avmfritz.c 27 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * avm_fritz.c low level stuff for AVM FRITZ!CARD PCI ISDN cards
  4. * Thanks to AVM, Berlin for informations
  5. *
  6. * Author Karsten Keil <[email protected]>
  7. *
  8. * Copyright 2009 by Karsten Keil <[email protected]>
  9. */
  10. #include <linux/interrupt.h>
  11. #include <linux/module.h>
  12. #include <linux/pci.h>
  13. #include <linux/delay.h>
  14. #include <linux/mISDNhw.h>
  15. #include <linux/slab.h>
  16. #include <asm/unaligned.h>
  17. #include "ipac.h"
  18. #define AVMFRITZ_REV "2.3"
  19. static int AVM_cnt;
  20. static int debug;
  21. enum {
  22. AVM_FRITZ_PCI,
  23. AVM_FRITZ_PCIV2,
  24. };
  25. #define HDLC_FIFO 0x0
  26. #define HDLC_STATUS 0x4
  27. #define CHIP_WINDOW 0x10
  28. #define CHIP_INDEX 0x4
  29. #define AVM_HDLC_1 0x00
  30. #define AVM_HDLC_2 0x01
  31. #define AVM_ISAC_FIFO 0x02
  32. #define AVM_ISAC_REG_LOW 0x04
  33. #define AVM_ISAC_REG_HIGH 0x06
  34. #define AVM_STATUS0_IRQ_ISAC 0x01
  35. #define AVM_STATUS0_IRQ_HDLC 0x02
  36. #define AVM_STATUS0_IRQ_TIMER 0x04
  37. #define AVM_STATUS0_IRQ_MASK 0x07
  38. #define AVM_STATUS0_RESET 0x01
  39. #define AVM_STATUS0_DIS_TIMER 0x02
  40. #define AVM_STATUS0_RES_TIMER 0x04
  41. #define AVM_STATUS0_ENA_IRQ 0x08
  42. #define AVM_STATUS0_TESTBIT 0x10
  43. #define AVM_STATUS1_INT_SEL 0x0f
  44. #define AVM_STATUS1_ENA_IOM 0x80
  45. #define HDLC_MODE_ITF_FLG 0x01
  46. #define HDLC_MODE_TRANS 0x02
  47. #define HDLC_MODE_CCR_7 0x04
  48. #define HDLC_MODE_CCR_16 0x08
  49. #define HDLC_FIFO_SIZE_128 0x20
  50. #define HDLC_MODE_TESTLOOP 0x80
  51. #define HDLC_INT_XPR 0x80
  52. #define HDLC_INT_XDU 0x40
  53. #define HDLC_INT_RPR 0x20
  54. #define HDLC_INT_MASK 0xE0
  55. #define HDLC_STAT_RME 0x01
  56. #define HDLC_STAT_RDO 0x10
  57. #define HDLC_STAT_CRCVFRRAB 0x0E
  58. #define HDLC_STAT_CRCVFR 0x06
  59. #define HDLC_STAT_RML_MASK_V1 0x3f00
  60. #define HDLC_STAT_RML_MASK_V2 0x7f00
  61. #define HDLC_CMD_XRS 0x80
  62. #define HDLC_CMD_XME 0x01
  63. #define HDLC_CMD_RRS 0x20
  64. #define HDLC_CMD_XML_MASK 0x3f00
  65. #define HDLC_FIFO_SIZE_V1 32
  66. #define HDLC_FIFO_SIZE_V2 128
  67. /* Fritz PCI v2.0 */
  68. #define AVM_HDLC_FIFO_1 0x10
  69. #define AVM_HDLC_FIFO_2 0x18
  70. #define AVM_HDLC_STATUS_1 0x14
  71. #define AVM_HDLC_STATUS_2 0x1c
  72. #define AVM_ISACX_INDEX 0x04
  73. #define AVM_ISACX_DATA 0x08
  74. /* data struct */
  75. #define LOG_SIZE 63
  76. struct hdlc_stat_reg {
  77. #ifdef __BIG_ENDIAN
  78. u8 fill;
  79. u8 mode;
  80. u8 xml;
  81. u8 cmd;
  82. #else
  83. u8 cmd;
  84. u8 xml;
  85. u8 mode;
  86. u8 fill;
  87. #endif
  88. } __attribute__((packed));
  89. struct hdlc_hw {
  90. union {
  91. u32 ctrl;
  92. struct hdlc_stat_reg sr;
  93. } ctrl;
  94. u32 stat;
  95. };
  96. struct fritzcard {
  97. struct list_head list;
  98. struct pci_dev *pdev;
  99. char name[MISDN_MAX_IDLEN];
  100. u8 type;
  101. u8 ctrlreg;
  102. u16 irq;
  103. u32 irqcnt;
  104. u32 addr;
  105. spinlock_t lock; /* hw lock */
  106. struct isac_hw isac;
  107. struct hdlc_hw hdlc[2];
  108. struct bchannel bch[2];
  109. char log[LOG_SIZE + 1];
  110. };
  111. static LIST_HEAD(Cards);
  112. static DEFINE_RWLOCK(card_lock); /* protect Cards */
  113. static void
  114. _set_debug(struct fritzcard *card)
  115. {
  116. card->isac.dch.debug = debug;
  117. card->bch[0].debug = debug;
  118. card->bch[1].debug = debug;
  119. }
  120. static int
  121. set_debug(const char *val, const struct kernel_param *kp)
  122. {
  123. int ret;
  124. struct fritzcard *card;
  125. ret = param_set_uint(val, kp);
  126. if (!ret) {
  127. read_lock(&card_lock);
  128. list_for_each_entry(card, &Cards, list)
  129. _set_debug(card);
  130. read_unlock(&card_lock);
  131. }
  132. return ret;
  133. }
  134. MODULE_AUTHOR("Karsten Keil");
  135. MODULE_LICENSE("GPL v2");
  136. MODULE_VERSION(AVMFRITZ_REV);
