sb_edac.c 98 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module
  3. *
  4. * This driver supports the memory controllers found on the Intel
  5. * processor family Sandy Bridge.
  6. *
  7. * Copyright (c) 2011 by:
  8. * Mauro Carvalho Chehab
  9. */
  10. #include <linux/module.h>
  11. #include <linux/init.h>
  12. #include <linux/pci.h>
  13. #include <linux/pci_ids.h>
  14. #include <linux/slab.h>
  15. #include <linux/delay.h>
  16. #include <linux/edac.h>
  17. #include <linux/mmzone.h>
  18. #include <linux/smp.h>
  19. #include <linux/bitmap.h>
  20. #include <linux/math64.h>
  21. #include <linux/mod_devicetable.h>
  22. #include <asm/cpu_device_id.h>
  23. #include <asm/intel-family.h>
  24. #include <asm/processor.h>
  25. #include <asm/mce.h>
  26. #include "edac_module.h"
  27. /* Static vars */
  28. static LIST_HEAD(sbridge_edac_list);
  29. /*
  30. * Alter this version for the module when modifications are made
  31. */
  32. #define SBRIDGE_REVISION " Ver: 1.1.2 "
  33. #define EDAC_MOD_STR "sb_edac"
  34. /*
  35. * Debug macros
  36. */
  37. #define sbridge_printk(level, fmt, arg...) \
  38. edac_printk(level, "sbridge", fmt, ##arg)
  39. #define sbridge_mc_printk(mci, level, fmt, arg...) \
  40. edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg)
  41. /*
  42. * Get a bit field at register value <v>, from bit <lo> to bit <hi>
  43. */
  44. #define GET_BITFIELD(v, lo, hi) \
  45. (((v) & GENMASK_ULL(hi, lo)) >> (lo))
  46. /* Devices 12 Function 6, Offsets 0x80 to 0xcc */
  47. static const u32 sbridge_dram_rule[] = {
  48. 0x80, 0x88, 0x90, 0x98, 0xa0,
  49. 0xa8, 0xb0, 0xb8, 0xc0, 0xc8,
  50. };
  51. static const u32 ibridge_dram_rule[] = {
  52. 0x60, 0x68, 0x70, 0x78, 0x80,
  53. 0x88, 0x90, 0x98, 0xa0, 0xa8,
  54. 0xb0, 0xb8, 0xc0, 0xc8, 0xd0,
  55. 0xd8, 0xe0, 0xe8, 0xf0, 0xf8,
  56. };
  57. static const u32 knl_dram_rule[] = {
  58. 0x60, 0x68, 0x70, 0x78, 0x80, /* 0-4 */
  59. 0x88, 0x90, 0x98, 0xa0, 0xa8, /* 5-9 */
  60. 0xb0, 0xb8, 0xc0, 0xc8, 0xd0, /* 10-14 */
  61. 0xd8, 0xe0, 0xe8, 0xf0, 0xf8, /* 15-19 */
  62. 0x100, 0x108, 0x110, 0x118, /* 20-23 */
  63. };
  64. #define DRAM_RULE_ENABLE(reg) GET_BITFIELD(reg, 0, 0)
  65. #define A7MODE(reg) GET_BITFIELD(reg, 26, 26)
  66. static char *show_dram_attr(u32 attr)
  67. {
  68. switch (attr) {
  69. case 0:
  70. return "DRAM";
  71. case 1:
  72. return "MMCFG";
  73. case 2:
  74. return "NXM";
  75. default:
  76. return "unknown";
  77. }
  78. }
  79. static const u32 sbridge_interleave_list[] = {
  80. 0x84, 0x8c, 0x94, 0x9c, 0xa4,
  81. 0xac, 0xb4, 0xbc, 0xc4, 0xcc,
  82. };
  83. static const u32 ibridge_interleave_list[] = {
  84. 0x64, 0x6c, 0x74, 0x7c, 0x84,
  85. 0x8c, 0x94, 0x9c, 0xa4, 0xac,
  86. 0xb4, 0xbc, 0xc4, 0xcc, 0xd4,
  87. 0xdc, 0xe4, 0xec, 0xf4, 0xfc,
  88. };
  89. static const u32 knl_interleave_list[] = {
  90. 0x64, 0x6c, 0x74, 0x7c, 0x84, /* 0-4 */
  91. 0x8c, 0x94, 0x9c, 0xa4, 0xac, /* 5-9 */
  92. 0xb4, 0xbc, 0xc4, 0xcc, 0xd4, /* 10-14 */
  93. 0xdc, 0xe4, 0xec, 0xf4, 0xfc, /* 15-19 */
  94. 0x104, 0x10c, 0x114, 0x11c, /* 20-23 */
  95. };
  96. #define MAX_INTERLEAVE \
  97. (max_t(unsigned int, ARRAY_SIZE(sbridge_interleave_list), \
  98. max_t(unsigned int, ARRAY_SIZE(ibridge_interleave_list), \
  99. ARRAY_SIZE(knl_interleave_list))))
  100. struct interleave_pkg {
  101. unsigned char start;
  102. unsigned char end;
  103. };
  104. static const struct interleave_pkg sbridge_interleave_pkg[] = {
  105. { 0, 2 },
  106. { 3, 5 },
  107. { 8, 10 },
  108. { 11, 13 },
  109. { 16, 18 },
  110. { 19, 21 },
  111. { 24, 26 },
  112. { 27, 29 },
  113. };
  114. static const struct interleave_pkg ibridge_interleave_pkg[] = {
  115. { 0, 3 },
  116. { 4, 7 },
  117. { 8, 11 },
  118. { 12, 15 },
  119. { 16, 19 },
  120. { 20, 23 },
  121. { 24, 27 },
  122. { 28, 31 },
  123. };
  124. static inline int sad_pkg(const struct interleave_pkg *table, u32 reg,
  125. int interleave)
  126. {
  127. return GET_BITFIELD(reg, table[interleave].start,
  128. table[interleave].end);
  129. }
  130. /* Devices 12 Function 7 */
  131. #define TOLM 0x80
  132. #define TOHM 0x84
  133. #define HASWELL_TOLM 0xd0
  134. #define HASWELL_TOHM_0 0xd4
  135. #define HASWELL_TOHM_1 0xd8
  136. #define KNL_TOLM 0xd0
  137. #define KNL_TOHM_0 0xd4
  138. #define KNL_TOHM_1 0xd8
  139. #define GET_TOLM(reg) ((GET_BITFIELD(reg, 0, 3) << 28) | 0x3ffffff)
  140. #define GET_TOHM(reg) ((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff)
  141. /* Device 13 Function 6 */
  142. #define SAD_TARGET 0xf0
  143. #define SOURCE_ID(reg) GET_BITFIELD(reg, 9, 11)
  144. #define SOURCE_ID_KNL(reg) GET_BITFIELD(reg, 12, 14)
  145. #define SAD_CONTROL 0xf4
  146. /* Device 14 function 0 */
  147. static const u32 tad_dram_rule[] = {
  148. 0x40, 0x44, 0x48, 0x4c,
  149. 0x50, 0x54, 0x58, 0x5c,
  150. 0x60, 0x64, 0x68, 0x6c,
  151. };
  152. #define MAX_TAD ARRAY_SIZE(tad_dram_rule)
  153. #define TAD_LIMIT(reg) ((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff)
  154. #define TAD_SOCK(reg) GET_BITFIELD(reg, 10, 11)
  155. #define TAD_CH(reg) GET_BITFIELD(reg, 8, 9)
  156. #define TAD_TGT3(reg) GET_BITFIELD(reg, 6, 7)
  157. #define TAD_TGT2(reg) GET_BITFIELD(reg, 4, 5)
  158. #define TAD_TGT1(reg) GET_BITFIELD(reg, 2, 3)
  159. #define TAD_TGT0(reg) GET_BITFIELD(reg, 0, 1)
  160. /* Device 15, function 0 */
  161. #define MCMTR 0x7c
  162. #define KNL_MCMTR 0x624
  163. #define IS_ECC_ENABLED(mcmtr) GET_BITFIELD(mcmtr, 2, 2)
  164. #define IS_LOCKSTEP_ENABLED(mcmtr) GET_BITFIELD(mcmtr, 1, 1)
  165. #define IS_CLOSE_PG(mcmtr) GET_BITFIELD(mcmtr, 0, 0)
  166. /* Device 15, function 1 */
  167. #define RASENABLES 0xac
  168. #define IS_MIRROR_ENABLED(reg) GET_BITFIELD(reg, 0, 0)
  169. /* Device 15, functions 2-5 */
  170. static const int mtr_regs[] = {
  171. 0x80, 0x84, 0x88,
  172. };
  173. static const int knl_mtr_reg = 0xb60;
  174. #define RANK_DISABLE(mtr) GET_BITFIELD(mtr, 16, 19)
  175. #define IS_DIMM_PRESENT(mtr) GET_BITFIELD(mtr, 14, 14)
  176. #define RANK_CNT_BITS(mtr) GET_BITFIELD(mtr, 12, 13)
  177. #define RANK_WIDTH_BITS(mtr) GET_BITFIELD(mtr, 2, 4)
  178. #define COL_WIDTH_BITS(mtr) GET_BITFIELD(mtr, 0, 1)
  179. static const u32 tad_ch_nilv_offset[] = {
  180. 0x90, 0x94, 0x98, 0x9c,
  181. 0xa0, 0xa4, 0xa8, 0xac,
  182. 0xb0, 0xb4, 0xb8, 0xbc,
  183. };
  184. #define CHN_IDX_OFFSET(reg) GET_BITFIELD(reg, 28, 29)
  185. #define TAD_OFFSET(reg) (GET_BITFIELD(reg, 6, 25) << 26)
  186. static const u32 rir_way_limit[] = {
  187. 0x108, 0x10c, 0x110, 0x114, 0x118,
  188. };
  189. #define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit)
  190. #define IS_RIR_VALID(reg) GET_BITFIELD(reg, 31, 31)
  191. #define RIR_WAY(reg) GET_BITFIELD(reg, 28, 29)
  192. #define MAX_RIR_WAY 8
  193. static const u32 rir_offset[MAX_RIR_RANGES][MAX_RIR_WAY] = {
  194. { 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c },
  195. { 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c },
  196. { 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c },
  197. { 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c },
  198. { 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc },
  199. };
  200. #define RIR_RNK_TGT(type, reg) (((type) == BROADWELL) ? \
  201. GET_BITFIELD(reg, 20, 23) : GET_BITFIELD(reg, 16, 19))
  202. #define RIR_OFFSET(type, reg) (((type) == HASWELL || (type) == BROADWELL) ? \
  203. GET_BITFIELD(reg, 2, 15) : GET_BITFIELD(reg, 2, 14))
  204. /* Device 16, functions 2-7 */
  205. /*
  206. * FIXME: Implement the error count reads directly
  207. */
  208. #define RANK_ODD_OV(reg) GET_BITFIELD(reg, 31, 31)
  209. #define RANK_ODD_ERR_CNT(reg) GET_BITFIELD(reg, 16, 30)
  210. #define RANK_EVEN_OV(reg) GET_BITFIELD(reg, 15, 15)
  211. #define RANK_EVEN_ERR_CNT(reg) GET_BITFIELD(reg, 0, 14)
  212. #if 0 /* Currently unused*/
  213. static const u32 correrrcnt[] = {
  214. 0x104, 0x108, 0x10c, 0x110,
  215. };
  216. static const u32 correrrthrsld[] = {
  217. 0x11c, 0x120, 0x124, 0x128,
  218. };
  219. #endif
  220. #define RANK_ODD_ERR_THRSLD(reg) GET_BITFIELD(reg, 16, 30)
  221. #define RANK_EVEN_ERR_THRSLD(reg) GET_BITFIELD(reg, 0, 14)
  222. /* Device 17, function 0 */
  223. #define SB_RANK_CFG_A 0x0328
  224. #define IB_RANK_CFG_A 0x0320
  225. /*
  226. * sbridge structs
  227. */
  228. #define NUM_CHANNELS 6 /* Max channels per MC */
  229. #define MAX_DIMMS 3 /* Max DIMMS per channel */
  230. #define KNL_MAX_CHAS 38 /* KNL max num. of Cache Home Agents */
  231. #define KNL_MAX_CHANNELS 6 /* KNL max num. of PCI channels */
  232. #define KNL_MAX_EDCS 8 /* Embedded DRAM controllers */
  233. #define CHANNEL_UNSPECIFIED 0xf /* Intel IA32 SDM 15-14 */
  234. enum type {
  235. SANDY_BRIDGE,
  236. IVY_BRIDGE,
  237. HASWELL,
  238. BROADWELL,
  239. KNIGHTS_LANDING,
  240. };
  241. enum domain {
  242. IMC0 = 0,
  243. IMC1,
  244. SOCK,
  245. };
  246. enum mirroring_mode {
  247. NON_MIRRORING,
  248. ADDR_RANGE_MIRRORING,
  249. FULL_MIRRORING,
  250. };
  251. struct sbridge_pvt;
  252. struct sbridge_info {
  253. enum type type;
  254. u32 mcmtr;
  255. u32 rankcfgr;
  256. u64 (*get_tolm)(struct sbridge_pvt *pvt);
  257. u64 (*get_tohm)(struct sbridge_pvt *pvt);
  258. u64 (*rir_limit)(u32 reg);
  259. u64 (*sad_limit)(u32 reg);
  260. u32 (*interleave_mode)(u32 reg);
  261. u32 (*dram_attr)(u32 reg);
  262. const u32 *dram_rule;
  263. const u32 *interleave_list;
  264. const struct interleave_pkg *interleave_pkg;
  265. u8 max_sad;
  266. u8 (*get_node_id)(struct sbridge_pvt *pvt);
  267. u8 (*get_ha)(u8 bank);
  268. enum mem_type (*get_memory_type)(struct sbridge_pvt *pvt);
  269. enum dev_type (*get_width)(struct sbridge_pvt *pvt, u32 mtr);
  270. struct pci_dev *pci_vtd;
  271. };
  272. struct sbridge_channel {
  273. u32 ranks;
  274. u32 dimms;
  275. struct dimm {
  276. u32 rowbits;
  277. u32 colbits;
  278. u32 bank_xor_enable;
  279. u32 amap_fine;
  280. } dimm[MAX_DIMMS];
  281. };
  282. struct pci_id_descr {
  283. int dev_id;
  284. int optional;
  285. enum domain dom;
  286. };
  287. struct pci_id_table {
  288. const struct pci_id_descr *descr;
  289. int n_devs_per_imc;
  290. int n_devs_per_sock;
  291. int n_imcs_per_sock;
  292. enum type type;
  293. };
  294. struct sbridge_dev {
  295. struct list_head list;
  296. int seg;
  297. u8 bus, mc;
  298. u8 node_id, source_id;
  299. struct pci_dev **pdev;
  300. enum domain dom;
  301. int n_devs;
  302. int i_devs;
  303. struct mem_ctl_info *mci;
  304. };
  305. struct knl_pvt {
  306. struct pci_dev *pci_cha[KNL_MAX_CHAS];
  307. struct pci_dev *pci_channel[KNL_MAX_CHANNELS];
  308. struct pci_dev *pci_mc0;
  309. struct pci_dev *pci_mc1;
  310. struct pci_dev *pci_mc0_misc;
  311. struct pci_dev *pci_mc1_misc;
  312. struct pci_dev *pci_mc_info; /* tolm, tohm */
  313. };
  314. struct sbridge_pvt {
  315. /* Devices per socket */
