fsi-occ.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766
  1. // SPDX-License-Identifier: GPL-2.0
  2. #include <linux/device.h>
  3. #include <linux/err.h>
  4. #include <linux/errno.h>
  5. #include <linux/fs.h>
  6. #include <linux/fsi-sbefifo.h>
  7. #include <linux/gfp.h>
  8. #include <linux/idr.h>
  9. #include <linux/kernel.h>
  10. #include <linux/list.h>
  11. #include <linux/miscdevice.h>
  12. #include <linux/mm.h>
  13. #include <linux/module.h>
  14. #include <linux/mutex.h>
  15. #include <linux/fsi-occ.h>
  16. #include <linux/of.h>
  17. #include <linux/of_device.h>
  18. #include <linux/platform_device.h>
  19. #include <linux/sched.h>
  20. #include <linux/slab.h>
  21. #include <linux/uaccess.h>
  22. #include <asm/unaligned.h>
  23. #define OCC_SRAM_BYTES 4096
  24. #define OCC_CMD_DATA_BYTES 4090
  25. #define OCC_RESP_DATA_BYTES 4089
  26. #define OCC_P9_SRAM_CMD_ADDR 0xFFFBE000
  27. #define OCC_P9_SRAM_RSP_ADDR 0xFFFBF000
  28. #define OCC_P10_SRAM_CMD_ADDR 0xFFFFD000
  29. #define OCC_P10_SRAM_RSP_ADDR 0xFFFFE000
  30. #define OCC_P10_SRAM_MODE 0x58 /* Normal mode, OCB channel 2 */
  31. #define OCC_TIMEOUT_MS 1000
  32. #define OCC_CMD_IN_PRG_WAIT_MS 50
  33. enum versions { occ_p9, occ_p10 };
  34. struct occ {
  35. struct device *dev;
  36. struct device *sbefifo;
  37. char name[32];
  38. int idx;
  39. bool platform_hwmon;
  40. u8 sequence_number;
  41. void *buffer;
  42. void *client_buffer;
  43. size_t client_buffer_size;
  44. size_t client_response_size;
  45. enum versions version;
  46. struct miscdevice mdev;
  47. struct mutex occ_lock;
  48. };
  49. #define to_occ(x) container_of((x), struct occ, mdev)
  50. struct occ_response {
  51. u8 seq_no;
  52. u8 cmd_type;
  53. u8 return_status;
  54. __be16 data_length;
  55. u8 data[OCC_RESP_DATA_BYTES + 2]; /* two bytes checksum */
  56. } __packed;
  57. struct occ_client {
  58. struct occ *occ;
  59. struct mutex lock;
  60. size_t data_size;
  61. size_t read_offset;
  62. u8 *buffer;
  63. };
  64. #define to_client(x) container_of((x), struct occ_client, xfr)
  65. static DEFINE_IDA(occ_ida);
  66. static int occ_open(struct inode *inode, struct file *file)
  67. {
  68. struct occ_client *client = kzalloc(sizeof(*client), GFP_KERNEL);
  69. struct miscdevice *mdev = file->private_data;
  70. struct occ *occ = to_occ(mdev);
  71. if (!client)
  72. return -ENOMEM;
  73. client->buffer = (u8 *)__get_free_page(GFP_KERNEL);
  74. if (!client->buffer) {
  75. kfree(client);
  76. return -ENOMEM;
  77. }
  78. client->occ = occ;
  79. mutex_init(&client->lock);
  80. file->private_data = client;
  81. get_device(occ->dev);
  82. /* We allocate a 1-page buffer, make sure it all fits */
  83. BUILD_BUG_ON((OCC_CMD_DATA_BYTES + 3) > PAGE_SIZE);
  84. BUILD_BUG_ON((OCC_RESP_DATA_BYTES + 7) > PAGE_SIZE);
  85. return 0;
  86. }
  87. static ssize_t occ_read(struct file *file, char __user *buf, size_t len,
  88. loff_t *offset)
  89. {
  90. struct occ_client *client = file->private_data;