  137. module_param_call(debug, set_debug, param_get_uint, &debug, S_IRUGO | S_IWUSR);
  138. MODULE_PARM_DESC(debug, "avmfritz debug mask");
  139. /* Interface functions */
  140. static u8
  141. ReadISAC_V1(void *p, u8 offset)
  142. {
  143. struct fritzcard *fc = p;
  144. u8 idx = (offset > 0x2f) ? AVM_ISAC_REG_HIGH : AVM_ISAC_REG_LOW;
  145. outb(idx, fc->addr + CHIP_INDEX);
  146. return inb(fc->addr + CHIP_WINDOW + (offset & 0xf));
  147. }
  148. static void
  149. WriteISAC_V1(void *p, u8 offset, u8 value)
  150. {
  151. struct fritzcard *fc = p;
  152. u8 idx = (offset > 0x2f) ? AVM_ISAC_REG_HIGH : AVM_ISAC_REG_LOW;
  153. outb(idx, fc->addr + CHIP_INDEX);
  154. outb(value, fc->addr + CHIP_WINDOW + (offset & 0xf));
  155. }
  156. static void
  157. ReadFiFoISAC_V1(void *p, u8 off, u8 *data, int size)
  158. {
  159. struct fritzcard *fc = p;
  160. outb(AVM_ISAC_FIFO, fc->addr + CHIP_INDEX);
  161. insb(fc->addr + CHIP_WINDOW, data, size);
  162. }
  163. static void
  164. WriteFiFoISAC_V1(void *p, u8 off, u8 *data, int size)
  165. {
  166. struct fritzcard *fc = p;
  167. outb(AVM_ISAC_FIFO, fc->addr + CHIP_INDEX);
  168. outsb(fc->addr + CHIP_WINDOW, data, size);
  169. }
  170. static u8
  171. ReadISAC_V2(void *p, u8 offset)
  172. {
  173. struct fritzcard *fc = p;
  174. outl(offset, fc->addr + AVM_ISACX_INDEX);
  175. return 0xff & inl(fc->addr + AVM_ISACX_DATA);
  176. }
  177. static void
  178. WriteISAC_V2(void *p, u8 offset, u8 value)
  179. {
  180. struct fritzcard *fc = p;
  181. outl(offset, fc->addr + AVM_ISACX_INDEX);
  182. outl(value, fc->addr + AVM_ISACX_DATA);
  183. }
  184. static void
  185. ReadFiFoISAC_V2(void *p, u8 off, u8 *data, int size)
  186. {
  187. struct fritzcard *fc = p;
  188. int i;
  189. outl(off, fc->addr + AVM_ISACX_INDEX);
  190. for (i = 0; i < size; i++)
  191. data[i] = 0xff & inl(fc->addr + AVM_ISACX_DATA);
  192. }
  193. static void
  194. WriteFiFoISAC_V2(void *p, u8 off, u8 *data, int size)
  195. {
  196. struct fritzcard *fc = p;
  197. int i;
  198. outl(off, fc->addr + AVM_ISACX_INDEX);
  199. for (i = 0; i < size; i++)
  200. outl(data[i], fc->addr + AVM_ISACX_DATA);
  201. }
  202. static struct bchannel *
  203. Sel_BCS(struct fritzcard *fc, u32 channel)
  204. {
  205. if (test_bit(FLG_ACTIVE, &fc->bch[0].Flags) &&
  206. (fc->bch[0].nr & channel))
  207. return &fc->bch[0];
  208. else if (test_bit(FLG_ACTIVE, &fc->bch[1].Flags) &&
  209. (fc->bch[1].nr & channel))
  210. return &fc->bch[1];
  211. else
  212. return NULL;
  213. }
  214. static inline void
  215. __write_ctrl_pci(struct fritzcard *fc, struct hdlc_hw *hdlc, u32 channel) {
  216. u32 idx = channel == 2 ? AVM_HDLC_2 : AVM_HDLC_1;
  217. outl(idx, fc->addr + CHIP_INDEX);
  218. outl(hdlc->ctrl.ctrl, fc->addr + CHIP_WINDOW + HDLC_STATUS);
  219. }
  220. static inline void
  221. __write_ctrl_pciv2(struct fritzcard *fc, struct hdlc_hw *hdlc, u32 channel) {
  222. outl(hdlc->ctrl.ctrl, fc->addr + (channel == 2 ? AVM_HDLC_STATUS_2 :
  223. AVM_HDLC_STATUS_1));
  224. }
  225. static void
  226. write_ctrl(struct bchannel *bch, int which) {
  227. struct fritzcard *fc = bch->hw;
  228. struct hdlc_hw *hdlc;
  229. hdlc = &fc->hdlc[(bch->nr - 1) & 1];
  230. pr_debug("%s: hdlc %c wr%x ctrl %x\n", fc->name, '@' + bch->nr,
  231. which, hdlc->ctrl.ctrl);
  232. switch (fc->type) {
  233. case AVM_FRITZ_PCIV2:
  234. __write_ctrl_pciv2(fc, hdlc, bch->nr);
  235. break;
  236. case AVM_FRITZ_PCI:
  237. __write_ctrl_pci(fc, hdlc, bch->nr);
  238. break;
  239. }
  240. }
  241. static inline u32
  242. __read_status_pci(u_long addr, u32 channel)
  243. {
  244. outl(channel == 2 ? AVM_HDLC_2 : AVM_HDLC_1, addr + CHIP_INDEX);
  245. return inl(addr + CHIP_WINDOW + HDLC_STATUS);
  246. }
  247. static inline u32
  248. __read_status_pciv2(u_long addr, u32 channel)
  249. {
  250. return inl(addr + (channel == 2 ? AVM_HDLC_STATUS_2 :
  251. AVM_HDLC_STATUS_1));
  252. }
  253. static u32