  316. struct pci_dev *pci_ddrio;
  317. struct pci_dev *pci_sad0, *pci_sad1;
  318. struct pci_dev *pci_br0, *pci_br1;
  319. /* Devices per memory controller */
  320. struct pci_dev *pci_ha, *pci_ta, *pci_ras;
  321. struct pci_dev *pci_tad[NUM_CHANNELS];
  322. struct sbridge_dev *sbridge_dev;
  323. struct sbridge_info info;
  324. struct sbridge_channel channel[NUM_CHANNELS];
  325. /* Memory type detection */
  326. bool is_cur_addr_mirrored, is_lockstep, is_close_pg;
  327. bool is_chan_hash;
  328. enum mirroring_mode mirror_mode;
  329. /* Memory description */
  330. u64 tolm, tohm;
  331. struct knl_pvt knl;
  332. };
  333. #define PCI_DESCR(device_id, opt, domain) \
  334. .dev_id = (device_id), \
  335. .optional = opt, \
  336. .dom = domain
  337. static const struct pci_id_descr pci_dev_descr_sbridge[] = {
  338. /* Processor Home Agent */
  339. { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0, 0, IMC0) },
  340. /* Memory controller */
  341. { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA, 0, IMC0) },
  342. { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS, 0, IMC0) },
  343. { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0, 0, IMC0) },
  344. { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1, 0, IMC0) },
  345. { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2, 0, IMC0) },
  346. { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3, 0, IMC0) },
  347. { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO, 1, SOCK) },
  348. /* System Address Decoder */
  349. { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0, 0, SOCK) },
  350. { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1, 0, SOCK) },
  351. /* Broadcast Registers */
  352. { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_BR, 0, SOCK) },
  353. };
  354. #define PCI_ID_TABLE_ENTRY(A, N, M, T) { \
  355. .descr = A, \
  356. .n_devs_per_imc = N, \
  357. .n_devs_per_sock = ARRAY_SIZE(A), \
  358. .n_imcs_per_sock = M, \
  359. .type = T \
  360. }
  361. static const struct pci_id_table pci_dev_descr_sbridge_table[] = {
  362. PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge, ARRAY_SIZE(pci_dev_descr_sbridge), 1, SANDY_BRIDGE),
  363. {0,} /* 0 terminated list. */
  364. };
  365. /* This changes depending if 1HA or 2HA:
  366. * 1HA:
  367. * 0x0eb8 (17.0) is DDRIO0
  368. * 2HA:
  369. * 0x0ebc (17.4) is DDRIO0
  370. */
  371. #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0 0x0eb8
  372. #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0 0x0ebc
  373. /* pci ids */
  374. #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0 0x0ea0
  375. #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA 0x0ea8
  376. #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS 0x0e71
  377. #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0 0x0eaa
  378. #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1 0x0eab
  379. #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2 0x0eac
  380. #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3 0x0ead
  381. #define PCI_DEVICE_ID_INTEL_IBRIDGE_SAD 0x0ec8
  382. #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR0 0x0ec9
  383. #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR1 0x0eca
  384. #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1 0x0e60
  385. #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA 0x0e68
  386. #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS 0x0e79
  387. #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0 0x0e6a
  388. #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1 0x0e6b
  389. #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2 0x0e6c
  390. #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3 0x0e6d
  391. static const struct pci_id_descr pci_dev_descr_ibridge[] = {
  392. /* Processor Home Agent */
  393. { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0, 0, IMC0) },
  394. { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1, 1, IMC1) },
  395. /* Memory controller */
  396. { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA, 0, IMC0) },
  397. { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS, 0, IMC0) },
  398. { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0, 0, IMC0) },
  399. { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1, 0, IMC0) },
  400. { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2, 0, IMC0) },
  401. { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3, 0, IMC0) },
  402. /* Optional, mode 2HA */
  403. { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA, 1, IMC1) },
  404. { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS, 1, IMC1) },
  405. { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0, 1, IMC1) },
  406. { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1, 1, IMC1) },
  407. { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2, 1, IMC1) },
  408. { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3, 1, IMC1) },
  409. { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0, 1, SOCK) },
  410. { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0, 1, SOCK) },
  411. /* System Address Decoder */
  412. { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_SAD, 0, SOCK) },
  413. /* Broadcast Registers */
  414. { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR0, 1, SOCK) },
  415. { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR1, 0, SOCK) },
  416. };
  417. static const struct pci_id_table pci_dev_descr_ibridge_table[] = {
  418. PCI_ID_TABLE_ENTRY(pci_dev_descr_ibridge, 12, 2, IVY_BRIDGE),
  419. {0,} /* 0 terminated list. */
  420. };
  421. /* Haswell support */
  422. /* EN processor:
  423. * - 1 IMC
  424. * - 3 DDR3 channels, 2 DPC per channel
  425. * EP processor:
  426. * - 1 or 2 IMC
  427. * - 4 DDR4 channels, 3 DPC per channel
  428. * EP 4S processor:
  429. * - 2 IMC
  430. * - 4 DDR4 channels, 3 DPC per channel
  431. * EX processor:
  432. * - 2 IMC
  433. * - each IMC interfaces with a SMI 2 channel
  434. * - each SMI channel interfaces with a scalable memory buffer
  435. * - each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
  436. */
  437. #define HASWELL_DDRCRCLKCONTROLS 0xa10 /* Ditto on Broadwell */
  438. #define HASWELL_HASYSDEFEATURE2 0x84
  439. #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC 0x2f28
  440. #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0 0x2fa0
  441. #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1 0x2f60
  442. #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA 0x2fa8
  443. #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM 0x2f71
  444. #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA 0x2f68
  445. #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM 0x2f79
  446. #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0 0x2ffc
  447. #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1 0x2ffd
  448. #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0 0x2faa
  449. #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1 0x2fab
  450. #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2 0x2fac
  451. #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3 0x2fad
  452. #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0 0x2f6a
  453. #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1 0x2f6b
  454. #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2 0x2f6c
  455. #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3 0x2f6d
  456. #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0 0x2fbd
  457. #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1 0x2fbf
  458. #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2 0x2fb9
  459. #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3 0x2fbb
  460. static const struct pci_id_descr pci_dev_descr_haswell[] = {
  461. /* first item must be the HA */
  462. { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0, 0, IMC0) },
  463. { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1, 1, IMC1) },
  464. { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA, 0, IMC0) },
  465. { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM, 0, IMC0) },
  466. { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0, 0, IMC0) },
  467. { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1, 0, IMC0) },
  468. { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2, 1, IMC0) },
  469. { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3, 1, IMC0) },
  470. { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA, 1, IMC1) },
  471. { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM, 1, IMC1) },
  472. { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0, 1, IMC1) },
  473. { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1, 1, IMC1) },
  474. { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2, 1, IMC1) },
  475. { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3, 1, IMC1) },
  476. { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0, 0, SOCK) },
  477. { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1, 0, SOCK) },
  478. { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0, 1, SOCK) },
  479. { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1, 1, SOCK) },
  480. { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2, 1, SOCK) },
  481. { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3, 1, SOCK) },
  482. };
  483. static const struct pci_id_table pci_dev_descr_haswell_table[] = {
  484. PCI_ID_TABLE_ENTRY(pci_dev_descr_haswell, 13, 2, HASWELL),
  485. {0,} /* 0 terminated list. */
  486. };
  487. /* Knight's Landing Support */
  488. /*
  489. * KNL's memory channels are swizzled between memory controllers.
  490. * MC0 is mapped to CH3,4,5 and MC1 is mapped to CH0,1,2
  491. */
  492. #define knl_channel_remap(mc, chan) ((mc) ? (chan) : (chan) + 3)
  493. /* Memory controller, TAD tables, error injection - 2-8-0, 2-9-0 (2 of these) */
  494. #define PCI_DEVICE_ID_INTEL_KNL_IMC_MC 0x7840
  495. /* DRAM channel stuff; bank addrs, dimmmtr, etc.. 2-8-2 - 2-9-4 (6 of these) */
  496. #define PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN 0x7843
  497. /* kdrwdbu TAD limits/offsets, MCMTR - 2-10-1, 2-11-1 (2 of these) */
  498. #define PCI_DEVICE_ID_INTEL_KNL_IMC_TA 0x7844
  499. /* CHA broadcast registers, dram rules - 1-29-0 (1 of these) */
  500. #define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0 0x782a
  501. /* SAD target - 1-29-1 (1 of these) */
  502. #define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1 0x782b
  503. /* Caching / Home Agent */
  504. #define PCI_DEVICE_ID_INTEL_KNL_IMC_CHA 0x782c
  505. /* Device with TOLM and TOHM, 0-5-0 (1 of these) */
  506. #define PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM 0x7810
  507. /*
  508. * KNL differs from SB, IB, and Haswell in that it has multiple
  509. * instances of the same device with the same device ID, so we handle that
  510. * by creating as many copies in the table as we expect to find.