  91. ssize_t rc = 0;
  92. if (!client)
  93. return -ENODEV;
  94. if (len > OCC_SRAM_BYTES)
  95. return -EINVAL;
  96. mutex_lock(&client->lock);
  97. /* This should not be possible ... */
  98. if (WARN_ON_ONCE(client->read_offset > client->data_size)) {
  99. rc = -EIO;
  100. goto done;
  101. }
  102. /* Grab how much data we have to read */
  103. rc = min(len, client->data_size - client->read_offset);
  104. if (copy_to_user(buf, client->buffer + client->read_offset, rc))
  105. rc = -EFAULT;
  106. else
  107. client->read_offset += rc;
  108. done:
  109. mutex_unlock(&client->lock);
  110. return rc;
  111. }
  112. static ssize_t occ_write(struct file *file, const char __user *buf,
  113. size_t len, loff_t *offset)
  114. {
  115. struct occ_client *client = file->private_data;
  116. size_t rlen, data_length;
  117. ssize_t rc;
  118. u8 *cmd;
  119. if (!client)
  120. return -ENODEV;
  121. if (len > (OCC_CMD_DATA_BYTES + 3) || len < 3)
  122. return -EINVAL;
  123. mutex_lock(&client->lock);
  124. /* Construct the command */
  125. cmd = client->buffer;
  126. /*
  127. * Copy the user command (assume user data follows the occ command
  128. * format)
  129. * byte 0: command type
  130. * bytes 1-2: data length (msb first)
  131. * bytes 3-n: data
  132. */
  133. if (copy_from_user(&cmd[1], buf, len)) {
  134. rc = -EFAULT;
  135. goto done;
  136. }
  137. /* Extract data length */
  138. data_length = (cmd[2] << 8) + cmd[3];
  139. if (data_length > OCC_CMD_DATA_BYTES) {
  140. rc = -EINVAL;
  141. goto done;
  142. }
  143. /* Submit command; 4 bytes before the data and 2 bytes after */
  144. rlen = PAGE_SIZE;
  145. rc = fsi_occ_submit(client->occ->dev, cmd, data_length + 6, cmd,
  146. &rlen);
  147. if (rc)
  148. goto done;
  149. /* Set read tracking data */
  150. client->data_size = rlen;
  151. client->read_offset = 0;
  152. /* Done */
  153. rc = len;
  154. done:
  155. mutex_unlock(&client->lock);
  156. return rc;
  157. }
  158. static int occ_release(struct inode *inode, struct file *file)
  159. {
  160. struct occ_client *client = file->private_data;
  161. put_device(client->occ->dev);
  162. free_page((unsigned long)client->buffer);
  163. kfree(client);
  164. return 0;
  165. }
  166. static const struct file_operations occ_fops = {
  167. .owner = THIS_MODULE,
  168. .open = occ_open,
  169. .read = occ_read,
  170. .write = occ_write,
  171. .release = occ_release,
  172. };
  173. static void occ_save_ffdc(struct occ *occ, __be32 *resp, size_t parsed_len,
  174. size_t resp_len)
  175. {
  176. if (resp_len > parsed_len) {
  177. size_t dh = resp_len - parsed_len;
  178. size_t ffdc_len = (dh - 1) * 4; /* SBE words are four bytes */
  179. __be32 *ffdc = &resp[parsed_len];
  180. if (ffdc_len > occ->client_buffer_size)
  181. ffdc_len = occ->client_buffer_size;
  182. memcpy(occ->client_buffer, ffdc, ffdc_len);
  183. occ->client_response_size = ffdc_len;
  184. }
  185. }