  254. read_status(struct fritzcard *fc, u32 channel)
  255. {
  256. switch (fc->type) {
  257. case AVM_FRITZ_PCIV2:
  258. return __read_status_pciv2(fc->addr, channel);
  259. case AVM_FRITZ_PCI:
  260. return __read_status_pci(fc->addr, channel);
  261. }
  262. /* dummy */
  263. return 0;
  264. }
  265. static void
  266. enable_hwirq(struct fritzcard *fc)
  267. {
  268. fc->ctrlreg |= AVM_STATUS0_ENA_IRQ;
  269. outb(fc->ctrlreg, fc->addr + 2);
  270. }
  271. static void
  272. disable_hwirq(struct fritzcard *fc)
  273. {
  274. fc->ctrlreg &= ~AVM_STATUS0_ENA_IRQ;
  275. outb(fc->ctrlreg, fc->addr + 2);
  276. }
  277. static int
  278. modehdlc(struct bchannel *bch, int protocol)
  279. {
  280. struct fritzcard *fc = bch->hw;
  281. struct hdlc_hw *hdlc;
  282. u8 mode;
  283. hdlc = &fc->hdlc[(bch->nr - 1) & 1];
  284. pr_debug("%s: hdlc %c protocol %x-->%x ch %d\n", fc->name,
  285. '@' + bch->nr, bch->state, protocol, bch->nr);
  286. hdlc->ctrl.ctrl = 0;
  287. mode = (fc->type == AVM_FRITZ_PCIV2) ? HDLC_FIFO_SIZE_128 : 0;
  288. switch (protocol) {
  289. case -1: /* used for init */
  290. bch->state = -1;
  291. fallthrough;
  292. case ISDN_P_NONE:
  293. if (bch->state == ISDN_P_NONE)
  294. break;
  295. hdlc->ctrl.sr.cmd = HDLC_CMD_XRS | HDLC_CMD_RRS;
  296. hdlc->ctrl.sr.mode = mode | HDLC_MODE_TRANS;
  297. write_ctrl(bch, 5);
  298. bch->state = ISDN_P_NONE;
  299. test_and_clear_bit(FLG_HDLC, &bch->Flags);
  300. test_and_clear_bit(FLG_TRANSPARENT, &bch->Flags);
  301. break;
  302. case ISDN_P_B_RAW:
  303. bch->state = protocol;
  304. hdlc->ctrl.sr.cmd = HDLC_CMD_XRS | HDLC_CMD_RRS;
  305. hdlc->ctrl.sr.mode = mode | HDLC_MODE_TRANS;
  306. write_ctrl(bch, 5);
  307. hdlc->ctrl.sr.cmd = HDLC_CMD_XRS;
  308. write_ctrl(bch, 1);
  309. hdlc->ctrl.sr.cmd = 0;
  310. test_and_set_bit(FLG_TRANSPARENT, &bch->Flags);
  311. break;
  312. case ISDN_P_B_HDLC:
  313. bch->state = protocol;
  314. hdlc->ctrl.sr.cmd = HDLC_CMD_XRS | HDLC_CMD_RRS;
  315. hdlc->ctrl.sr.mode = mode | HDLC_MODE_ITF_FLG;
  316. write_ctrl(bch, 5);
  317. hdlc->ctrl.sr.cmd = HDLC_CMD_XRS;
  318. write_ctrl(bch, 1);
  319. hdlc->ctrl.sr.cmd = 0;
  320. test_and_set_bit(FLG_HDLC, &bch->Flags);
  321. break;
  322. default:
  323. pr_info("%s: protocol not known %x\n", fc->name, protocol);
  324. return -ENOPROTOOPT;
  325. }
  326. return 0;
  327. }
  328. static void
  329. hdlc_empty_fifo(struct bchannel *bch, int count)
  330. {
  331. u32 *ptr;
  332. u8 *p;
  333. u32 val, addr;
  334. int cnt;
  335. struct fritzcard *fc = bch->hw;
  336. pr_debug("%s: %s %d\n", fc->name, __func__, count);
  337. if (test_bit(FLG_RX_OFF, &bch->Flags)) {
  338. p = NULL;
  339. bch->dropcnt += count;
  340. } else {
  341. cnt = bchannel_get_rxbuf(bch, count);
  342. if (cnt < 0) {
  343. pr_warn("%s.B%d: No bufferspace for %d bytes\n",
  344. fc->name, bch->nr, count);
  345. return;
  346. }
  347. p = skb_put(bch->rx_skb, count);
  348. }
  349. ptr = (u32 *)p;
  350. if (fc->type == AVM_FRITZ_PCIV2)
  351. addr = fc->addr + (bch->nr == 2 ?
  352. AVM_HDLC_FIFO_2 : AVM_HDLC_FIFO_1);
  353. else {
  354. addr = fc->addr + CHIP_WINDOW;
  355. outl(bch->nr == 2 ? AVM_HDLC_2 : AVM_HDLC_1, fc->addr);
  356. }
  357. cnt = 0;
  358. while (cnt < count) {
  359. val = le32_to_cpu(inl(addr));
  360. if (p) {
  361. put_unaligned(val, ptr);
  362. ptr++;
  363. }
  364. cnt += 4;
  365. }
  366. if (p && (debug & DEBUG_HW_BFIFO)) {
  367. snprintf(fc->log, LOG_SIZE, "B%1d-recv %s %d ",
  368. bch->nr, fc->name, count);
  369. print_hex_dump_bytes(fc->log, DUMP_PREFIX_OFFSET, p, count);
  370. }
  371. }
  372. static void
  373. hdlc_fill_fifo(struct bchannel *bch)
  374. {
  375. struct fritzcard *fc = bch->hw;
  376. struct hdlc_hw *hdlc;
  377. int count, fs, cnt = 0, idx;
  378. bool fillempty = false;
  379. u8 *p;
  380. u32 *ptr, val, addr;
  381. idx = (bch->nr - 1) & 1;
  382. hdlc = &fc->hdlc[idx];
  383. fs = (fc->type == AVM_FRITZ_PCIV2) ?