  511. * (Like device ID must be grouped together.)
  512. */
  513. static const struct pci_id_descr pci_dev_descr_knl[] = {
  514. [0 ... 1] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_MC, 0, IMC0)},
  515. [2 ... 7] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN, 0, IMC0) },
  516. [8] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TA, 0, IMC0) },
  517. [9] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM, 0, IMC0) },
  518. [10] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0, 0, SOCK) },
  519. [11] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1, 0, SOCK) },
  520. [12 ... 49] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHA, 0, SOCK) },
  521. };
  522. static const struct pci_id_table pci_dev_descr_knl_table[] = {
  523. PCI_ID_TABLE_ENTRY(pci_dev_descr_knl, ARRAY_SIZE(pci_dev_descr_knl), 1, KNIGHTS_LANDING),
  524. {0,}
  525. };
  526. /*
  527. * Broadwell support
  528. *
  529. * DE processor:
  530. * - 1 IMC
  531. * - 2 DDR3 channels, 2 DPC per channel
  532. * EP processor:
  533. * - 1 or 2 IMC
  534. * - 4 DDR4 channels, 3 DPC per channel
  535. * EP 4S processor:
  536. * - 2 IMC
  537. * - 4 DDR4 channels, 3 DPC per channel
  538. * EX processor:
  539. * - 2 IMC
  540. * - each IMC interfaces with a SMI 2 channel
  541. * - each SMI channel interfaces with a scalable memory buffer
  542. * - each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
  543. */
  544. #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC 0x6f28
  545. #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0 0x6fa0
  546. #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1 0x6f60
  547. #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA 0x6fa8
  548. #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM 0x6f71
  549. #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA 0x6f68
  550. #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM 0x6f79
  551. #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0 0x6ffc
  552. #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1 0x6ffd
  553. #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0 0x6faa
  554. #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1 0x6fab
  555. #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2 0x6fac
  556. #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3 0x6fad
  557. #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0 0x6f6a
  558. #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1 0x6f6b
  559. #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2 0x6f6c
  560. #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3 0x6f6d
  561. #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0 0x6faf
  562. static const struct pci_id_descr pci_dev_descr_broadwell[] = {
  563. /* first item must be the HA */
  564. { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0, 0, IMC0) },
  565. { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1, 1, IMC1) },
  566. { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA, 0, IMC0) },
  567. { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM, 0, IMC0) },
  568. { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0, 0, IMC0) },
  569. { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1, 0, IMC0) },
  570. { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2, 1, IMC0) },
  571. { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3, 1, IMC0) },
  572. { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA, 1, IMC1) },
  573. { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM, 1, IMC1) },
  574. { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0, 1, IMC1) },
  575. { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1, 1, IMC1) },
  576. { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2, 1, IMC1) },
  577. { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3, 1, IMC1) },
  578. { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0, 0, SOCK) },
  579. { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1, 0, SOCK) },
  580. { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0, 1, SOCK) },
  581. };
  582. static const struct pci_id_table pci_dev_descr_broadwell_table[] = {
  583. PCI_ID_TABLE_ENTRY(pci_dev_descr_broadwell, 10, 2, BROADWELL),
  584. {0,} /* 0 terminated list. */
  585. };
  586. /****************************************************************************
  587. Ancillary status routines
  588. ****************************************************************************/
  589. static inline int numrank(enum type type, u32 mtr)
  590. {
  591. int ranks = (1 << RANK_CNT_BITS(mtr));
  592. int max = 4;
  593. if (type == HASWELL || type == BROADWELL || type == KNIGHTS_LANDING)
  594. max = 8;
  595. if (ranks > max) {
  596. edac_dbg(0, "Invalid number of ranks: %d (max = %i) raw value = %x (%04x)\n",
  597. ranks, max, (unsigned int)RANK_CNT_BITS(mtr), mtr);
  598. return -EINVAL;
  599. }
  600. return ranks;
  601. }
  602. static inline int numrow(u32 mtr)
  603. {
  604. int rows = (RANK_WIDTH_BITS(mtr) + 12);
  605. if (rows < 13 || rows > 18) {
  606. edac_dbg(0, "Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)\n",
  607. rows, (unsigned int)RANK_WIDTH_BITS(mtr), mtr);
  608. return -EINVAL;
  609. }
  610. return 1 << rows;
  611. }
  612. static inline int numcol(u32 mtr)
  613. {
  614. int cols = (COL_WIDTH_BITS(mtr) + 10);
  615. if (cols > 12) {
  616. edac_dbg(0, "Invalid number of cols: %d (max = 4) raw value = %x (%04x)\n",
  617. cols, (unsigned int)COL_WIDTH_BITS(mtr), mtr);
  618. return -EINVAL;
  619. }
  620. return 1 << cols;
  621. }
  622. static struct sbridge_dev *get_sbridge_dev(int seg, u8 bus, enum domain dom,
  623. int multi_bus,
  624. struct sbridge_dev *prev)
  625. {
  626. struct sbridge_dev *sbridge_dev;
  627. /*
  628. * If we have devices scattered across several busses that pertain
  629. * to the same memory controller, we'll lump them all together.
  630. */
  631. if (multi_bus) {
  632. return list_first_entry_or_null(&sbridge_edac_list,
  633. struct sbridge_dev, list);
  634. }
  635. sbridge_dev = list_entry(prev ? prev->list.next
  636. : sbridge_edac_list.next, struct sbridge_dev, list);
  637. list_for_each_entry_from(sbridge_dev, &sbridge_edac_list, list) {
  638. if ((sbridge_dev->seg == seg) && (sbridge_dev->bus == bus) &&
  639. (dom == SOCK || dom == sbridge_dev->dom))
  640. return sbridge_dev;
  641. }
  642. return NULL;
  643. }
  644. static struct sbridge_dev *alloc_sbridge_dev(int seg, u8 bus, enum domain dom,
  645. const struct pci_id_table *table)
  646. {
  647. struct sbridge_dev *sbridge_dev;
  648. sbridge_dev = kzalloc(sizeof(*sbridge_dev), GFP_KERNEL);
  649. if (!sbridge_dev)
  650. return NULL;
  651. sbridge_dev->pdev = kcalloc(table->n_devs_per_imc,
  652. sizeof(*sbridge_dev->pdev),
  653. GFP_KERNEL);
  654. if (!sbridge_dev->pdev) {
  655. kfree(sbridge_dev);
  656. return NULL;
  657. }
  658. sbridge_dev->seg = seg;
  659. sbridge_dev->bus = bus;
  660. sbridge_dev->dom = dom;
  661. sbridge_dev->n_devs = table->n_devs_per_imc;
  662. list_add_tail(&sbridge_dev->list, &sbridge_edac_list);
  663. return sbridge_dev;
  664. }
  665. static void free_sbridge_dev(struct sbridge_dev *sbridge_dev)
  666. {
  667. list_del(&sbridge_dev->list);
  668. kfree(sbridge_dev->pdev);
  669. kfree(sbridge_dev);
  670. }
  671. static u64 sbridge_get_tolm(struct sbridge_pvt *pvt)
  672. {
  673. u32 reg;
  674. /* Address range is 32:28 */
  675. pci_read_config_dword(pvt->pci_sad1, TOLM, &reg);
  676. return GET_TOLM(reg);
  677. }
  678. static u64 sbridge_get_tohm(struct sbridge_pvt *pvt)
  679. {
  680. u32 reg;
  681. pci_read_config_dword(pvt->pci_sad1, TOHM, &reg);
  682. return GET_TOHM(reg);
  683. }
  684. static u64 ibridge_get_tolm(struct sbridge_pvt *pvt)
  685. {
  686. u32 reg;
  687. pci_read_config_dword(pvt->pci_br1, TOLM, &reg);
  688. return GET_TOLM(reg);
  689. }
  690. static u64 ibridge_get_tohm(struct sbridge_pvt *pvt)
  691. {
  692. u32 reg;
  693. pci_read_config_dword(pvt->pci_br1, TOHM, &reg);
  694. return GET_TOHM(reg);
  695. }
  696. static u64 rir_limit(u32 reg)
  697. {
  698. return ((u64)GET_BITFIELD(reg, 1, 10) << 29) | 0x1fffffff;
  699. }
  700. static u64 sad_limit(u32 reg)
  701. {
  702. return (GET_BITFIELD(reg, 6, 25) << 26) | 0x3ffffff;
  703. }
  704. static u32 interleave_mode(u32 reg)
  705. {
  706. return GET_BITFIELD(reg, 1, 1);
  707. }
  708. static u32 dram_attr(u32 reg)
  709. {
  710. return GET_BITFIELD(reg, 2, 3);
  711. }
  712. static u64 knl_sad_limit(u32 reg)
  713. {
  714. return (GET_BITFIELD(reg, 7, 26) << 26) | 0x3ffffff;
  715. }
  716. static u32 knl_interleave_mode(u32 reg)
  717. {
  718. return GET_BITFIELD(reg, 1, 2);
  719. }
  720. static const char * const knl_intlv_mode[] = {
  721. "[8:6]", "[10:8]", "[14:12]", "[32:30]"
  722. };
  723. static const char *get_intlv_mode_str(u32 reg, enum type t)
  724. {
  725. if (t == KNIGHTS_LANDING)
  726. return knl_intlv_mode[knl_interleave_mode(reg)];
  727. else
  728. return interleave_mode(reg) ? "[8:6]" : "[8:6]XOR[18:16]";
  729. }
  730. static u32 dram_attr_knl(u32 reg)
  731. {
  732. return GET_BITFIELD(reg, 3, 4);
  733. }
  734. static enum mem_type get_memory_type(struct sbridge_pvt *pvt)
  735. {
  736. u32 reg;
  737. enum mem_type mtype;
  738. if (pvt->pci_ddrio) {
  739. pci_read_config_dword(pvt->pci_ddrio, pvt->info.rankcfgr,
  740. &reg);
  741. if (GET_BITFIELD(reg, 11, 11))
  742. /* FIXME: Can also be LRDIMM */
  743. mtype = MEM_RDDR3;
  744. else
  745. mtype = MEM_DDR3;
  746. } else
  747. mtype = MEM_UNKNOWN;
  748. return mtype;
  749. }
  750. static enum mem_type haswell_get_memory_type(struct sbridge_pvt *pvt)
  751. {
  752. u32 reg;
  753. bool registered = false;
  754. enum mem_type mtype = MEM_UNKNOWN;
  755. if (!pvt->pci_ddrio)
  756. goto out;
  757. pci_read_config_dword(pvt->pci_ddrio,
  758. HASWELL_DDRCRCLKCONTROLS, &reg);
  759. /* Is_Rdimm */
  760. if (GET_BITFIELD(reg, 16, 16))
  761. registered = true;
  762. pci_read_config_dword(pvt->pci_ta, MCMTR, &reg);
  763. if (GET_BITFIELD(reg, 14, 14)) {
  764. if (registered)
  765. mtype = MEM_RDDR4;
  766. else
  767. mtype = MEM_DDR4;
  768. } else {
  769. if (registered)
  770. mtype = MEM_RDDR3;
  771. else
  772. mtype = MEM_DDR3;
  773. }
  774. out:
  775. return mtype;
  776. }
  777. static enum dev_type knl_get_width(struct sbridge_pvt *pvt, u32 mtr)
  778. {
  779. /* for KNL value is fixed */
  780. return DEV_X16;
  781. }
  782. static enum dev_type sbridge_get_width(struct sbridge_pvt *pvt, u32 mtr)
  783. {
  784. /* there's no way to figure out */
  785. return DEV_UNKNOWN;
  786. }
  787. static enum dev_type __ibridge_get_width(u32 mtr)
  788. {
  789. enum dev_type type = DEV_UNKNOWN;
  790. switch (mtr) {
  791. case 2:
  792. type = DEV_X16;
  793. break;
  794. case 1:
  795. type = DEV_X8;
  796. break;
  797. case 0:
  798. type = DEV_X4;
  799. break;
  800. }
  801. return type;
  802. }
  803. static enum dev_type ibridge_get_width(struct sbridge_pvt *pvt, u32 mtr)
  804. {
  805. /*
  806. * ddr3_width on the documentation but also valid for DDR4 on
  807. * Haswell
  808. */
  809. return __ibridge_get_width(GET_BITFIELD(mtr, 7, 8));
  810. }
  811. static enum dev_type broadwell_get_width(struct sbridge_pvt *pvt, u32 mtr)
  812. {
  813. /* ddr3_width on the documentation but also valid for DDR4 */
  814. return __ibridge_get_width(GET_BITFIELD(mtr, 8, 9));
  815. }
  816. static enum mem_type knl_get_memory_type(struct sbridge_pvt *pvt)
  817. {
  818. /* DDR4 RDIMMS and LRDIMMS are supported */
  819. return MEM_RDDR4;
  820. }
  821. static u8 get_node_id(struct sbridge_pvt *pvt)
  822. {
  823. u32 reg;
  824. pci_read_config_dword(pvt->pci_br0, SAD_CONTROL, &reg);
  825. return GET_BITFIELD(reg, 0, 2);
  826. }
  827. static u8 haswell_get_node_id(struct sbridge_pvt *pvt)
  828. {
  829. u32 reg;
  830. pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, &reg);
  831. return GET_BITFIELD(reg, 0, 3);
  832. }
  833. static u8 knl_get_node_id(struct sbridge_pvt *pvt)
  834. {
  835. u32 reg;
  836. pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, &reg);
  837. return GET_BITFIELD(reg, 0, 2);
  838. }
  839. /*
  840. * Use the reporting bank number to determine which memory
  841. * controller (also known as "ha" for "home agent"). Sandy
  842. * Bridge only has one memory controller per socket, so the
  843. * answer is always zero.
