_SUPPLY("v-dma", "dma40.0"),
  2282. REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
  2283. /* "v-uart" changed to "vcore" in the mainline kernel */
  2284. REGULATOR_SUPPLY("vcore", "uart0"),
  2285. REGULATOR_SUPPLY("vcore", "uart1"),
  2286. REGULATOR_SUPPLY("vcore", "uart2"),
  2287. REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
  2288. REGULATOR_SUPPLY("v-hsi", "ste_hsi.0"),
  2289. REGULATOR_SUPPLY("vddvario", "smsc911x.0"),
  2290. };
  2291. static struct regulator_consumer_supply db8500_vsmps2_consumers[] = {
  2292. REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
  2293. /* AV8100 regulator */
  2294. REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
  2295. };
  2296. static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = {
  2297. REGULATOR_SUPPLY("vsupply", "b2r2_bus"),
  2298. REGULATOR_SUPPLY("vsupply", "mcde"),
  2299. };
  2300. /* SVA MMDSP regulator switch */
  2301. static struct regulator_consumer_supply db8500_svammdsp_consumers[] = {
  2302. REGULATOR_SUPPLY("sva-mmdsp", "cm_control"),
  2303. };
  2304. /* SVA pipe regulator switch */
  2305. static struct regulator_consumer_supply db8500_svapipe_consumers[] = {
  2306. REGULATOR_SUPPLY("sva-pipe", "cm_control"),
  2307. };
  2308. /* SIA MMDSP regulator switch */
  2309. static struct regulator_consumer_supply db8500_siammdsp_consumers[] = {
  2310. REGULATOR_SUPPLY("sia-mmdsp", "cm_control"),
  2311. };
  2312. /* SIA pipe regulator switch */
  2313. static struct regulator_consumer_supply db8500_siapipe_consumers[] = {
  2314. REGULATOR_SUPPLY("sia-pipe", "cm_control"),
  2315. };
  2316. static struct regulator_consumer_supply db8500_sga_consumers[] = {
  2317. REGULATOR_SUPPLY("v-mali", NULL),
  2318. };
  2319. /* ESRAM1 and 2 regulator switch */
  2320. static struct regulator_consumer_supply db8500_esram12_consumers[] = {
  2321. REGULATOR_SUPPLY("esram12", "cm_control"),
  2322. };
  2323. /* ESRAM3 and 4 regulator switch */
  2324. static struct regulator_consumer_supply db8500_esram34_consumers[] = {
  2325. REGULATOR_SUPPLY("v-esram34", "mcde"),
  2326. REGULATOR_SUPPLY("esram34", "cm_control"),
  2327. REGULATOR_SUPPLY("lcla_esram", "dma40.0"),
  2328. };
  2329. static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
  2330. [DB8500_REGULATOR_VAPE] = {
  2331. .constraints = {
  2332. .name = "db8500-vape",
  2333. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2334. .always_on = true,
  2335. },
  2336. .consumer_supplies = db8500_vape_consumers,
  2337. .num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers),
  2338. },
  2339. [DB8500_REGULATOR_VARM] = {
  2340. .constraints = {
  2341. .name = "db8500-varm",
  2342. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2343. },
  2344. },
  2345. [DB8500_REGULATOR_VMODEM] = {
  2346. .constraints = {
  2347. .name = "db8500-vmodem",
  2348. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2349. },
  2350. },
  2351. [DB8500_REGULATOR_VPLL] = {
  2352. .constraints = {
  2353. .name = "db8500-vpll",
  2354. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2355. },
  2356. },
  2357. [DB8500_REGULATOR_VSMPS1] = {
  2358. .constraints = {
  2359. .name = "db8500-vsmps1",
  2360. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2361. },
  2362. },
  2363. [DB8500_REGULATOR_VSMPS2] = {
  2364. .constraints = {
  2365. .name = "db8500-vsmps2",
  2366. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2367. },
  2368. .consumer_supplies = db8500_vsmps2_consumers,
  2369. .num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers),
  2370. },
  2371. [DB8500_REGULATOR_VSMPS3] = {
  2372. .constraints = {
  2373. .name = "db8500-vsmps3",
  2374. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2375. },
  2376. },
  2377. [DB8500_REGULATOR_VRF1] = {
  2378. .constraints = {
  2379. .name = "db8500-vrf1",
  2380. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2381. },
  2382. },
  2383. [DB8500_REGULATOR_SWITCH_SVAMMDSP] = {
  2384. /* dependency to u8500-vape is handled outside regulator framework */
  2385. .constraints = {
  2386. .name = "db8500-sva-mmdsp",
  2387. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2388. },
  2389. .consumer_supplies = db8500_svammdsp_consumers,
  2390. .num_consumer_supplies = ARRAY_SIZE(db8500_svammdsp_consumers),