  384. HDLC_FIFO_SIZE_V2 : HDLC_FIFO_SIZE_V1;
  385. if (!bch->tx_skb) {
  386. if (!test_bit(FLG_TX_EMPTY, &bch->Flags))
  387. return;
  388. count = fs;
  389. p = bch->fill;
  390. fillempty = true;
  391. } else {
  392. count = bch->tx_skb->len - bch->tx_idx;
  393. if (count <= 0)
  394. return;
  395. p = bch->tx_skb->data + bch->tx_idx;
  396. }
  397. hdlc->ctrl.sr.cmd &= ~HDLC_CMD_XME;
  398. if (count > fs) {
  399. count = fs;
  400. } else {
  401. if (test_bit(FLG_HDLC, &bch->Flags))
  402. hdlc->ctrl.sr.cmd |= HDLC_CMD_XME;
  403. }
  404. ptr = (u32 *)p;
  405. if (!fillempty) {
  406. pr_debug("%s.B%d: %d/%d/%d", fc->name, bch->nr, count,
  407. bch->tx_idx, bch->tx_skb->len);
  408. bch->tx_idx += count;
  409. } else {
  410. pr_debug("%s.B%d: fillempty %d\n", fc->name, bch->nr, count);
  411. }
  412. hdlc->ctrl.sr.xml = ((count == fs) ? 0 : count);
  413. if (fc->type == AVM_FRITZ_PCIV2) {
  414. __write_ctrl_pciv2(fc, hdlc, bch->nr);
  415. addr = fc->addr + (bch->nr == 2 ?
  416. AVM_HDLC_FIFO_2 : AVM_HDLC_FIFO_1);
  417. } else {
  418. __write_ctrl_pci(fc, hdlc, bch->nr);
  419. addr = fc->addr + CHIP_WINDOW;
  420. }
  421. if (fillempty) {
  422. while (cnt < count) {
  423. /* all bytes the same - no worry about endian */
  424. outl(*ptr, addr);
  425. cnt += 4;
  426. }
  427. } else {
  428. while (cnt < count) {
  429. val = get_unaligned(ptr);
  430. outl(cpu_to_le32(val), addr);
  431. ptr++;
  432. cnt += 4;
  433. }
  434. }
  435. if ((debug & DEBUG_HW_BFIFO) && !fillempty) {
  436. snprintf(fc->log, LOG_SIZE, "B%1d-send %s %d ",
  437. bch->nr, fc->name, count);
  438. print_hex_dump_bytes(fc->log, DUMP_PREFIX_OFFSET, p, count);
  439. }
  440. }
  441. static void
  442. HDLC_irq_xpr(struct bchannel *bch)
  443. {
  444. if (bch->tx_skb && bch->tx_idx < bch->tx_skb->len) {
  445. hdlc_fill_fifo(bch);
  446. } else {
  447. dev_kfree_skb(bch->tx_skb);
  448. if (get_next_bframe(bch)) {
  449. hdlc_fill_fifo(bch);
  450. test_and_clear_bit(FLG_TX_EMPTY, &bch->Flags);
  451. } else if (test_bit(FLG_TX_EMPTY, &bch->Flags)) {
  452. hdlc_fill_fifo(bch);
  453. }
  454. }
  455. }
  456. static void
  457. HDLC_irq(struct bchannel *bch, u32 stat)
  458. {
  459. struct fritzcard *fc = bch->hw;
  460. int len, fs;
  461. u32 rmlMask;
  462. struct hdlc_hw *hdlc;
  463. hdlc = &fc->hdlc[(bch->nr - 1) & 1];
  464. pr_debug("%s: ch%d stat %#x\n", fc->name, bch->nr, stat);
  465. if (fc->type == AVM_FRITZ_PCIV2) {
  466. rmlMask = HDLC_STAT_RML_MASK_V2;
  467. fs = HDLC_FIFO_SIZE_V2;
  468. } else {
  469. rmlMask = HDLC_STAT_RML_MASK_V1;
  470. fs = HDLC_FIFO_SIZE_V1;
  471. }
  472. if (stat & HDLC_INT_RPR) {
  473. if (stat & HDLC_STAT_RDO) {
  474. pr_warn("%s: ch%d stat %x RDO\n",
  475. fc->name, bch->nr, stat);
  476. hdlc->ctrl.sr.xml = 0;
  477. hdlc->ctrl.sr.cmd |= HDLC_CMD_RRS;
  478. write_ctrl(bch, 1);
  479. hdlc->ctrl.sr.cmd &= ~HDLC_CMD_RRS;
  480. write_ctrl(bch, 1);
  481. if (bch->rx_skb)
  482. skb_trim(bch->rx_skb, 0);
  483. } else {
  484. len = (stat & rmlMask) >> 8;
  485. if (!len)
  486. len = fs;
  487. hdlc_empty_fifo(bch, len);
  488. if (!bch->rx_skb)
  489. goto handle_tx;
  490. if (test_bit(FLG_TRANSPARENT, &bch->Flags)) {
  491. recv_Bchannel(bch, 0, false);
  492. } else if (stat & HDLC_STAT_RME) {
  493. if ((stat & HDLC_STAT_CRCVFRRAB) ==
  494. HDLC_STAT_CRCVFR) {
  495. recv_Bchannel(bch, 0, false);
  496. } else {
  497. pr_warn("%s: got invalid frame\n",
  498. fc->name);
  499. skb_trim(bch->rx_skb, 0);
  500. }
  501. }
  502. }
  503. }
  504. handle_tx:
  505. if (stat & HDLC_INT_XDU) {
  506. /* Here we lost an TX interrupt, so
  507. * restart transmitting the whole frame on HDLC
  508. * in transparent mode we send the next data
  509. */
  510. pr_warn("%s: ch%d stat %x XDU %s\n", fc->name, bch->nr,
  511. stat, bch->tx_skb ? "tx_skb" : "no tx_skb");
  512. if (bch->tx_skb && bch->tx_skb->len) {
  513. if (!test_bit(FLG_TRANSPARENT, &bch->Flags))
  514. bch->tx_idx = 0;
  515. } else if (test_bit(FLG_FILLEMPTY, &bch->Flags)) {
  516. test_and_set_bit(FLG_TX_EMPTY, &bch->Flags);
  517. }
  518. hdlc->ctrl.sr.xml = 0;
  519. hdlc->ctrl.sr.cmd |= HDLC_CMD_XRS;