  844. */
  845. static u8 sbridge_get_ha(u8 bank)
  846. {
  847. return 0;
  848. }
  849. /*
  850. * On Ivy Bridge, Haswell and Broadwell the error may be in a
  851. * home agent bank (7, 8), or one of the per-channel memory
  852. * controller banks (9 .. 16).
  853. */
  854. static u8 ibridge_get_ha(u8 bank)
  855. {
  856. switch (bank) {
  857. case 7 ... 8:
  858. return bank - 7;
  859. case 9 ... 16:
  860. return (bank - 9) / 4;
  861. default:
  862. return 0xff;
  863. }
  864. }
  865. /* Not used, but included for safety/symmetry */
  866. static u8 knl_get_ha(u8 bank)
  867. {
  868. return 0xff;
  869. }
  870. static u64 haswell_get_tolm(struct sbridge_pvt *pvt)
  871. {
  872. u32 reg;
  873. pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOLM, &reg);
  874. return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff;
  875. }
  876. static u64 haswell_get_tohm(struct sbridge_pvt *pvt)
  877. {
  878. u64 rc;
  879. u32 reg;
  880. pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_0, &reg);
  881. rc = GET_BITFIELD(reg, 26, 31);
  882. pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_1, &reg);
  883. rc = ((reg << 6) | rc) << 26;
  884. return rc | 0x3ffffff;
  885. }
  886. static u64 knl_get_tolm(struct sbridge_pvt *pvt)
  887. {
  888. u32 reg;
  889. pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOLM, &reg);
  890. return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff;
  891. }
  892. static u64 knl_get_tohm(struct sbridge_pvt *pvt)
  893. {
  894. u64 rc;
  895. u32 reg_lo, reg_hi;
  896. pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOHM_0, &reg_lo);
  897. pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOHM_1, &reg_hi);
  898. rc = ((u64)reg_hi << 32) | reg_lo;
  899. return rc | 0x3ffffff;
  900. }
  901. static u64 haswell_rir_limit(u32 reg)
  902. {
  903. return (((u64)GET_BITFIELD(reg, 1, 11) + 1) << 29) - 1;
  904. }
  905. static inline u8 sad_pkg_socket(u8 pkg)
  906. {
  907. /* on Ivy Bridge, nodeID is SASS, where A is HA and S is node id */
  908. return ((pkg >> 3) << 2) | (pkg & 0x3);
  909. }
  910. static inline u8 sad_pkg_ha(u8 pkg)
  911. {
  912. return (pkg >> 2) & 0x1;
  913. }
  914. static int haswell_chan_hash(int idx, u64 addr)
  915. {
  916. int i;
  917. /*
  918. * XOR even bits from 12:26 to bit0 of idx,
  919. * odd bits from 13:27 to bit1
  920. */
  921. for (i = 12; i < 28; i += 2)
  922. idx ^= (addr >> i) & 3;
  923. return idx;
  924. }
  925. /* Low bits of TAD limit, and some metadata. */
  926. static const u32 knl_tad_dram_limit_lo[] = {
  927. 0x400, 0x500, 0x600, 0x700,
  928. 0x800, 0x900, 0xa00, 0xb00,
  929. };
  930. /* Low bits of TAD offset. */
  931. static const u32 knl_tad_dram_offset_lo[] = {
  932. 0x404, 0x504, 0x604, 0x704,
  933. 0x804, 0x904, 0xa04, 0xb04,
  934. };
  935. /* High 16 bits of TAD limit and offset. */
  936. static const u32 knl_tad_dram_hi[] = {
  937. 0x408, 0x508, 0x608, 0x708,
  938. 0x808, 0x908, 0xa08, 0xb08,
  939. };
  940. /* Number of ways a tad entry is interleaved. */
  941. static const u32 knl_tad_ways[] = {
  942. 8, 6, 4, 3, 2, 1,
  943. };
  944. /*
  945. * Retrieve the n'th Target Address Decode table entry
  946. * from the memory controller's TAD table.
  947. *
  948. * @pvt: driver private data
  949. * @entry: which entry you want to retrieve
  950. * @mc: which memory controller (0 or 1)
  951. * @offset: output tad range offset
  952. * @limit: output address of first byte above tad range
  953. * @ways: output number of interleave ways
  954. *
  955. * The offset value has curious semantics. It's a sort of running total
  956. * of the sizes of all the memory regions that aren't mapped in this
  957. * tad table.
  958. */
  959. static int knl_get_tad(const struct sbridge_pvt *pvt,
  960. const int entry,
  961. const int mc,
  962. u64 *offset,
  963. u64 *limit,
  964. int *ways)
  965. {
  966. u32 reg_limit_lo, reg_offset_lo, reg_hi;
  967. struct pci_dev *pci_mc;
  968. int way_id;
  969. switch (mc) {
  970. case 0:
  971. pci_mc = pvt->knl.pci_mc0;
  972. break;
  973. case 1:
  974. pci_mc = pvt->knl.pci_mc1;
  975. break;
  976. default:
  977. WARN_ON(1);
  978. return -EINVAL;
  979. }
  980. pci_read_config_dword(pci_mc,
  981. knl_tad_dram_limit_lo[entry], &reg_limit_lo);
  982. pci_read_config_dword(pci_mc,
  983. knl_tad_dram_offset_lo[entry], &reg_offset_lo);
  984. pci_read_config_dword(pci_mc,
  985. knl_tad_dram_hi[entry], &reg_hi);
  986. /* Is this TAD entry enabled? */
  987. if (!GET_BITFIELD(reg_limit_lo, 0, 0))
  988. return -ENODEV;
  989. way_id = GET_BITFIELD(reg_limit_lo, 3, 5);
  990. if (way_id < ARRAY_SIZE(knl_tad_ways)) {
  991. *ways = knl_tad_ways[way_id];
  992. } else {
  993. *ways = 0;
  994. sbridge_printk(KERN_ERR,
  995. "Unexpected value %d in mc_tad_limit_lo wayness field\n",
  996. way_id);
  997. return -ENODEV;
  998. }
  999. /*
  1000. * The least significant 6 bits of base and limit are truncated.
  1001. * For limit, we fill the missing bits with 1s.
  1002. */
  1003. *offset = ((u64) GET_BITFIELD(reg_offset_lo, 6, 31) << 6) |
  1004. ((u64) GET_BITFIELD(reg_hi, 0, 15) << 32);
  1005. *limit = ((u64) GET_BITFIELD(reg_limit_lo, 6, 31) << 6) | 63 |
  1006. ((u64) GET_BITFIELD(reg_hi, 16, 31) << 32);
  1007. return 0;
  1008. }
  1009. /* Determine which memory controller is responsible for a given channel. */
  1010. static int knl_channel_mc(int channel)
  1011. {
  1012. WARN_ON(channel < 0 || channel >= 6);
  1013. return channel < 3 ? 1 : 0;
  1014. }
  1015. /*
  1016. * Get the Nth entry from EDC_ROUTE_TABLE register.
  1017. * (This is the per-tile mapping of logical interleave targets to
  1018. * physical EDC modules.)
  1019. *
  1020. * entry 0: 0:2
  1021. * 1: 3:5
  1022. * 2: 6:8
  1023. * 3: 9:11
  1024. * 4: 12:14
  1025. * 5: 15:17
  1026. * 6: 18:20
  1027. * 7: 21:23
  1028. * reserved: 24:31
  1029. */
  1030. static u32 knl_get_edc_route(int entry, u32 reg)
  1031. {
  1032. WARN_ON(entry >= KNL_MAX_EDCS);
  1033. return GET_BITFIELD(reg, entry*3, (entry*3)+2);
  1034. }
  1035. /*
  1036. * Get the Nth entry from MC_ROUTE_TABLE register.
  1037. * (This is the per-tile mapping of logical interleave targets to
  1038. * physical DRAM channels modules.)
  1039. *
  1040. * entry 0: mc 0:2 channel 18:19
  1041. * 1: mc 3:5 channel 20:21
  1042. * 2: mc 6:8 channel 22:23
  1043. * 3: mc 9:11 channel 24:25
  1044. * 4: mc 12:14 channel 26:27
  1045. * 5: mc 15:17 channel 28:29
  1046. * reserved: 30:31
  1047. *
  1048. * Though we have 3 bits to identify the MC, we should only see
  1049. * the values 0 or 1.
  1050. */
  1051. static u32 knl_get_mc_route(int entry, u32 reg)
  1052. {
  1053. int mc, chan;
  1054. WARN_ON(entry >= KNL_MAX_CHANNELS);
  1055. mc = GET_BITFIELD(reg, entry*3, (entry*3)+2);
  1056. chan = GET_BITFIELD(reg, (entry*2) + 18, (entry*2) + 18 + 1);
  1057. return knl_channel_remap(mc, chan);
  1058. }
  1059. /*
  1060. * Render the EDC_ROUTE register in human-readable form.
  1061. * Output string s should be at least KNL_MAX_EDCS*2 bytes.
  1062. */
  1063. static void knl_show_edc_route(u32 reg, char *s)
  1064. {
  1065. int i;
  1066. for (i = 0; i < KNL_MAX_EDCS; i++) {
  1067. s[i*2] = knl_get_edc_route(i, reg) + '0';
  1068. s[i*2+1] = '-';
  1069. }
  1070. s[KNL_MAX_EDCS*2 - 1] = '\0';
  1071. }
  1072. /*
  1073. * Render the MC_ROUTE register in human-readable form.
  1074. * Output string s should be at least KNL_MAX_CHANNELS*2 bytes.