  186. static int occ_verify_checksum(struct occ *occ, struct occ_response *resp,
  187. u16 data_length)
  188. {
  189. /* Fetch the two bytes after the data for the checksum. */
  190. u16 checksum_resp = get_unaligned_be16(&resp->data[data_length]);
  191. u16 checksum;
  192. u16 i;
  193. checksum = resp->seq_no;
  194. checksum += resp->cmd_type;
  195. checksum += resp->return_status;
  196. checksum += (data_length >> 8) + (data_length & 0xFF);
  197. for (i = 0; i < data_length; ++i)
  198. checksum += resp->data[i];
  199. if (checksum != checksum_resp) {
  200. dev_err(occ->dev, "Bad checksum: %04x!=%04x\n", checksum,
  201. checksum_resp);
  202. return -EBADE;
  203. }
  204. return 0;
  205. }
  206. static int occ_getsram(struct occ *occ, u32 offset, void *data, ssize_t len)
  207. {
  208. u32 data_len = ((len + 7) / 8) * 8; /* must be multiples of 8 B */
  209. size_t cmd_len, parsed_len, resp_data_len;
  210. size_t resp_len = OCC_MAX_RESP_WORDS;
  211. __be32 *resp = occ->buffer;
  212. __be32 cmd[6];
  213. int idx = 0, rc;
  214. /*
  215. * Magic sequence to do SBE getsram command. SBE will fetch data from
  216. * specified SRAM address.
  217. */
  218. switch (occ->version) {
  219. default:
  220. case occ_p9:
  221. cmd_len = 5;
  222. cmd[2] = cpu_to_be32(1); /* Normal mode */
  223. cmd[3] = cpu_to_be32(OCC_P9_SRAM_RSP_ADDR + offset);
  224. break;
  225. case occ_p10:
  226. idx = 1;
  227. cmd_len = 6;
  228. cmd[2] = cpu_to_be32(OCC_P10_SRAM_MODE);
  229. cmd[3] = 0;
  230. cmd[4] = cpu_to_be32(OCC_P10_SRAM_RSP_ADDR + offset);
  231. break;
  232. }
  233. cmd[0] = cpu_to_be32(cmd_len);
  234. cmd[1] = cpu_to_be32(SBEFIFO_CMD_GET_OCC_SRAM);
  235. cmd[4 + idx] = cpu_to_be32(data_len);
  236. rc = sbefifo_submit(occ->sbefifo, cmd, cmd_len, resp, &resp_len);
  237. if (rc)
  238. return rc;
  239. rc = sbefifo_parse_status(occ->sbefifo, SBEFIFO_CMD_GET_OCC_SRAM,
  240. resp, resp_len, &parsed_len);
  241. if (rc > 0) {
  242. dev_err(occ->dev, "SRAM read returned failure status: %08x\n",
  243. rc);
  244. occ_save_ffdc(occ, resp, parsed_len, resp_len);
  245. return -ECOMM;
  246. } else if (rc) {
  247. return rc;
  248. }
  249. resp_data_len = be32_to_cpu(resp[parsed_len - 1]);
  250. if (resp_data_len != data_len) {
  251. dev_err(occ->dev, "SRAM read expected %d bytes got %zd\n",
  252. data_len, resp_data_len);
  253. rc = -EBADMSG;
  254. } else {
  255. memcpy(data, resp, len);
  256. }
  257. return rc;
  258. }
  259. static int occ_putsram(struct occ *occ, const void *data, ssize_t len,
  260. u8 seq_no, u16 checksum)
  261. {
  262. u32 data_len = ((len + 7) / 8) * 8; /* must be multiples of 8 B */
  263. size_t cmd_len, parsed_len, resp_data_len;
  264. size_t resp_len = OCC_MAX_RESP_WORDS;
  265. __be32 *buf = occ->buffer;
  266. u8 *byte_buf;
  267. int idx = 0, rc;
  268. cmd_len = (occ->version == occ_p10) ? 6 : 5;
  269. cmd_len += data_len >> 2;
  270. /*
  271. * Magic sequence to do SBE putsram command. SBE will transfer
  272. * data to specified SRAM address.