  520. write_ctrl(bch, 1);
  521. hdlc->ctrl.sr.cmd &= ~HDLC_CMD_XRS;
  522. HDLC_irq_xpr(bch);
  523. return;
  524. } else if (stat & HDLC_INT_XPR)
  525. HDLC_irq_xpr(bch);
  526. }
  527. static inline void
  528. HDLC_irq_main(struct fritzcard *fc)
  529. {
  530. u32 stat;
  531. struct bchannel *bch;
  532. stat = read_status(fc, 1);
  533. if (stat & HDLC_INT_MASK) {
  534. bch = Sel_BCS(fc, 1);
  535. if (bch)
  536. HDLC_irq(bch, stat);
  537. else
  538. pr_debug("%s: spurious ch1 IRQ\n", fc->name);
  539. }
  540. stat = read_status(fc, 2);
  541. if (stat & HDLC_INT_MASK) {
  542. bch = Sel_BCS(fc, 2);
  543. if (bch)
  544. HDLC_irq(bch, stat);
  545. else
  546. pr_debug("%s: spurious ch2 IRQ\n", fc->name);
  547. }
  548. }
  549. static irqreturn_t
  550. avm_fritz_interrupt(int intno, void *dev_id)
  551. {
  552. struct fritzcard *fc = dev_id;
  553. u8 val;
  554. u8 sval;
  555. spin_lock(&fc->lock);
  556. sval = inb(fc->addr + 2);
  557. pr_debug("%s: irq stat0 %x\n", fc->name, sval);
  558. if ((sval & AVM_STATUS0_IRQ_MASK) == AVM_STATUS0_IRQ_MASK) {
  559. /* shared IRQ from other HW */
  560. spin_unlock(&fc->lock);
  561. return IRQ_NONE;
  562. }
  563. fc->irqcnt++;
  564. if (!(sval & AVM_STATUS0_IRQ_ISAC)) {
  565. val = ReadISAC_V1(fc, ISAC_ISTA);
  566. mISDNisac_irq(&fc->isac, val);
  567. }
  568. if (!(sval & AVM_STATUS0_IRQ_HDLC))
  569. HDLC_irq_main(fc);
  570. spin_unlock(&fc->lock);
  571. return IRQ_HANDLED;
  572. }
  573. static irqreturn_t
  574. avm_fritzv2_interrupt(int intno, void *dev_id)
  575. {
  576. struct fritzcard *fc = dev_id;
  577. u8 val;
  578. u8 sval;
  579. spin_lock(&fc->lock);
  580. sval = inb(fc->addr + 2);
  581. pr_debug("%s: irq stat0 %x\n", fc->name, sval);
  582. if (!(sval & AVM_STATUS0_IRQ_MASK)) {
  583. /* shared IRQ from other HW */
  584. spin_unlock(&fc->lock);
  585. return IRQ_NONE;
  586. }
  587. fc->irqcnt++;
  588. if (sval & AVM_STATUS0_IRQ_HDLC)
  589. HDLC_irq_main(fc);
  590. if (sval & AVM_STATUS0_IRQ_ISAC) {
  591. val = ReadISAC_V2(fc, ISACX_ISTA);
  592. mISDNisac_irq(&fc->isac, val);
  593. }
  594. if (sval & AVM_STATUS0_IRQ_TIMER) {
  595. pr_debug("%s: timer irq\n", fc->name);
  596. outb(fc->ctrlreg | AVM_STATUS0_RES_TIMER, fc->addr + 2);
  597. udelay(1);
  598. outb(fc->ctrlreg, fc->addr + 2);
  599. }
  600. spin_unlock(&fc->lock);
  601. return IRQ_HANDLED;
  602. }
  603. static int
  604. avm_l2l1B(struct mISDNchannel *ch, struct sk_buff *skb)
  605. {
  606. struct bchannel *bch = container_of(ch, struct bchannel, ch);
  607. struct fritzcard *fc = bch->hw;
  608. int ret = -EINVAL;
  609. struct mISDNhead *hh = mISDN_HEAD_P(skb);
  610. unsigned long flags;
  611. switch (hh->prim) {
  612. case PH_DATA_REQ:
  613. spin_lock_irqsave(&fc->lock, flags);
  614. ret = bchannel_senddata(bch, skb);
  615. if (ret > 0) { /* direct TX */
  616. hdlc_fill_fifo(bch);
  617. ret = 0;
  618. }
  619. spin_unlock_irqrestore(&fc->lock, flags);
  620. return ret;
  621. case PH_ACTIVATE_REQ:
  622. spin_lock_irqsave(&fc->lock, flags);
  623. if (!test_and_set_bit(FLG_ACTIVE, &bch->Flags))
  624. ret = modehdlc(bch, ch->protocol);
  625. else
  626. ret = 0;
  627. spin_unlock_irqrestore(&fc->lock, flags);
  628. if (!ret)
  629. _queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY, 0,
  630. NULL, GFP_KERNEL);
  631. break;
  632. case PH_DEACTIVATE_REQ:
  633. spin_lock_irqsave(&fc->lock, flags);
  634. mISDN_clear_bchannel(bch);
  635. modehdlc(bch, ISDN_P_NONE);
  636. spin_unlock_irqrestore(&fc->lock, flags);
  637. _queue_data(ch, PH_DEACTIVATE_IND, MISDN_ID_ANY, 0,
  638. NULL, GFP_KERNEL);
  639. ret = 0;
  640. break;
  641. }
  642. if (!ret)
  643. dev_kfree_skb(skb);
  644. return ret;
  645. }
  646. static void
  647. inithdlc(struct fritzcard *fc)
  648. {
  649. modehdlc(&fc->bch[0], -1);
  650. modehdlc(&fc->bch[1], -1);
  651. }
  652. static void
  653. clear_pending_hdlc_ints(struct fritzcard *fc)
  654. {
  655. u32 val;
  656. val = read_status(fc, 1);
  657. pr_debug("%s: HDLC 1 STA %x\n", fc->name, val);
  658. val = read_status(fc, 2);
  659. pr_debug("%s: HDLC 2 STA %x\n", fc->name, val);
  660. }
  661. static void