  1075. */
  1076. static void knl_show_mc_route(u32 reg, char *s)
  1077. {
  1078. int i;
  1079. for (i = 0; i < KNL_MAX_CHANNELS; i++) {
  1080. s[i*2] = knl_get_mc_route(i, reg) + '0';
  1081. s[i*2+1] = '-';
  1082. }
  1083. s[KNL_MAX_CHANNELS*2 - 1] = '\0';
  1084. }
  1085. #define KNL_EDC_ROUTE 0xb8
  1086. #define KNL_MC_ROUTE 0xb4
  1087. /* Is this dram rule backed by regular DRAM in flat mode? */
  1088. #define KNL_EDRAM(reg) GET_BITFIELD(reg, 29, 29)
  1089. /* Is this dram rule cached? */
  1090. #define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28)
  1091. /* Is this rule backed by edc ? */
  1092. #define KNL_EDRAM_ONLY(reg) GET_BITFIELD(reg, 29, 29)
  1093. /* Is this rule backed by DRAM, cacheable in EDRAM? */
  1094. #define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28)
  1095. /* Is this rule mod3? */
  1096. #define KNL_MOD3(reg) GET_BITFIELD(reg, 27, 27)
  1097. /*
  1098. * Figure out how big our RAM modules are.
  1099. *
  1100. * The DIMMMTR register in KNL doesn't tell us the size of the DIMMs, so we
  1101. * have to figure this out from the SAD rules, interleave lists, route tables,
  1102. * and TAD rules.
  1103. *
  1104. * SAD rules can have holes in them (e.g. the 3G-4G hole), so we have to
  1105. * inspect the TAD rules to figure out how large the SAD regions really are.
  1106. *
  1107. * When we know the real size of a SAD region and how many ways it's
  1108. * interleaved, we know the individual contribution of each channel to
  1109. * TAD is size/ways.
  1110. *
  1111. * Finally, we have to check whether each channel participates in each SAD
  1112. * region.
  1113. *
  1114. * Fortunately, KNL only supports one DIMM per channel, so once we know how
  1115. * much memory the channel uses, we know the DIMM is at least that large.
  1116. * (The BIOS might possibly choose not to map all available memory, in which
  1117. * case we will underreport the size of the DIMM.)
  1118. *
  1119. * In theory, we could try to determine the EDC sizes as well, but that would
  1120. * only work in flat mode, not in cache mode.
  1121. *
  1122. * @mc_sizes: Output sizes of channels (must have space for KNL_MAX_CHANNELS
  1123. * elements)
  1124. */
  1125. static int knl_get_dimm_capacity(struct sbridge_pvt *pvt, u64 *mc_sizes)
  1126. {
  1127. u64 sad_base, sad_limit = 0;
  1128. u64 tad_base, tad_size, tad_limit, tad_deadspace, tad_livespace;
  1129. int sad_rule = 0;
  1130. int tad_rule = 0;
  1131. int intrlv_ways, tad_ways;
  1132. u32 first_pkg, pkg;
  1133. int i;
  1134. u64 sad_actual_size[2]; /* sad size accounting for holes, per mc */
  1135. u32 dram_rule, interleave_reg;
  1136. u32 mc_route_reg[KNL_MAX_CHAS];
  1137. u32 edc_route_reg[KNL_MAX_CHAS];
  1138. int edram_only;
  1139. char edc_route_string[KNL_MAX_EDCS*2];
  1140. char mc_route_string[KNL_MAX_CHANNELS*2];
  1141. int cur_reg_start;
  1142. int mc;
  1143. int channel;
  1144. int participants[KNL_MAX_CHANNELS];
  1145. for (i = 0; i < KNL_MAX_CHANNELS; i++)
  1146. mc_sizes[i] = 0;
  1147. /* Read the EDC route table in each CHA. */
  1148. cur_reg_start = 0;
  1149. for (i = 0; i < KNL_MAX_CHAS; i++) {
  1150. pci_read_config_dword(pvt->knl.pci_cha[i],
  1151. KNL_EDC_ROUTE, &edc_route_reg[i]);
  1152. if (i > 0 && edc_route_reg[i] != edc_route_reg[i-1]) {
  1153. knl_show_edc_route(edc_route_reg[i-1],
  1154. edc_route_string);
  1155. if (cur_reg_start == i-1)
  1156. edac_dbg(0, "edc route table for CHA %d: %s\n",
  1157. cur_reg_start, edc_route_string);
  1158. else
  1159. edac_dbg(0, "edc route table for CHA %d-%d: %s\n",
  1160. cur_reg_start, i-1, edc_route_string);
  1161. cur_reg_start = i;
  1162. }
  1163. }
  1164. knl_show_edc_route(edc_route_reg[i-1], edc_route_string);
  1165. if (cur_reg_start == i-1)
  1166. edac_dbg(0, "edc route table for CHA %d: %s\n",
  1167. cur_reg_start, edc_route_string);
  1168. else
  1169. edac_dbg(0, "edc route table for CHA %d-%d: %s\n",
  1170. cur_reg_start, i-1, edc_route_string);
  1171. /* Read the MC route table in each CHA. */
  1172. cur_reg_start = 0;
  1173. for (i = 0; i < KNL_MAX_CHAS; i++) {
  1174. pci_read_config_dword(pvt->knl.pci_cha[i],
  1175. KNL_MC_ROUTE, &mc_route_reg[i]);
  1176. if (i > 0 && mc_route_reg[i] != mc_route_reg[i-1]) {
  1177. knl_show_mc_route(mc_route_reg[i-1], mc_route_string);
  1178. if (cur_reg_start == i-1)
  1179. edac_dbg(0, "mc route table for CHA %d: %s\n",
  1180. cur_reg_start, mc_route_string);
  1181. else
  1182. edac_dbg(0, "mc route table for CHA %d-%d: %s\n",
  1183. cur_reg_start, i-1, mc_route_string);
  1184. cur_reg_start = i;
  1185. }
  1186. }
  1187. knl_show_mc_route(mc_route_reg[i-1], mc_route_string);
  1188. if (cur_reg_start == i-1)
  1189. edac_dbg(0, "mc route table for CHA %d: %s\n",
  1190. cur_reg_start, mc_route_string);
  1191. else
  1192. edac_dbg(0, "mc route table for CHA %d-%d: %s\n",
  1193. cur_reg_start, i-1, mc_route_string);
  1194. /* Process DRAM rules */
  1195. for (sad_rule = 0; sad_rule < pvt->info.max_sad; sad_rule++) {
  1196. /* previous limit becomes the new base */
  1197. sad_base = sad_limit;
  1198. pci_read_config_dword(pvt->pci_sad0,
  1199. pvt->info.dram_rule[sad_rule], &dram_rule);
  1200. if (!DRAM_RULE_ENABLE(dram_rule))
  1201. break;
  1202. edram_only = KNL_EDRAM_ONLY(dram_rule);
  1203. sad_limit = pvt->info.sad_limit(dram_rule)+1;
  1204. pci_read_config_dword(pvt->pci_sad0,
  1205. pvt->info.interleave_list[sad_rule], &interleave_reg);
  1206. /*
  1207. * Find out how many ways this dram rule is interleaved.
  1208. * We stop when we see the first channel again.
  1209. */
  1210. first_pkg = sad_pkg(pvt->info.interleave_pkg,
  1211. interleave_reg, 0);
  1212. for (intrlv_ways = 1; intrlv_ways < 8; intrlv_ways++) {
  1213. pkg = sad_pkg(pvt->info.interleave_pkg,
  1214. interleave_reg, intrlv_ways);
  1215. if ((pkg & 0x8) == 0) {
  1216. /*
  1217. * 0 bit means memory is non-local,
  1218. * which KNL doesn't support
  1219. */
  1220. edac_dbg(0, "Unexpected interleave target %d\n",
  1221. pkg);
  1222. return -1;
  1223. }
  1224. if (pkg == first_pkg)
  1225. break;
  1226. }
  1227. if (KNL_MOD3(dram_rule))
  1228. intrlv_ways *= 3;
  1229. edac_dbg(3, "dram rule %d (base 0x%llx, limit 0x%llx), %d way interleave%s\n",
  1230. sad_rule,
  1231. sad_base,
  1232. sad_limit,
  1233. intrlv_ways,
  1234. edram_only ? ", EDRAM" : "");
  1235. /*
  1236. * Find out how big the SAD region really is by iterating
  1237. * over TAD tables (SAD regions may contain holes).
  1238. * Each memory controller might have a different TAD table, so
  1239. * we have to look at both.
  1240. *
  1241. * Livespace is the memory that's mapped in this TAD table,
  1242. * deadspace is the holes (this could be the MMIO hole, or it
  1243. * could be memory that's mapped by the other TAD table but
  1244. * not this one).
  1245. */
  1246. for (mc = 0; mc < 2; mc++) {
  1247. sad_actual_size[mc] = 0;
  1248. tad_livespace = 0;
  1249. for (tad_rule = 0;
  1250. tad_rule < ARRAY_SIZE(
  1251. knl_tad_dram_limit_lo);
  1252. tad_rule++) {
  1253. if (knl_get_tad(pvt,
  1254. tad_rule,
  1255. mc,
  1256. &tad_deadspace,
  1257. &tad_limit,
  1258. &tad_ways))
  1259. break;
  1260. tad_size = (tad_limit+1) -
  1261. (tad_livespace + tad_deadspace);
  1262. tad_livespace += tad_size;
  1263. tad_base = (tad_limit+1) - tad_size;
  1264. if (tad_base < sad_base) {
  1265. if (tad_limit > sad_base)
  1266. edac_dbg(0, "TAD region overlaps lower SAD boundary -- TAD tables may be configured incorrectly.\n");
  1267. } else if (tad_base < sad_limit) {
  1268. if (tad_limit+1 > sad_limit) {
  1269. edac_dbg(0, "TAD region overlaps upper SAD boundary -- TAD tables may be configured incorrectly.\n");
  1270. } else {
  1271. /* TAD region is completely inside SAD region */
  1272. edac_dbg(3, "TAD region %d 0x%llx - 0x%llx (%lld bytes) table%d\n",
  1273. tad_rule, tad_base,
  1274. tad_limit, tad_size,
  1275. mc);
  1276. sad_actual_size[mc] += tad_size;
  1277. }
  1278. }
  1279. }
  1280. }
  1281. for (mc = 0; mc < 2; mc++) {
  1282. edac_dbg(3, " total TAD DRAM footprint in table%d : 0x%llx (%lld bytes)\n",
  1283. mc, sad_actual_size[mc], sad_actual_size[mc]);
  1284. }
  1285. /* Ignore EDRAM rule */
  1286. if (edram_only)
  1287. continue;
  1288. /* Figure out which channels participate in interleave. */
  1289. for (channel = 0; channel < KNL_MAX_CHANNELS; channel++)
  1290. participants[channel] = 0;
  1291. /* For each channel, does at least one CHA have
  1292. * this channel mapped to the given target?