  273. */
  274. buf[0] = cpu_to_be32(cmd_len);
  275. buf[1] = cpu_to_be32(SBEFIFO_CMD_PUT_OCC_SRAM);
  276. switch (occ->version) {
  277. default:
  278. case occ_p9:
  279. buf[2] = cpu_to_be32(1); /* Normal mode */
  280. buf[3] = cpu_to_be32(OCC_P9_SRAM_CMD_ADDR);
  281. break;
  282. case occ_p10:
  283. idx = 1;
  284. buf[2] = cpu_to_be32(OCC_P10_SRAM_MODE);
  285. buf[3] = 0;
  286. buf[4] = cpu_to_be32(OCC_P10_SRAM_CMD_ADDR);
  287. break;
  288. }
  289. buf[4 + idx] = cpu_to_be32(data_len);
  290. memcpy(&buf[5 + idx], data, len);
  291. byte_buf = (u8 *)&buf[5 + idx];
  292. /*
  293. * Overwrite the first byte with our sequence number and the last two
  294. * bytes with the checksum.
  295. */
  296. byte_buf[0] = seq_no;
  297. byte_buf[len - 2] = checksum >> 8;
  298. byte_buf[len - 1] = checksum & 0xff;
  299. rc = sbefifo_submit(occ->sbefifo, buf, cmd_len, buf, &resp_len);
  300. if (rc)
  301. return rc;
  302. rc = sbefifo_parse_status(occ->sbefifo, SBEFIFO_CMD_PUT_OCC_SRAM,
  303. buf, resp_len, &parsed_len);
  304. if (rc > 0) {
  305. dev_err(occ->dev, "SRAM write returned failure status: %08x\n",
  306. rc);
  307. occ_save_ffdc(occ, buf, parsed_len, resp_len);
  308. return -ECOMM;
  309. } else if (rc) {
  310. return rc;
  311. }
  312. if (parsed_len != 1) {
  313. dev_err(occ->dev, "SRAM write response length invalid: %zd\n",
  314. parsed_len);
  315. rc = -EBADMSG;
  316. } else {
  317. resp_data_len = be32_to_cpu(buf[0]);
  318. if (resp_data_len != data_len) {
  319. dev_err(occ->dev,
  320. "SRAM write expected %d bytes got %zd\n",
  321. data_len, resp_data_len);
  322. rc = -EBADMSG;
  323. }
  324. }
  325. return rc;
  326. }
  327. static int occ_trigger_attn(struct occ *occ)
  328. {
  329. __be32 *buf = occ->buffer;
  330. size_t cmd_len, parsed_len, resp_data_len;
  331. size_t resp_len = OCC_MAX_RESP_WORDS;
  332. int idx = 0, rc;
  333. switch (occ->version) {
  334. default:
  335. case occ_p9:
  336. cmd_len = 7;
  337. buf[2] = cpu_to_be32(3); /* Circular mode */
  338. buf[3] = 0;
  339. break;
  340. case occ_p10:
  341. idx = 1;
  342. cmd_len = 8;
  343. buf[2] = cpu_to_be32(0xd0); /* Circular mode, OCB Channel 1 */
  344. buf[3] = 0;
  345. buf[4] = 0;
  346. break;
  347. }
  348. buf[0] = cpu_to_be32(cmd_len); /* Chip-op length in words */
  349. buf[1] = cpu_to_be32(SBEFIFO_CMD_PUT_OCC_SRAM);
  350. buf[4 + idx] = cpu_to_be32(8); /* Data length in bytes */
  351. buf[5 + idx] = cpu_to_be32(0x20010000); /* Trigger OCC attention */
  352. buf[6 + idx] = 0;
  353. rc = sbefifo_submit(occ->sbefifo, buf, cmd_len, buf, &resp_len);
  354. if (rc)
  355. return rc;