  662. reset_avm(struct fritzcard *fc)
  663. {
  664. switch (fc->type) {
  665. case AVM_FRITZ_PCI:
  666. fc->ctrlreg = AVM_STATUS0_RESET | AVM_STATUS0_DIS_TIMER;
  667. break;
  668. case AVM_FRITZ_PCIV2:
  669. fc->ctrlreg = AVM_STATUS0_RESET;
  670. break;
  671. }
  672. if (debug & DEBUG_HW)
  673. pr_notice("%s: reset\n", fc->name);
  674. disable_hwirq(fc);
  675. mdelay(5);
  676. switch (fc->type) {
  677. case AVM_FRITZ_PCI:
  678. fc->ctrlreg = AVM_STATUS0_DIS_TIMER | AVM_STATUS0_RES_TIMER;
  679. disable_hwirq(fc);
  680. outb(AVM_STATUS1_ENA_IOM, fc->addr + 3);
  681. break;
  682. case AVM_FRITZ_PCIV2:
  683. fc->ctrlreg = 0;
  684. disable_hwirq(fc);
  685. break;
  686. }
  687. mdelay(1);
  688. if (debug & DEBUG_HW)
  689. pr_notice("%s: S0/S1 %x/%x\n", fc->name,
  690. inb(fc->addr + 2), inb(fc->addr + 3));
  691. }
  692. static int
  693. init_card(struct fritzcard *fc)
  694. {
  695. int ret, cnt = 3;
  696. u_long flags;
  697. reset_avm(fc); /* disable IRQ */
  698. if (fc->type == AVM_FRITZ_PCIV2)
  699. ret = request_irq(fc->irq, avm_fritzv2_interrupt,
  700. IRQF_SHARED, fc->name, fc);
  701. else
  702. ret = request_irq(fc->irq, avm_fritz_interrupt,
  703. IRQF_SHARED, fc->name, fc);
  704. if (ret) {
  705. pr_info("%s: couldn't get interrupt %d\n",
  706. fc->name, fc->irq);
  707. return ret;
  708. }
  709. while (cnt--) {
  710. spin_lock_irqsave(&fc->lock, flags);
  711. ret = fc->isac.init(&fc->isac);
  712. if (ret) {
  713. spin_unlock_irqrestore(&fc->lock, flags);
  714. pr_info("%s: ISAC init failed with %d\n",
  715. fc->name, ret);
  716. break;
  717. }
  718. clear_pending_hdlc_ints(fc);
  719. inithdlc(fc);
  720. enable_hwirq(fc);
  721. /* RESET Receiver and Transmitter */
  722. if (fc->type == AVM_FRITZ_PCIV2) {
  723. WriteISAC_V2(fc, ISACX_MASK, 0);
  724. WriteISAC_V2(fc, ISACX_CMDRD, 0x41);
  725. } else {
  726. WriteISAC_V1(fc, ISAC_MASK, 0);
  727. WriteISAC_V1(fc, ISAC_CMDR, 0x41);
  728. }
  729. spin_unlock_irqrestore(&fc->lock, flags);
  730. /* Timeout 10ms */
  731. msleep_interruptible(10);
  732. if (debug & DEBUG_HW)
  733. pr_notice("%s: IRQ %d count %d\n", fc->name,
  734. fc->irq, fc->irqcnt);
  735. if (!fc->irqcnt) {
  736. pr_info("%s: IRQ(%d) getting no IRQs during init %d\n",
  737. fc->name, fc->irq, 3 - cnt);
  738. reset_avm(fc);
  739. } else
  740. return 0;
  741. }
  742. free_irq(fc->irq, fc);
  743. return -EIO;
  744. }
  745. static int
  746. channel_bctrl(struct bchannel *bch, struct mISDN_ctrl_req *cq)
  747. {
  748. return mISDN_ctrl_bchannel(bch, cq);
  749. }
  750. static int
  751. avm_bctrl(struct mISDNchannel *ch, u32 cmd, void *arg)
  752. {
  753. struct bchannel *bch = container_of(ch, struct bchannel, ch);
  754. struct fritzcard *fc = bch->hw;
  755. int ret = -EINVAL;
  756. u_long flags;
  757. pr_debug("%s: %s cmd:%x %p\n", fc->name, __func__, cmd, arg);
  758. switch (cmd) {
  759. case CLOSE_CHANNEL:
  760. test_and_clear_bit(FLG_OPEN, &bch->Flags);
  761. cancel_work_sync(&bch->workq);
  762. spin_lock_irqsave(&fc->lock, flags);
  763. mISDN_clear_bchannel(bch);
  764. modehdlc(bch, ISDN_P_NONE);
  765. spin_unlock_irqrestore(&fc->lock, flags);
  766. ch->protocol = ISDN_P_NONE;
  767. ch->peer = NULL;
  768. module_put(THIS_MODULE);
  769. ret = 0;
  770. break;
  771. case CONTROL_CHANNEL:
  772. ret = channel_bctrl(bch, arg);
  773. break;
  774. default:
  775. pr_info("%s: %s unknown prim(%x)\n", fc->name, __func__, cmd);
  776. }
  777. return ret;
  778. }
  779. static int
  780. channel_ctrl(struct fritzcard *fc, struct mISDN_ctrl_req *cq)
  781. {
  782. int ret = 0;
  783. switch (cq->op) {
  784. case MISDN_CTRL_GETOP:
  785. cq->op = MISDN_CTRL_LOOP | MISDN_CTRL_L1_TIMER3;
  786. break;
  787. case MISDN_CTRL_LOOP:
  788. /* cq->channel: 0 disable, 1 B1 loop 2 B2 loop, 3 both */
  789. if (cq->channel < 0 || cq->channel > 3) {
  790. ret = -EINVAL;
  791. break;
  792. }
  793. ret = fc->isac.ctrl(&fc->isac, HW_TESTLOOP, cq->channel);
  794. break;
  795. case MISDN_CTRL_L1_TIMER3:
  796. ret = fc->isac.ctrl(&fc->isac, HW_TIMER3_VALUE, cq->p1);
  797. break;
  798. default:
  799. pr_info("%s: %s unknown Op %x\n", fc->name, __func__, cq->op);