  1293. */
  1294. for (channel = 0; channel < KNL_MAX_CHANNELS; channel++) {
  1295. int target;
  1296. int cha;
  1297. for (target = 0; target < KNL_MAX_CHANNELS; target++) {
  1298. for (cha = 0; cha < KNL_MAX_CHAS; cha++) {
  1299. if (knl_get_mc_route(target,
  1300. mc_route_reg[cha]) == channel
  1301. && !participants[channel]) {
  1302. participants[channel] = 1;
  1303. break;
  1304. }
  1305. }
  1306. }
  1307. }
  1308. for (channel = 0; channel < KNL_MAX_CHANNELS; channel++) {
  1309. mc = knl_channel_mc(channel);
  1310. if (participants[channel]) {
  1311. edac_dbg(4, "mc channel %d contributes %lld bytes via sad entry %d\n",
  1312. channel,
  1313. sad_actual_size[mc]/intrlv_ways,
  1314. sad_rule);
  1315. mc_sizes[channel] +=
  1316. sad_actual_size[mc]/intrlv_ways;
  1317. }
  1318. }
  1319. }
  1320. return 0;
  1321. }
  1322. static void get_source_id(struct mem_ctl_info *mci)
  1323. {
  1324. struct sbridge_pvt *pvt = mci->pvt_info;
  1325. u32 reg;
  1326. if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL ||
  1327. pvt->info.type == KNIGHTS_LANDING)
  1328. pci_read_config_dword(pvt->pci_sad1, SAD_TARGET, &reg);
  1329. else
  1330. pci_read_config_dword(pvt->pci_br0, SAD_TARGET, &reg);
  1331. if (pvt->info.type == KNIGHTS_LANDING)
  1332. pvt->sbridge_dev->source_id = SOURCE_ID_KNL(reg);
  1333. else
  1334. pvt->sbridge_dev->source_id = SOURCE_ID(reg);
  1335. }
  1336. static int __populate_dimms(struct mem_ctl_info *mci,
  1337. u64 knl_mc_sizes[KNL_MAX_CHANNELS],
  1338. enum edac_type mode)
  1339. {
  1340. struct sbridge_pvt *pvt = mci->pvt_info;
  1341. int channels = pvt->info.type == KNIGHTS_LANDING ? KNL_MAX_CHANNELS
  1342. : NUM_CHANNELS;
  1343. unsigned int i, j, banks, ranks, rows, cols, npages;
  1344. struct dimm_info *dimm;
  1345. enum mem_type mtype;
  1346. u64 size;
  1347. mtype = pvt->info.get_memory_type(pvt);
  1348. if (mtype == MEM_RDDR3 || mtype == MEM_RDDR4)
  1349. edac_dbg(0, "Memory is registered\n");
  1350. else if (mtype == MEM_UNKNOWN)
  1351. edac_dbg(0, "Cannot determine memory type\n");
  1352. else
  1353. edac_dbg(0, "Memory is unregistered\n");
  1354. if (mtype == MEM_DDR4 || mtype == MEM_RDDR4)
  1355. banks = 16;
  1356. else
  1357. banks = 8;
  1358. for (i = 0; i < channels; i++) {
  1359. u32 mtr, amap = 0;
  1360. int max_dimms_per_channel;
  1361. if (pvt->info.type == KNIGHTS_LANDING) {
  1362. max_dimms_per_channel = 1;
  1363. if (!pvt->knl.pci_channel[i])
  1364. continue;
  1365. } else {
  1366. max_dimms_per_channel = ARRAY_SIZE(mtr_regs);
  1367. if (!pvt->pci_tad[i])
  1368. continue;
  1369. pci_read_config_dword(pvt->pci_tad[i], 0x8c, &amap);
  1370. }
  1371. for (j = 0; j < max_dimms_per_channel; j++) {
  1372. dimm = edac_get_dimm(mci, i, j, 0);
  1373. if (pvt->info.type == KNIGHTS_LANDING) {
  1374. pci_read_config_dword(pvt->knl.pci_channel[i],
  1375. knl_mtr_reg, &mtr);
  1376. } else {
  1377. pci_read_config_dword(pvt->pci_tad[i],
  1378. mtr_regs[j], &mtr);
  1379. }
  1380. edac_dbg(4, "Channel #%d MTR%d = %x\n", i, j, mtr);
  1381. if (IS_DIMM_PRESENT(mtr)) {
  1382. if (!IS_ECC_ENABLED(pvt->info.mcmtr)) {
  1383. sbridge_printk(KERN_ERR, "CPU SrcID #%d, Ha #%d, Channel #%d has DIMMs, but ECC is disabled\n",
  1384. pvt->sbridge_dev->source_id,
  1385. pvt->sbridge_dev->dom, i);
  1386. return -ENODEV;
  1387. }
  1388. pvt->channel[i].dimms++;
  1389. ranks = numrank(pvt->info.type, mtr);
  1390. if (pvt->info.type == KNIGHTS_LANDING) {
  1391. /* For DDR4, this is fixed. */
  1392. cols = 1 << 10;
  1393. rows = knl_mc_sizes[i] /
  1394. ((u64) cols * ranks * banks * 8);
  1395. } else {
  1396. rows = numrow(mtr);
  1397. cols = numcol(mtr);
  1398. }
  1399. size = ((u64)rows * cols * banks * ranks) >> (20 - 3);
  1400. npages = MiB_TO_PAGES(size);
  1401. edac_dbg(0, "mc#%d: ha %d channel %d, dimm %d, %lld MiB (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
  1402. pvt->sbridge_dev->mc, pvt->sbridge_dev->dom, i, j,
  1403. size, npages,
  1404. banks, ranks, rows, cols);
  1405. dimm->nr_pages = npages;
  1406. dimm->grain = 32;
  1407. dimm->dtype = pvt->info.get_width(pvt, mtr);
  1408. dimm->mtype = mtype;
  1409. dimm->edac_mode = mode;
  1410. pvt->channel[i].dimm[j].rowbits = order_base_2(rows);
  1411. pvt->channel[i].dimm[j].colbits = order_base_2(cols);
  1412. pvt->channel[i].dimm[j].bank_xor_enable =
  1413. GET_BITFIELD(pvt->info.mcmtr, 9, 9);
  1414. pvt->channel[i].dimm[j].amap_fine = GET_BITFIELD(amap, 0, 0);
  1415. snprintf(dimm->label, sizeof(dimm->label),
  1416. "CPU_SrcID#%u_Ha#%u_Chan#%u_DIMM#%u",
  1417. pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom, i, j);
  1418. }
  1419. }
  1420. }
  1421. return 0;
  1422. }
  1423. static int get_dimm_config(struct mem_ctl_info *mci)
  1424. {
  1425. struct sbridge_pvt *pvt = mci->pvt_info;
  1426. u64 knl_mc_sizes[KNL_MAX_CHANNELS];
  1427. enum edac_type mode;
  1428. u32 reg;
  1429. pvt->sbridge_dev->node_id = pvt->info.get_node_id(pvt);
  1430. edac_dbg(0, "mc#%d: Node ID: %d, source ID: %d\n",
  1431. pvt->sbridge_dev->mc,
  1432. pvt->sbridge_dev->node_id,
  1433. pvt->sbridge_dev->source_id);
  1434. /* KNL doesn't support mirroring or lockstep,
  1435. * and is always closed page
  1436. */
  1437. if (pvt->info.type == KNIGHTS_LANDING) {
  1438. mode = EDAC_S4ECD4ED;
  1439. pvt->mirror_mode = NON_MIRRORING;
  1440. pvt->is_cur_addr_mirrored = false;
  1441. if (knl_get_dimm_capacity(pvt, knl_mc_sizes) != 0)
  1442. return -1;
  1443. if (pci_read_config_dword(pvt->pci_ta, KNL_MCMTR, &pvt->info.mcmtr)) {
  1444. edac_dbg(0, "Failed to read KNL_MCMTR register\n");
  1445. return -ENODEV;
  1446. }
  1447. } else {
  1448. if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) {
  1449. if (pci_read_config_dword(pvt->pci_ha, HASWELL_HASYSDEFEATURE2, &reg)) {
  1450. edac_dbg(0, "Failed to read HASWELL_HASYSDEFEATURE2 register\n");
  1451. return -ENODEV;
  1452. }
  1453. pvt->is_chan_hash = GET_BITFIELD(reg, 21, 21);
  1454. if (GET_BITFIELD(reg, 28, 28)) {
  1455. pvt->mirror_mode = ADDR_RANGE_MIRRORING;
  1456. edac_dbg(0, "Address range partial memory mirroring is enabled\n");
  1457. goto next;
  1458. }
  1459. }
  1460. if (pci_read_config_dword(pvt->pci_ras, RASENABLES, &reg)) {
  1461. edac_dbg(0, "Failed to read RASENABLES register\n");
  1462. return -ENODEV;
  1463. }
  1464. if (IS_MIRROR_ENABLED(reg)) {
  1465. pvt->mirror_mode = FULL_MIRRORING;
  1466. edac_dbg(0, "Full memory mirroring is enabled\n");
  1467. } else {
  1468. pvt->mirror_mode = NON_MIRRORING;
  1469. edac_dbg(0, "Memory mirroring is disabled\n");
  1470. }
  1471. next:
  1472. if (pci_read_config_dword(pvt->pci_ta, MCMTR, &pvt->info.mcmtr)) {
  1473. edac_dbg(0, "Failed to read MCMTR register\n");
  1474. return -ENODEV;
  1475. }
  1476. if (IS_LOCKSTEP_ENABLED(pvt->info.mcmtr)) {
  1477. edac_dbg(0, "Lockstep is enabled\n");
  1478. mode = EDAC_S8ECD8ED;
  1479. pvt->is_lockstep = true;
  1480. } else {
  1481. edac_dbg(0, "Lockstep is disabled\n");
  1482. mode = EDAC_S4ECD4ED;
  1483. pvt->is_lockstep = false;
  1484. }
  1485. if (IS_CLOSE_PG(pvt->info.mcmtr)) {
  1486. edac_dbg(0, "address map is on closed page mode\n");
  1487. pvt->is_close_pg = true;
  1488. } else {
  1489. edac_dbg(0, "address map is on open page mode\n");
  1490. pvt->is_close_pg = false;
  1491. }
  1492. }
  1493. return __populate_dimms(mci, knl_mc_sizes, mode);
  1494. }
  1495. static void get_memory_layout(const struct mem_ctl_info *mci)
  1496. {
  1497. struct sbridge_pvt *pvt = mci->pvt_info;
  1498. int i, j, k, n_sads, n_tads, sad_interl;
  1499. u32 reg;
  1500. u64 limit, prv = 0;
  1501. u64 tmp_mb;
  1502. u32 gb, mb;
  1503. u32 rir_way;
  1504. /*
  1505. * Step 1) Get TOLM/TOHM ranges
  1506. */
  1507. pvt->tolm = pvt->info.get_tolm(pvt);
  1508. tmp_mb = (1 + pvt->tolm) >> 20;
  1509. gb = div_u64_rem(tmp_mb, 1024, &mb);
  1510. edac_dbg(0, "TOLM: %u.%03u GB (0x%016Lx)\n",
  1511. gb, (mb*1000)/1024, (u64)pvt->tolm);
  1512. /* Address range is already 45:25 */
  1513. pvt->tohm = pvt->info.get_tohm(pvt);
  1514. tmp_mb = (1 + pvt->tohm) >> 20;
  1515. gb = div_u64_rem(tmp_mb, 1024, &mb);
  1516. edac_dbg(0, "TOHM: %u.%03u GB (0x%016Lx)\n",
  1517. gb, (mb*1000)/1024, (u64)pvt->tohm);
  1518. /*
  1519. * Step 2) Get SAD range and SAD Interleave list
  1520. * TAD registers contain the interleave wayness. However, it
  1521. * seems simpler to just discover it indirectly, with the
  1522. * algorithm bellow.