  356. rc = sbefifo_parse_status(occ->sbefifo, SBEFIFO_CMD_PUT_OCC_SRAM,
  357. buf, resp_len, &parsed_len);
  358. if (rc > 0) {
  359. dev_err(occ->dev, "SRAM attn returned failure status: %08x\n",
  360. rc);
  361. occ_save_ffdc(occ, buf, parsed_len, resp_len);
  362. return -ECOMM;
  363. } else if (rc) {
  364. return rc;
  365. }
  366. if (parsed_len != 1) {
  367. dev_err(occ->dev, "SRAM attn response length invalid: %zd\n",
  368. parsed_len);
  369. rc = -EBADMSG;
  370. } else {
  371. resp_data_len = be32_to_cpu(buf[0]);
  372. if (resp_data_len != 8) {
  373. dev_err(occ->dev,
  374. "SRAM attn expected 8 bytes got %zd\n",
  375. resp_data_len);
  376. rc = -EBADMSG;
  377. }
  378. }
  379. return rc;
  380. }
  381. static bool fsi_occ_response_not_ready(struct occ_response *resp, u8 seq_no,
  382. u8 cmd_type)
  383. {
  384. return resp->return_status == OCC_RESP_CMD_IN_PRG ||
  385. resp->return_status == OCC_RESP_CRIT_INIT ||
  386. resp->seq_no != seq_no || resp->cmd_type != cmd_type;
  387. }
  388. int fsi_occ_submit(struct device *dev, const void *request, size_t req_len,
  389. void *response, size_t *resp_len)
  390. {
  391. const unsigned long timeout = msecs_to_jiffies(OCC_TIMEOUT_MS);
  392. const unsigned long wait_time =
  393. msecs_to_jiffies(OCC_CMD_IN_PRG_WAIT_MS);
  394. struct occ *occ = dev_get_drvdata(dev);
  395. struct occ_response *resp = response;
  396. size_t user_resp_len = *resp_len;
  397. u8 seq_no;
  398. u8 cmd_type;
  399. u16 checksum = 0;
  400. u16 resp_data_length;
  401. const u8 *byte_request = (const u8 *)request;
  402. unsigned long end;
  403. int rc;
  404. size_t i;
  405. *resp_len = 0;
  406. if (!occ)
  407. return -ENODEV;
  408. if (user_resp_len < 7) {
  409. dev_dbg(dev, "Bad resplen %zd\n", user_resp_len);
  410. return -EINVAL;
  411. }
  412. cmd_type = byte_request[1];
  413. /* Checksum the request, ignoring first byte (sequence number). */
  414. for (i = 1; i < req_len - 2; ++i)
  415. checksum += byte_request[i];
  416. rc = mutex_lock_interruptible(&occ->occ_lock);
  417. if (rc)
  418. return rc;
  419. occ->client_buffer = response;
  420. occ->client_buffer_size = user_resp_len;
  421. occ->client_response_size = 0;
  422. if (!occ->buffer) {
  423. rc = -ENOENT;
  424. goto done;
  425. }
  426. /*
  427. * Get a sequence number and update the counter. Avoid a sequence
  428. * number of 0 which would pass the response check below even if the
  429. * OCC response is uninitialized. Any sequence number the user is
  430. * trying to send is overwritten since this function is the only common
  431. * interface to the OCC and therefore the only place we can guarantee
  432. * unique sequence numbers.