  800. ret = -EINVAL;
  801. break;
  802. }
  803. return ret;
  804. }
  805. static int
  806. open_bchannel(struct fritzcard *fc, struct channel_req *rq)
  807. {
  808. struct bchannel *bch;
  809. if (rq->adr.channel == 0 || rq->adr.channel > 2)
  810. return -EINVAL;
  811. if (rq->protocol == ISDN_P_NONE)
  812. return -EINVAL;
  813. bch = &fc->bch[rq->adr.channel - 1];
  814. if (test_and_set_bit(FLG_OPEN, &bch->Flags))
  815. return -EBUSY; /* b-channel can be only open once */
  816. bch->ch.protocol = rq->protocol;
  817. rq->ch = &bch->ch;
  818. return 0;
  819. }
  820. /*
  821. * device control function
  822. */
  823. static int
  824. avm_dctrl(struct mISDNchannel *ch, u32 cmd, void *arg)
  825. {
  826. struct mISDNdevice *dev = container_of(ch, struct mISDNdevice, D);
  827. struct dchannel *dch = container_of(dev, struct dchannel, dev);
  828. struct fritzcard *fc = dch->hw;
  829. struct channel_req *rq;
  830. int err = 0;
  831. pr_debug("%s: %s cmd:%x %p\n", fc->name, __func__, cmd, arg);
  832. switch (cmd) {
  833. case OPEN_CHANNEL:
  834. rq = arg;
  835. if (rq->protocol == ISDN_P_TE_S0)
  836. err = fc->isac.open(&fc->isac, rq);
  837. else
  838. err = open_bchannel(fc, rq);
  839. if (err)
  840. break;
  841. if (!try_module_get(THIS_MODULE))
  842. pr_info("%s: cannot get module\n", fc->name);
  843. break;
  844. case CLOSE_CHANNEL:
  845. pr_debug("%s: dev(%d) close from %p\n", fc->name, dch->dev.id,
  846. __builtin_return_address(0));
  847. module_put(THIS_MODULE);
  848. break;
  849. case CONTROL_CHANNEL:
  850. err = channel_ctrl(fc, arg);
  851. break;
  852. default:
  853. pr_debug("%s: %s unknown command %x\n",
  854. fc->name, __func__, cmd);
  855. return -EINVAL;
  856. }
  857. return err;
  858. }
  859. static int
  860. setup_fritz(struct fritzcard *fc)
  861. {
  862. u32 val, ver;
  863. if (!request_region(fc->addr, 32, fc->name)) {
  864. pr_info("%s: AVM config port %x-%x already in use\n",
  865. fc->name, fc->addr, fc->addr + 31);
  866. return -EIO;
  867. }
  868. switch (fc->type) {
  869. case AVM_FRITZ_PCI:
  870. val = inl(fc->addr);
  871. outl(AVM_HDLC_1, fc->addr + CHIP_INDEX);
  872. ver = inl(fc->addr + CHIP_WINDOW + HDLC_STATUS) >> 24;
  873. if (debug & DEBUG_HW) {
  874. pr_notice("%s: PCI stat %#x\n", fc->name, val);
  875. pr_notice("%s: PCI Class %X Rev %d\n", fc->name,
  876. val & 0xff, (val >> 8) & 0xff);
  877. pr_notice("%s: HDLC version %x\n", fc->name, ver & 0xf);
  878. }
  879. ASSIGN_FUNC(V1, ISAC, fc->isac);
  880. fc->isac.type = IPAC_TYPE_ISAC;
  881. break;
  882. case AVM_FRITZ_PCIV2:
  883. val = inl(fc->addr);
  884. ver = inl(fc->addr + AVM_HDLC_STATUS_1) >> 24;
  885. if (debug & DEBUG_HW) {
  886. pr_notice("%s: PCI V2 stat %#x\n", fc->name, val);
  887. pr_notice("%s: PCI V2 Class %X Rev %d\n", fc->name,
  888. val & 0xff, (val >> 8) & 0xff);
  889. pr_notice("%s: HDLC version %x\n", fc->name, ver & 0xf);
  890. }
  891. ASSIGN_FUNC(V2, ISAC, fc->isac);
  892. fc->isac.type = IPAC_TYPE_ISACX;
  893. break;
  894. default:
  895. release_region(fc->addr, 32);
  896. pr_info("%s: AVM unknown type %d\n", fc->name, fc->type);
  897. return -ENODEV;
  898. }
  899. pr_notice("%s: %s config irq:%d base:0x%X\n", fc->name,
  900. (fc->type == AVM_FRITZ_PCI) ? "AVM Fritz!CARD PCI" :
  901. "AVM Fritz!CARD PCIv2", fc->irq, fc->addr);
  902. return 0;
  903. }
  904. static void
  905. release_card(struct fritzcard *card)
  906. {
  907. u_long flags;
  908. disable_hwirq(card);
  909. spin_lock_irqsave(&card->lock, flags);
  910. modehdlc(&card->bch[0], ISDN_P_NONE);
  911. modehdlc(&card->bch[1], ISDN_P_NONE);
  912. spin_unlock_irqrestore(&card->lock, flags);
  913. card->isac.release(&card->isac);
  914. free_irq(card->irq, card);
  915. mISDN_freebchannel(&card->bch[1]);
  916. mISDN_freebchannel(&card->bch[0]);
  917. mISDN_unregister_device(&card->isac.dch.dev);
  918. release_region(card->addr, 32);
  919. pci_disable_device(card->pdev);
  920. pci_set_drvdata(card->pdev, NULL);
  921. write_lock_irqsave(&card_lock, flags);
  922. list_del(&card->list);
  923. write_unlock_irqrestore(&card_lock, flags);
  924. kfree(card);
  925. AVM_cnt--;