  1523. */
  1524. prv = 0;
  1525. for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
  1526. /* SAD_LIMIT Address range is 45:26 */
  1527. pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
  1528. &reg);
  1529. limit = pvt->info.sad_limit(reg);
  1530. if (!DRAM_RULE_ENABLE(reg))
  1531. continue;
  1532. if (limit <= prv)
  1533. break;
  1534. tmp_mb = (limit + 1) >> 20;
  1535. gb = div_u64_rem(tmp_mb, 1024, &mb);
  1536. edac_dbg(0, "SAD#%d %s up to %u.%03u GB (0x%016Lx) Interleave: %s reg=0x%08x\n",
  1537. n_sads,
  1538. show_dram_attr(pvt->info.dram_attr(reg)),
  1539. gb, (mb*1000)/1024,
  1540. ((u64)tmp_mb) << 20L,
  1541. get_intlv_mode_str(reg, pvt->info.type),
  1542. reg);
  1543. prv = limit;
  1544. pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
  1545. &reg);
  1546. sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
  1547. for (j = 0; j < 8; j++) {
  1548. u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, j);
  1549. if (j > 0 && sad_interl == pkg)
  1550. break;
  1551. edac_dbg(0, "SAD#%d, interleave #%d: %d\n",
  1552. n_sads, j, pkg);
  1553. }
  1554. }
  1555. if (pvt->info.type == KNIGHTS_LANDING)
  1556. return;
  1557. /*
  1558. * Step 3) Get TAD range
  1559. */
  1560. prv = 0;
  1561. for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
  1562. pci_read_config_dword(pvt->pci_ha, tad_dram_rule[n_tads], &reg);
  1563. limit = TAD_LIMIT(reg);
  1564. if (limit <= prv)
  1565. break;
  1566. tmp_mb = (limit + 1) >> 20;
  1567. gb = div_u64_rem(tmp_mb, 1024, &mb);
  1568. edac_dbg(0, "TAD#%d: up to %u.%03u GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n",
  1569. n_tads, gb, (mb*1000)/1024,
  1570. ((u64)tmp_mb) << 20L,
  1571. (u32)(1 << TAD_SOCK(reg)),
  1572. (u32)TAD_CH(reg) + 1,
  1573. (u32)TAD_TGT0(reg),
  1574. (u32)TAD_TGT1(reg),
  1575. (u32)TAD_TGT2(reg),
  1576. (u32)TAD_TGT3(reg),
  1577. reg);
  1578. prv = limit;
  1579. }
  1580. /*
  1581. * Step 4) Get TAD offsets, per each channel
  1582. */
  1583. for (i = 0; i < NUM_CHANNELS; i++) {
  1584. if (!pvt->channel[i].dimms)
  1585. continue;
  1586. for (j = 0; j < n_tads; j++) {
  1587. pci_read_config_dword(pvt->pci_tad[i],
  1588. tad_ch_nilv_offset[j],
  1589. &reg);
  1590. tmp_mb = TAD_OFFSET(reg) >> 20;
  1591. gb = div_u64_rem(tmp_mb, 1024, &mb);
  1592. edac_dbg(0, "TAD CH#%d, offset #%d: %u.%03u GB (0x%016Lx), reg=0x%08x\n",
  1593. i, j,
  1594. gb, (mb*1000)/1024,
  1595. ((u64)tmp_mb) << 20L,
  1596. reg);
  1597. }
  1598. }
  1599. /*
  1600. * Step 6) Get RIR Wayness/Limit, per each channel
  1601. */
  1602. for (i = 0; i < NUM_CHANNELS; i++) {
  1603. if (!pvt->channel[i].dimms)
  1604. continue;
  1605. for (j = 0; j < MAX_RIR_RANGES; j++) {
  1606. pci_read_config_dword(pvt->pci_tad[i],
  1607. rir_way_limit[j],
  1608. &reg);
  1609. if (!IS_RIR_VALID(reg))
  1610. continue;
  1611. tmp_mb = pvt->info.rir_limit(reg) >> 20;
  1612. rir_way = 1 << RIR_WAY(reg);
  1613. gb = div_u64_rem(tmp_mb, 1024, &mb);
  1614. edac_dbg(0, "CH#%d RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d, reg=0x%08x\n",
  1615. i, j,
  1616. gb, (mb*1000)/1024,
  1617. ((u64)tmp_mb) << 20L,
  1618. rir_way,
  1619. reg);
  1620. for (k = 0; k < rir_way; k++) {
  1621. pci_read_config_dword(pvt->pci_tad[i],
  1622. rir_offset[j][k],
  1623. &reg);
  1624. tmp_mb = RIR_OFFSET(pvt->info.type, reg) << 6;
  1625. gb = div_u64_rem(tmp_mb, 1024, &mb);
  1626. edac_dbg(0, "CH#%d RIR#%d INTL#%d, offset %u.%03u GB (0x%016Lx), tgt: %d, reg=0x%08x\n",
  1627. i, j, k,
  1628. gb, (mb*1000)/1024,
  1629. ((u64)tmp_mb) << 20L,
  1630. (u32)RIR_RNK_TGT(pvt->info.type, reg),
  1631. reg);
  1632. }
  1633. }
  1634. }
  1635. }
  1636. static struct mem_ctl_info *get_mci_for_node_id(u8 node_id, u8 ha)
  1637. {
  1638. struct sbridge_dev *sbridge_dev;
  1639. list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
  1640. if (sbridge_dev->node_id == node_id && sbridge_dev->dom == ha)
  1641. return sbridge_dev->mci;
  1642. }
  1643. return NULL;
  1644. }
  1645. static u8 sb_close_row[] = {
  1646. 15, 16, 17, 18, 20, 21, 22, 28, 10, 11, 12, 13, 29, 30, 31, 32, 33
  1647. };
  1648. static u8 sb_close_column[] = {
  1649. 3, 4, 5, 14, 19, 23, 24, 25, 26, 27
  1650. };
  1651. static u8 sb_open_row[] = {
  1652. 14, 15, 16, 20, 28, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33
  1653. };
  1654. static u8 sb_open_column[] = {
  1655. 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
  1656. };
  1657. static u8 sb_open_fine_column[] = {
  1658. 3, 4, 5, 7, 8, 9, 10, 11, 12, 13
  1659. };
  1660. static int sb_bits(u64 addr, int nbits, u8 *bits)
  1661. {
  1662. int i, res = 0;
  1663. for (i = 0; i < nbits; i++)
  1664. res |= ((addr >> bits[i]) & 1) << i;
  1665. return res;
  1666. }
  1667. static int sb_bank_bits(u64 addr, int b0, int b1, int do_xor, int x0, int x1)
  1668. {
  1669. int ret = GET_BITFIELD(addr, b0, b0) | (GET_BITFIELD(addr, b1, b1) << 1);
  1670. if (do_xor)
  1671. ret ^= GET_BITFIELD(addr, x0, x0) | (GET_BITFIELD(addr, x1, x1) << 1);
  1672. return ret;
  1673. }
  1674. static bool sb_decode_ddr4(struct mem_ctl_info *mci, int ch, u8 rank,
  1675. u64 rank_addr, char *msg)
  1676. {
  1677. int dimmno = 0;
  1678. int row, col, bank_address, bank_group;
  1679. struct sbridge_pvt *pvt;
  1680. u32 bg0 = 0, rowbits = 0, colbits = 0;
  1681. u32 amap_fine = 0, bank_xor_enable = 0;
  1682. dimmno = (rank < 12) ? rank / 4 : 2;
  1683. pvt = mci->pvt_info;
  1684. amap_fine = pvt->channel[ch].dimm[dimmno].amap_fine;
  1685. bg0 = amap_fine ? 6 : 13;
  1686. rowbits = pvt->channel[ch].dimm[dimmno].rowbits;
  1687. colbits = pvt->channel[ch].dimm[dimmno].colbits;
  1688. bank_xor_enable = pvt->channel[ch].dimm[dimmno].bank_xor_enable;
  1689. if (pvt->is_lockstep) {
  1690. pr_warn_once("LockStep row/column decode is not supported yet!\n");
  1691. msg[0] = '\0';
  1692. return false;
  1693. }
  1694. if (pvt->is_close_pg) {
  1695. row = sb_bits(rank_addr, rowbits, sb_close_row);
  1696. col = sb_bits(rank_addr, colbits, sb_close_column);
  1697. col |= 0x400; /* C10 is autoprecharge, always set */
  1698. bank_address = sb_bank_bits(rank_addr, 8, 9, bank_xor_enable, 22, 28);
  1699. bank_group = sb_bank_bits(rank_addr, 6, 7, bank_xor_enable, 20, 21);
  1700. } else {
  1701. row = sb_bits(rank_addr, rowbits, sb_open_row);
  1702. if (amap_fine)
  1703. col = sb_bits(rank_addr, colbits, sb_open_fine_column);
  1704. else
  1705. col = sb_bits(rank_addr, colbits, sb_open_column);
  1706. bank_address = sb_bank_bits(rank_addr, 18, 19, bank_xor_enable, 22, 23);
  1707. bank_group = sb_bank_bits(rank_addr, bg0, 17, bank_xor_enable, 20, 21);
  1708. }
  1709. row &= (1u << rowbits) - 1;
  1710. sprintf(msg, "row:0x%x col:0x%x bank_addr:%d bank_group:%d",
  1711. row, col, bank_address, bank_group);
  1712. return true;
  1713. }
  1714. static bool sb_decode_ddr3(struct mem_ctl_info *mci, int ch, u8 rank,
  1715. u64 rank_addr, char *msg)
  1716. {
  1717. pr_warn_once("DDR3 row/column decode not support yet!\n");
  1718. msg[0] = '\0';
  1719. return false;
  1720. }
  1721. static int get_memory_error_data(struct mem_ctl_info *mci,
  1722. u64 addr,
  1723. u8 *socket, u8 *ha,
  1724. long *channel_mask,
  1725. u8 *rank,
  1726. char **area_type, char *msg)
  1727. {
  1728. struct mem_ctl_info *new_mci;
  1729. struct sbridge_pvt *pvt = mci->pvt_info;
  1730. struct pci_dev *pci_ha;
  1731. int n_rir, n_sads, n_tads, sad_way, sck_xch;
  1732. int sad_interl, idx, base_ch;
  1733. int interleave_mode, shiftup = 0;
  1734. unsigned int sad_interleave[MAX_INTERLEAVE];
  1735. u32 reg, dram_rule;
  1736. u8 ch_way, sck_way, pkg, sad_ha = 0, rankid = 0;
  1737. u32 tad_offset;
  1738. u32 rir_way;
  1739. u32 mb, gb;
  1740. u64 ch_addr, offset, limit = 0, prv = 0;
  1741. u64 rank_addr;
  1742. enum mem_type mtype;
  1743. /*
  1744. * Step 0) Check if the address is at special memory ranges
  1745. * The check bellow is probably enough to fill all cases where
  1746. * the error is not inside a memory, except for the legacy
  1747. * range (e. g. VGA addresses). It is unlikely, however, that the
  1748. * memory controller would generate an error on that range.