  433. */
  434. seq_no = occ->sequence_number++;
  435. if (!occ->sequence_number)
  436. occ->sequence_number = 1;
  437. checksum += seq_no;
  438. rc = occ_putsram(occ, request, req_len, seq_no, checksum);
  439. if (rc)
  440. goto done;
  441. rc = occ_trigger_attn(occ);
  442. if (rc)
  443. goto done;
  444. end = jiffies + timeout;
  445. while (true) {
  446. /* Read occ response header */
  447. rc = occ_getsram(occ, 0, resp, 8);
  448. if (rc)
  449. goto done;
  450. if (fsi_occ_response_not_ready(resp, seq_no, cmd_type)) {
  451. if (time_after(jiffies, end)) {
  452. dev_err(occ->dev,
  453. "resp timeout status=%02x seq=%d cmd=%d, our seq=%d cmd=%d\n",
  454. resp->return_status, resp->seq_no,
  455. resp->cmd_type, seq_no, cmd_type);
  456. rc = -ETIMEDOUT;
  457. goto done;
  458. }
  459. set_current_state(TASK_UNINTERRUPTIBLE);
  460. schedule_timeout(wait_time);
  461. } else {
  462. /* Extract size of response data */
  463. resp_data_length =
  464. get_unaligned_be16(&resp->data_length);
  465. /*
  466. * Message size is data length + 5 bytes header + 2
  467. * bytes checksum
  468. */
  469. if ((resp_data_length + 7) > user_resp_len) {
  470. rc = -EMSGSIZE;
  471. goto done;
  472. }
  473. /*
  474. * Get the entire response including the header again,
  475. * in case it changed
  476. */
  477. if (resp_data_length > 1) {
  478. rc = occ_getsram(occ, 0, resp,
  479. resp_data_length + 7);
  480. if (rc)
  481. goto done;
  482. if (!fsi_occ_response_not_ready(resp, seq_no,
  483. cmd_type))
  484. break;
  485. } else {
  486. break;
  487. }
  488. }
  489. }
  490. dev_dbg(dev, "resp_status=%02x resp_data_len=%d\n",
  491. resp->return_status, resp_data_length);
  492. rc = occ_verify_checksum(occ, resp, resp_data_length);
  493. if (rc)
  494. goto done;
  495. occ->client_response_size = resp_data_length + 7;
  496. done:
  497. *resp_len = occ->client_response_size;
  498. mutex_unlock(&occ->occ_lock);
  499. return rc;
  500. }
  501. EXPORT_SYMBOL_GPL(fsi_occ_submit);
  502. static int occ_unregister_platform_child(struct device *dev, void *data)
  503. {
  504. struct platform_device *hwmon_dev = to_platform_device(dev);
  505. platform_device_unregister(hwmon_dev);
  506. return 0;
  507. }
  508. static int occ_unregister_of_child(struct device *dev, void *data)
  509. {
  510. struct platform_device *hwmon_dev = to_platform_device(dev);
  511. of_device_unregister(hwmon_dev);
  512. if (dev->of_node)
  513. of_node_clear_flag(dev->of_node, OF_POPULATED);
  514. return 0;
  515. }
  516. static int occ_probe(struct platform_device *pdev)
  517. {
  518. int rc;
  519. u32 reg;
  520. char child_name[32];
  521. struct occ *occ;
  522. struct platform_device *hwmon_dev = NULL;
  523. struct device_node *hwmon_node;
  524. struct device *dev = &pdev->dev;
  525. struct platform_device_info hwmon_dev_info = {
  526. .parent = dev,
  527. .name = "occ-hwmon",
  528. };
  529. occ = devm_kzalloc(dev, sizeof(*occ), GFP_KERNEL);
  530. if (!occ)
  531. return -ENOMEM;
  532. /* SBE words are always four bytes */
  533. occ->buffer = kvmalloc(OCC_MAX_RESP_WORDS * 4, GFP_KERNEL);
  534. if (!occ->buffer)
  535. return -ENOMEM;
  536. occ->version = (uintptr_t)of_device_get_match_data(dev);
  537. occ->dev = dev;
  538. occ->sbefifo = dev->parent;
  539. /*
  540. * Quickly derive a pseudo-random number from jiffies so that
  541. * re-probing the driver doesn't accidentally overlap sequence numbers.