  926. }
  927. static int
  928. setup_instance(struct fritzcard *card)
  929. {
  930. int i, err;
  931. unsigned short minsize;
  932. u_long flags;
  933. snprintf(card->name, MISDN_MAX_IDLEN - 1, "AVM.%d", AVM_cnt + 1);
  934. write_lock_irqsave(&card_lock, flags);
  935. list_add_tail(&card->list, &Cards);
  936. write_unlock_irqrestore(&card_lock, flags);
  937. _set_debug(card);
  938. card->isac.name = card->name;
  939. spin_lock_init(&card->lock);
  940. card->isac.hwlock = &card->lock;
  941. mISDNisac_init(&card->isac, card);
  942. card->isac.dch.dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) |
  943. (1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK));
  944. card->isac.dch.dev.D.ctrl = avm_dctrl;
  945. for (i = 0; i < 2; i++) {
  946. card->bch[i].nr = i + 1;
  947. set_channelmap(i + 1, card->isac.dch.dev.channelmap);
  948. if (AVM_FRITZ_PCIV2 == card->type)
  949. minsize = HDLC_FIFO_SIZE_V2;
  950. else
  951. minsize = HDLC_FIFO_SIZE_V1;
  952. mISDN_initbchannel(&card->bch[i], MAX_DATA_MEM, minsize);
  953. card->bch[i].hw = card;
  954. card->bch[i].ch.send = avm_l2l1B;
  955. card->bch[i].ch.ctrl = avm_bctrl;
  956. card->bch[i].ch.nr = i + 1;
  957. list_add(&card->bch[i].ch.list, &card->isac.dch.dev.bchannels);
  958. }
  959. err = setup_fritz(card);
  960. if (err)
  961. goto error;
  962. err = mISDN_register_device(&card->isac.dch.dev, &card->pdev->dev,
  963. card->name);
  964. if (err)
  965. goto error_reg;
  966. err = init_card(card);
  967. if (!err) {
  968. AVM_cnt++;
  969. pr_notice("AVM %d cards installed DEBUG\n", AVM_cnt);
  970. return 0;
  971. }
  972. mISDN_unregister_device(&card->isac.dch.dev);
  973. error_reg:
  974. release_region(card->addr, 32);
  975. error:
  976. card->isac.release(&card->isac);
  977. mISDN_freebchannel(&card->bch[1]);
  978. mISDN_freebchannel(&card->bch[0]);
  979. write_lock_irqsave(&card_lock, flags);
  980. list_del(&card->list);
  981. write_unlock_irqrestore(&card_lock, flags);
  982. kfree(card);
  983. return err;
  984. }
  985. static int
  986. fritzpci_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
  987. {
  988. int err = -ENOMEM;
  989. struct fritzcard *card;
  990. card = kzalloc(sizeof(struct fritzcard), GFP_KERNEL);
  991. if (!card) {
  992. pr_info("No kmem for fritzcard\n");
  993. return err;
  994. }
  995. if (pdev->device == PCI_DEVICE_ID_AVM_A1_V2)
  996. card->type = AVM_FRITZ_PCIV2;
  997. else
  998. card->type = AVM_FRITZ_PCI;
  999. card->pdev = pdev;
  1000. err = pci_enable_device(pdev);
  1001. if (err) {
  1002. kfree(card);
  1003. return err;
  1004. }
  1005. pr_notice("mISDN: found adapter %s at %s\n",
  1006. (char *) ent->driver_data, pci_name(pdev));
  1007. card->addr = pci_resource_start(pdev, 1);
  1008. card->irq = pdev->irq;
  1009. pci_set_drvdata(pdev, card);
  1010. err = setup_instance(card);
  1011. if (err)
  1012. pci_set_drvdata(pdev, NULL);
  1013. return err;
  1014. }
  1015. static void
  1016. fritz_remove_pci(struct pci_dev *pdev)
  1017. {
  1018. struct fritzcard *card = pci_get_drvdata(pdev);
  1019. if (card)
  1020. release_card(card);
  1021. else
  1022. if (debug)
  1023. pr_info("%s: drvdata already removed\n", __func__);
  1024. }
  1025. static const struct pci_device_id fcpci_ids[] = {
  1026. { PCI_VENDOR_ID_AVM, PCI_DEVICE_ID_AVM_A1, PCI_ANY_ID, PCI_ANY_ID,
  1027. 0, 0, (unsigned long) "Fritz!Card PCI"},
  1028. { PCI_VENDOR_ID_AVM, PCI_DEVICE_ID_AVM_A1_V2, PCI_ANY_ID, PCI_ANY_ID,
  1029. 0, 0, (unsigned long) "Fritz!Card PCI v2" },
  1030. { }
  1031. };
  1032. MODULE_DEVICE_TABLE(pci, fcpci_ids);
  1033. static struct pci_driver fcpci_driver = {
  1034. .name = "fcpci",
  1035. .probe = fritzpci_probe,
  1036. .remove = fritz_remove_pci,
  1037. .id_table = fcpci_ids,
  1038. };
  1039. static int __init AVM_init(void)
  1040. {
  1041. int err;
  1042. pr_notice("AVM Fritz PCI driver Rev. %s\n", AVMFRITZ_REV);
  1043. err = pci_register_driver(&fcpci_driver);
  1044. return err;
  1045. }
  1046. static void __exit AVM_cleanup(void)
  1047. {
  1048. pci_unregister_driver(&fcpci_driver);
  1049. }
  1050. module_init(AVM_init);
  1051. module_exit(AVM_cleanup);