  2391. },
  2392. [DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = {
  2393. .constraints = {
  2394. /* "ret" means "retention" */
  2395. .name = "db8500-sva-mmdsp-ret",
  2396. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2397. },
  2398. },
  2399. [DB8500_REGULATOR_SWITCH_SVAPIPE] = {
  2400. /* dependency to u8500-vape is handled outside regulator framework */
  2401. .constraints = {
  2402. .name = "db8500-sva-pipe",
  2403. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2404. },
  2405. .consumer_supplies = db8500_svapipe_consumers,
  2406. .num_consumer_supplies = ARRAY_SIZE(db8500_svapipe_consumers),
  2407. },
  2408. [DB8500_REGULATOR_SWITCH_SIAMMDSP] = {
  2409. /* dependency to u8500-vape is handled outside regulator framework */
  2410. .constraints = {
  2411. .name = "db8500-sia-mmdsp",
  2412. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2413. },
  2414. .consumer_supplies = db8500_siammdsp_consumers,
  2415. .num_consumer_supplies = ARRAY_SIZE(db8500_siammdsp_consumers),
  2416. },
  2417. [DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = {
  2418. .constraints = {
  2419. .name = "db8500-sia-mmdsp-ret",
  2420. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2421. },
  2422. },
  2423. [DB8500_REGULATOR_SWITCH_SIAPIPE] = {
  2424. /* dependency to u8500-vape is handled outside regulator framework */
  2425. .constraints = {
  2426. .name = "db8500-sia-pipe",
  2427. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2428. },
  2429. .consumer_supplies = db8500_siapipe_consumers,
  2430. .num_consumer_supplies = ARRAY_SIZE(db8500_siapipe_consumers),
  2431. },
  2432. [DB8500_REGULATOR_SWITCH_SGA] = {
  2433. .supply_regulator = "db8500-vape",
  2434. .constraints = {
  2435. .name = "db8500-sga",
  2436. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2437. },
  2438. .consumer_supplies = db8500_sga_consumers,
  2439. .num_consumer_supplies = ARRAY_SIZE(db8500_sga_consumers),
  2440. },
  2441. [DB8500_REGULATOR_SWITCH_B2R2_MCDE] = {
  2442. .supply_regulator = "db8500-vape",
  2443. .constraints = {
  2444. .name = "db8500-b2r2-mcde",
  2445. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2446. },
  2447. .consumer_supplies = db8500_b2r2_mcde_consumers,
  2448. .num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers),
  2449. },
  2450. [DB8500_REGULATOR_SWITCH_ESRAM12] = {
  2451. /*
  2452. * esram12 is set in retention and supplied by Vsafe when Vape is off,
  2453. * no need to hold Vape
  2454. */
  2455. .constraints = {
  2456. .name = "db8500-esram12",
  2457. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2458. },
  2459. .consumer_supplies = db8500_esram12_consumers,
  2460. .num_consumer_supplies = ARRAY_SIZE(db8500_esram12_consumers),
  2461. },
  2462. [DB8500_REGULATOR_SWITCH_ESRAM12RET] = {
  2463. .constraints = {
  2464. .name = "db8500-esram12-ret",
  2465. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2466. },
  2467. },
  2468. [DB8500_REGULATOR_SWITCH_ESRAM34] = {
  2469. /*
  2470. * esram34 is set in retention and supplied by Vsafe when Vape is off,
  2471. * no need to hold Vape
  2472. */
  2473. .constraints = {
  2474. .name = "db8500-esram34",
  2475. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2476. },
  2477. .consumer_supplies = db8500_esram34_consumers,
  2478. .num_consumer_supplies = ARRAY_SIZE(db8500_esram34_consumers),
  2479. },
  2480. [DB8500_REGULATOR_SWITCH_ESRAM34RET] = {
  2481. .constraints = {
  2482. .name = "db8500-esram34-ret",
  2483. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2484. },
  2485. },
  2486. };
  2487. static const struct mfd_cell common_prcmu_devs[] = {
  2488. MFD_CELL_NAME("db8500_wdt"),
  2489. MFD_CELL_NAME("db8500-cpuidle"),
  2490. };
  2491. static const struct mfd_cell db8500_prcmu_devs[] = {
  2492. MFD_CELL_OF("db8500-prcmu-regulators", NULL,
  2493. &db8500_regulators, sizeof(db8500_regulators), 0,
  2494. "stericsson,db8500-prcmu-regulator"),
  2495. MFD_CELL_OF("db8500-thermal",
  2496. NULL, NULL, 0, 0, "stericsson,db8500-thermal"),
  2497. };
  2498. static int db8500_prcmu_register_ab8500(struct device *parent)
  2499. {
  2500. struct device_node *np;
  2501. struct resource ab850x_resource;