  542. */
  543. occ->sequence_number = (u8)((jiffies % 0xff) + 1);
  544. mutex_init(&occ->occ_lock);
  545. if (dev->of_node) {
  546. rc = of_property_read_u32(dev->of_node, "reg", &reg);
  547. if (!rc) {
  548. /* make sure we don't have a duplicate from dts */
  549. occ->idx = ida_simple_get(&occ_ida, reg, reg + 1,
  550. GFP_KERNEL);
  551. if (occ->idx < 0)
  552. occ->idx = ida_simple_get(&occ_ida, 1, INT_MAX,
  553. GFP_KERNEL);
  554. } else {
  555. occ->idx = ida_simple_get(&occ_ida, 1, INT_MAX,
  556. GFP_KERNEL);
  557. }
  558. } else {
  559. occ->idx = ida_simple_get(&occ_ida, 1, INT_MAX, GFP_KERNEL);
  560. }
  561. platform_set_drvdata(pdev, occ);
  562. snprintf(occ->name, sizeof(occ->name), "occ%d", occ->idx);
  563. occ->mdev.fops = &occ_fops;
  564. occ->mdev.minor = MISC_DYNAMIC_MINOR;
  565. occ->mdev.name = occ->name;
  566. occ->mdev.parent = dev;
  567. rc = misc_register(&occ->mdev);
  568. if (rc) {
  569. dev_err(dev, "failed to register miscdevice: %d\n", rc);
  570. ida_simple_remove(&occ_ida, occ->idx);
  571. kvfree(occ->buffer);
  572. return rc;
  573. }
  574. hwmon_node = of_get_child_by_name(dev->of_node, hwmon_dev_info.name);
  575. if (hwmon_node) {
  576. snprintf(child_name, sizeof(child_name), "%s.%d", hwmon_dev_info.name, occ->idx);
  577. hwmon_dev = of_platform_device_create(hwmon_node, child_name, dev);
  578. of_node_put(hwmon_node);
  579. }
  580. if (!hwmon_dev) {
  581. occ->platform_hwmon = true;
  582. hwmon_dev_info.id = occ->idx;
  583. hwmon_dev = platform_device_register_full(&hwmon_dev_info);
  584. if (IS_ERR(hwmon_dev))
  585. dev_warn(dev, "failed to create hwmon device\n");
  586. }
  587. return 0;
  588. }
  589. static int occ_remove(struct platform_device *pdev)
  590. {
  591. struct occ *occ = platform_get_drvdata(pdev);
  592. misc_deregister(&occ->mdev);
  593. mutex_lock(&occ->occ_lock);
  594. kvfree(occ->buffer);
  595. occ->buffer = NULL;
  596. mutex_unlock(&occ->occ_lock);
  597. if (occ->platform_hwmon)
  598. device_for_each_child(&pdev->dev, NULL, occ_unregister_platform_child);
  599. else
  600. device_for_each_child(&pdev->dev, NULL, occ_unregister_of_child);
  601. ida_simple_remove(&occ_ida, occ->idx);
  602. return 0;
  603. }
  604. static const struct of_device_id occ_match[] = {
  605. {
  606. .compatible = "ibm,p9-occ",
  607. .data = (void *)occ_p9
  608. },
  609. {
  610. .compatible = "ibm,p10-occ",
  611. .data = (void *)occ_p10
  612. },
  613. { },
  614. };
  615. MODULE_DEVICE_TABLE(of, occ_match);
  616. static struct platform_driver occ_driver = {
  617. .driver = {
  618. .name = "occ",
  619. .of_match_table = occ_match,
  620. },
  621. .probe = occ_probe,
  622. .remove = occ_remove,
  623. };
  624. static int occ_init(void)
  625. {
  626. return platform_driver_register(&occ_driver);
  627. }
  628. static void occ_exit(void)
  629. {
  630. platform_driver_unregister(&occ_driver);
  631. ida_destroy(&occ_ida);
  632. }
  633. module_init(occ_init);
  634. module_exit(occ_exit);
  635. MODULE_AUTHOR("Eddie James <[email protected]>");
  636. MODULE_DESCRIPTION("BMC P9 OCC driver");
  637. MODULE_LICENSE("GPL");