  2502. const struct mfd_cell ab8500_cell = {
  2503. .name = "ab8500-core",
  2504. .of_compatible = "stericsson,ab8500",
  2505. .id = AB8500_VERSION_AB8500,
  2506. .resources = &ab850x_resource,
  2507. .num_resources = 1,
  2508. };
  2509. const struct mfd_cell ab8505_cell = {
  2510. .name = "ab8505-core",
  2511. .of_compatible = "stericsson,ab8505",
  2512. .id = AB8500_VERSION_AB8505,
  2513. .resources = &ab850x_resource,
  2514. .num_resources = 1,
  2515. };
  2516. const struct mfd_cell *ab850x_cell;
  2517. if (!parent->of_node)
  2518. return -ENODEV;
  2519. /* Look up the device node, sneak the IRQ out of it */
  2520. for_each_child_of_node(parent->of_node, np) {
  2521. if (of_device_is_compatible(np, ab8500_cell.of_compatible)) {
  2522. ab850x_cell = &ab8500_cell;
  2523. break;
  2524. }
  2525. if (of_device_is_compatible(np, ab8505_cell.of_compatible)) {
  2526. ab850x_cell = &ab8505_cell;
  2527. break;
  2528. }
  2529. }
  2530. if (!np) {
  2531. dev_info(parent, "could not find AB850X node in the device tree\n");
  2532. return -ENODEV;
  2533. }
  2534. of_irq_to_resource_table(np, &ab850x_resource, 1);
  2535. return mfd_add_devices(parent, 0, ab850x_cell, 1, NULL, 0, NULL);
  2536. }
  2537. static int db8500_prcmu_probe(struct platform_device *pdev)
  2538. {
  2539. struct device_node *np = pdev->dev.of_node;
  2540. int irq = 0, err = 0;
  2541. struct resource *res;
  2542. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu");
  2543. if (!res) {
  2544. dev_err(&pdev->dev, "no prcmu memory region provided\n");
  2545. return -EINVAL;
  2546. }
  2547. prcmu_base = devm_ioremap(&pdev->dev, res->start, resource_size(res));
  2548. if (!prcmu_base) {
  2549. dev_err(&pdev->dev,
  2550. "failed to ioremap prcmu register memory\n");
  2551. return -ENOMEM;
  2552. }
  2553. init_prcm_registers();
  2554. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu-tcdm");
  2555. if (!res) {
  2556. dev_err(&pdev->dev, "no prcmu tcdm region provided\n");
  2557. return -EINVAL;
  2558. }
  2559. tcdm_base = devm_ioremap(&pdev->dev, res->start,
  2560. resource_size(res));
  2561. if (!tcdm_base) {
  2562. dev_err(&pdev->dev,
  2563. "failed to ioremap prcmu-tcdm register memory\n");
  2564. return -ENOMEM;
  2565. }
  2566. /* Clean up the mailbox interrupts after pre-kernel code. */
  2567. writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR);
  2568. irq = platform_get_irq(pdev, 0);
  2569. if (irq <= 0)
  2570. return irq;
  2571. err = request_threaded_irq(irq, prcmu_irq_handler,
  2572. prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL);
  2573. if (err < 0) {
  2574. pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
  2575. return err;
  2576. }
  2577. db8500_irq_init(np);
  2578. prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET);
  2579. err = mfd_add_devices(&pdev->dev, 0, common_prcmu_devs,
  2580. ARRAY_SIZE(common_prcmu_devs), NULL, 0, db8500_irq_domain);
  2581. if (err) {
  2582. pr_err("prcmu: Failed to add subdevices\n");
  2583. return err;
  2584. }
  2585. /* TODO: Remove restriction when clk definitions are available. */
  2586. if (!of_machine_is_compatible("st-ericsson,u8540")) {
  2587. err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs,
  2588. ARRAY_SIZE(db8500_prcmu_devs), NULL, 0,
  2589. db8500_irq_domain);
  2590. if (err) {
  2591. mfd_remove_devices(&pdev->dev);
  2592. pr_err("prcmu: Failed to add subdevices\n");
  2593. return err;
  2594. }
  2595. }
  2596. err = db8500_prcmu_register_ab8500(&pdev->dev);
  2597. if (err) {
  2598. mfd_remove_devices(&pdev->dev);
  2599. pr_err("prcmu: Failed to add ab8500 subdevice\n");
  2600. return err;
  2601. }
  2602. pr_info("DB8500 PRCMU initialized\n");
  2603. return err;
  2604. }
  2605. static const struct of_device_id db8500_prcmu_match[] = {
  2606. { .compatible = "stericsson,db8500-prcmu"},
  2607. { },
  2608. };
  2609. static struct platform_driver db8500_prcmu_driver = {
  2610. .driver = {
  2611. .name = "db8500-prcmu",
  2612. .of_match_table = db8500_prcmu_match,
  2613. },
  2614. .probe = db8500_prcmu_probe,
  2615. };
  2616. static int __init db8500_prcmu_init(void)
  2617. {
  2618. return platform_driver_register(&db8500_prcmu_driver);
  2619. }
  2620. core_initcall(db8500_prcmu_init);