  1749. */
  1750. if ((addr > (u64) pvt->tolm) && (addr < (1LL << 32))) {
  1751. sprintf(msg, "Error at TOLM area, on addr 0x%08Lx", addr);
  1752. return -EINVAL;
  1753. }
  1754. if (addr >= (u64)pvt->tohm) {
  1755. sprintf(msg, "Error at MMIOH area, on addr 0x%016Lx", addr);
  1756. return -EINVAL;
  1757. }
  1758. /*
  1759. * Step 1) Get socket
  1760. */
  1761. for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
  1762. pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
  1763. &reg);
  1764. if (!DRAM_RULE_ENABLE(reg))
  1765. continue;
  1766. limit = pvt->info.sad_limit(reg);
  1767. if (limit <= prv) {
  1768. sprintf(msg, "Can't discover the memory socket");
  1769. return -EINVAL;
  1770. }
  1771. if (addr <= limit)
  1772. break;
  1773. prv = limit;
  1774. }
  1775. if (n_sads == pvt->info.max_sad) {
  1776. sprintf(msg, "Can't discover the memory socket");
  1777. return -EINVAL;
  1778. }
  1779. dram_rule = reg;
  1780. *area_type = show_dram_attr(pvt->info.dram_attr(dram_rule));
  1781. interleave_mode = pvt->info.interleave_mode(dram_rule);
  1782. pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
  1783. &reg);
  1784. if (pvt->info.type == SANDY_BRIDGE) {
  1785. sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
  1786. for (sad_way = 0; sad_way < 8; sad_way++) {
  1787. u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, sad_way);
  1788. if (sad_way > 0 && sad_interl == pkg)
  1789. break;
  1790. sad_interleave[sad_way] = pkg;
  1791. edac_dbg(0, "SAD interleave #%d: %d\n",
  1792. sad_way, sad_interleave[sad_way]);
  1793. }
  1794. edac_dbg(0, "mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n",
  1795. pvt->sbridge_dev->mc,
  1796. n_sads,
  1797. addr,
  1798. limit,
  1799. sad_way + 7,
  1800. !interleave_mode ? "" : "XOR[18:16]");
  1801. if (interleave_mode)
  1802. idx = ((addr >> 6) ^ (addr >> 16)) & 7;
  1803. else
  1804. idx = (addr >> 6) & 7;
  1805. switch (sad_way) {
  1806. case 1:
  1807. idx = 0;
  1808. break;
  1809. case 2:
  1810. idx = idx & 1;
  1811. break;
  1812. case 4:
  1813. idx = idx & 3;
  1814. break;
  1815. case 8:
  1816. break;
  1817. default:
  1818. sprintf(msg, "Can't discover socket interleave");
  1819. return -EINVAL;
  1820. }
  1821. *socket = sad_interleave[idx];
  1822. edac_dbg(0, "SAD interleave index: %d (wayness %d) = CPU socket %d\n",
  1823. idx, sad_way, *socket);
  1824. } else if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) {
  1825. int bits, a7mode = A7MODE(dram_rule);
  1826. if (a7mode) {
  1827. /* A7 mode swaps P9 with P6 */
  1828. bits = GET_BITFIELD(addr, 7, 8) << 1;
  1829. bits |= GET_BITFIELD(addr, 9, 9);
  1830. } else
  1831. bits = GET_BITFIELD(addr, 6, 8);
  1832. if (interleave_mode == 0) {
  1833. /* interleave mode will XOR {8,7,6} with {18,17,16} */
  1834. idx = GET_BITFIELD(addr, 16, 18);
  1835. idx ^= bits;
  1836. } else
  1837. idx = bits;
  1838. pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
  1839. *socket = sad_pkg_socket(pkg);
  1840. sad_ha = sad_pkg_ha(pkg);
  1841. if (a7mode) {
  1842. /* MCChanShiftUpEnable */
  1843. pci_read_config_dword(pvt->pci_ha, HASWELL_HASYSDEFEATURE2, &reg);
  1844. shiftup = GET_BITFIELD(reg, 22, 22);
  1845. }
  1846. edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %i, shiftup: %i\n",
  1847. idx, *socket, sad_ha, shiftup);
  1848. } else {
  1849. /* Ivy Bridge's SAD mode doesn't support XOR interleave mode */
  1850. idx = (addr >> 6) & 7;
  1851. pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
  1852. *socket = sad_pkg_socket(pkg);
  1853. sad_ha = sad_pkg_ha(pkg);
  1854. edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %d\n",
  1855. idx, *socket, sad_ha);
  1856. }
  1857. *ha = sad_ha;
  1858. /*
  1859. * Move to the proper node structure, in order to access the
  1860. * right PCI registers
  1861. */
  1862. new_mci = get_mci_for_node_id(*socket, sad_ha);
  1863. if (!new_mci) {
  1864. sprintf(msg, "Struct for socket #%u wasn't initialized",
  1865. *socket);
  1866. return -EINVAL;
  1867. }
  1868. mci = new_mci;
  1869. pvt = mci->pvt_info;
  1870. /*
  1871. * Step 2) Get memory channel
  1872. */
  1873. prv = 0;
  1874. pci_ha = pvt->pci_ha;
  1875. for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
  1876. pci_read_config_dword(pci_ha, tad_dram_rule[n_tads], &reg);
  1877. limit = TAD_LIMIT(reg);
  1878. if (limit <= prv) {
  1879. sprintf(msg, "Can't discover the memory channel");
  1880. return -EINVAL;
  1881. }
  1882. if (addr <= limit)
  1883. break;
  1884. prv = limit;
  1885. }
  1886. if (n_tads == MAX_TAD) {
  1887. sprintf(msg, "Can't discover the memory channel");
  1888. return -EINVAL;
  1889. }
  1890. ch_way = TAD_CH(reg) + 1;
  1891. sck_way = TAD_SOCK(reg);
  1892. if (ch_way == 3)
  1893. idx = addr >> 6;
  1894. else {
  1895. idx = (addr >> (6 + sck_way + shiftup)) & 0x3;
  1896. if (pvt->is_chan_hash)
  1897. idx = haswell_chan_hash(idx, addr);
  1898. }
  1899. idx = idx % ch_way;
  1900. /*
  1901. * FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ???
  1902. */
  1903. switch (idx) {
  1904. case 0:
  1905. base_ch = TAD_TGT0(reg);
  1906. break;
  1907. case 1:
  1908. base_ch = TAD_TGT1(reg);
  1909. break;
  1910. case 2:
  1911. base_ch = TAD_TGT2(reg);
  1912. break;
  1913. case 3:
  1914. base_ch = TAD_TGT3(reg);
  1915. break;
  1916. default:
  1917. sprintf(msg, "Can't discover the TAD target");
  1918. return -EINVAL;
  1919. }
  1920. *channel_mask = 1 << base_ch;
  1921. pci_read_config_dword(pvt->pci_tad[base_ch], tad_ch_nilv_offset[n_tads], &tad_offset);
  1922. if (pvt->mirror_mode == FULL_MIRRORING ||
  1923. (pvt->mirror_mode == ADDR_RANGE_MIRRORING && n_tads == 0)) {
  1924. *channel_mask |= 1 << ((base_ch + 2) % 4);
  1925. switch(ch_way) {
  1926. case 2:
  1927. case 4:
  1928. sck_xch = (1 << sck_way) * (ch_way >> 1);
  1929. break;
  1930. default:
  1931. sprintf(msg, "Invalid mirror set. Can't decode addr");
  1932. return -EINVAL;
  1933. }
  1934. pvt->is_cur_addr_mirrored = true;
  1935. } else {
  1936. sck_xch = (1 << sck_way) * ch_way;
  1937. pvt->is_cur_addr_mirrored = false;
  1938. }
  1939. if (pvt->is_lockstep)
  1940. *channel_mask |= 1 << ((base_ch + 1) % 4);
  1941. offset = TAD_OFFSET(tad_offset);
  1942. edac_dbg(0, "TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n",
  1943. n_tads,
  1944. addr,
  1945. limit,
  1946. sck_way,
  1947. ch_way,
  1948. offset,
  1949. idx,
  1950. base_ch,
  1951. *channel_mask);
  1952. /* Calculate channel address */
  1953. /* Remove the TAD offset */
  1954. if (offset > addr) {
  1955. sprintf(msg, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!",
  1956. offset, addr);
  1957. return -EINVAL;
  1958. }
  1959. ch_addr = addr - offset;
  1960. ch_addr >>= (6 + shiftup);
  1961. ch_addr /= sck_xch;
  1962. ch_addr <<= (6 + shiftup);
  1963. ch_addr |= addr & ((1 << (6 + shiftup)) - 1);
  1964. /*
  1965. * Step 3) Decode rank
  1966. */
  1967. for (n_rir = 0; n_rir < MAX_RIR_RANGES; n_rir++) {
  1968. pci_read_config_dword(pvt->pci_tad[base_ch], rir_way_limit[n_rir], &reg);
  1969. if (!IS_RIR_VALID(reg))
  1970. continue;
  1971. limit = pvt->info.rir_limit(reg);
  1972. gb = div_u64_rem(limit >> 20, 1024, &mb);
  1973. edac_dbg(0, "RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d\n",
  1974. n_rir,
  1975. gb, (mb*1000)/1024,
  1976. limit,
  1977. 1 << RIR_WAY(reg));
  1978. if (ch_addr <= limit)
  1979. break;
  1980. }
  1981. if (n_rir == MAX_RIR_RANGES) {
  1982. sprintf(msg, "Can't discover the memory rank for ch addr 0x%08Lx",
  1983. ch_addr);
  1984. return -EINVAL;
  1985. }
  1986. rir_way = RIR_WAY(reg);
  1987. if (pvt->is_close_pg)
  1988. idx = (ch_addr >> 6);
  1989. else
  1990. idx = (ch_addr >> 13); /* FIXME: Datasheet says to shift by 15 */
  1991. idx %= 1 << rir_way;
  1992. pci_read_config_dword(pvt->pci_tad[base_ch], rir_offset[n_rir][idx], &reg);
  1993. *rank = RIR_RNK_TGT(pvt->info.type, reg);
  1994. if (pvt->info.type == BROADWELL) {
  1995. if (pvt->is_close_pg)
  1996. shiftup = 6;
  1997. else
  1998. shiftup = 13;
  1999. rank_addr = ch_addr >> shiftup;
  2000. rank_addr /= (1 << rir_way);
  2001. rank_addr <<= shiftup;
  2002. rank_addr |= ch_addr & GENMASK_ULL(shiftup - 1, 0);
  2003. rank_addr -= RIR_OFFSET(pvt->info.type, reg);
  2004. mtype = pvt->info.get_memory_type(pvt);
  2005. rankid = *rank;
  2006. if (mtype == MEM_DDR4 || mtype == MEM_RDDR4)
  2007. sb_decode_ddr4(mci, base_ch, rankid, rank_addr, msg);
  2008. else
  2009. sb_decode_ddr3(mci, base_ch, rankid, rank_addr, msg);
  2010. } else {
  2011. msg[0] = '\0';
  2012. }
  2013. edac_dbg(0, "RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n",
  2014. n_rir,
  2015. ch_addr,
  2016. limit,
  2017. rir_way,
  2018. idx);
  2019. return 0;
  2020. }
  2021. static int get_memory_error_data_from_mce(struct mem_ctl_info *mci,
  2022. const struct mce *m, u8 *socket,
  2023. u8 *ha, long *channel_mask,
  2024. char *msg)
  2025. {
  2026. u32 reg, channel = GET_BITFIELD(m->status, 0, 3);
  2027. struct mem_ctl_info *new_mci;
  2028. struct sbridge_pvt *pvt;
  2029. struct pci_dev *pci_ha;
  2030. bool tad0;
  2031. if (channel >= NUM_CHANNELS) {
  2032. sprintf(msg, "Invalid channel 0x%x", channel);
  2033. return -EINVAL;
  2034. }
  2035. pvt = mci->pvt_info;
  2036. if (!pvt->info.get_ha) {
  2037. sprintf(msg, "No get_ha()");
  2038. return -EINVAL;
  2039. }
  2040. *ha = pvt->info.get_ha(m->bank);
  2041. if (*ha != 0 && *ha != 1) {
  2042. sprintf(msg, "Impossible bank %d", m->bank);
  2043. return -EINVAL;
  2044. }
  2045. *socket = m->socketid;
  2046. new_mci = get_mci_for_node_id(*socket, *ha);
  2047. if (!new_mci) {
  2048. strcpy(msg, "mci socket got corrupted!");
  2049. return -EINVAL;
  2050. }
  2051. pvt = new_mci->pvt_info;
  2052. pci_ha = pvt->pci_ha;
  2053. pci_read_config_dword(pci_ha, tad_dram_rule[0], &reg);
  2054. tad0 = m->addr <= TAD_LIMIT(reg);
  2055. *channel_mask = 1 << channel;
  2056. if (pvt->mirror_mode == FULL_MIRRORING ||
  2057. (pvt->mirror_mode == ADDR_RANGE_MIRRORING && tad0)) {
  2058. *channel_mask |= 1 << ((channel + 2) % 4);
  2059. pvt->is_cur_addr_mirrored = true;
  2060. } else {
  2061. pvt->is_cur_addr_mirrored = false;
  2062. }
  2063. if (pvt->is_lockstep)
  2064. *channel_mask |= 1 << ((channel + 1) % 4);
  2065. return 0;
  2066. }
  2067. /****************************************************************************
  2068. Device initialization routines: put/get, init/exit
  2069. ****************************************************************************/
  2070. /*
  2071. * sbridge_put_all_devices 'put' all the devices that we have
  2072. * reserved via 'get'
  2073. */
  2074. static void sbridge_put_devices(struct sbridge_dev *sbridge_dev)
  2075. {
  2076. int i;
  2077. edac_dbg(0, "\n");
  2078. for (i = 0; i < sbridge_dev->n_devs; i++) {
  2079. struct pci_dev *pdev = sbridge_dev->pdev[i];
  2080. if (!pdev)
  2081. continue;
  2082. edac_dbg(0, "Removing dev %02x:%02x.%d\n",
  2083. pdev->bus->number,
  2084. PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
  2085. pci_dev_put(pdev);
  2086. }
  2087. }
  2088. static void sbridge_put_all_devices(void)
  2089. {
  2090. struct sbridge_dev *sbridge_dev, *tmp;
  2091. list_for_each_entry_safe(sbridge_dev, tmp, &sbridge_edac_list, list) {
  2092. sbridge_put_devices(sbridge_dev);
  2093. free_sbridge_dev(sbridge_dev);
  2094. }
  2095. }
  2096. static int sbridge_get_onedevice(struct pci_dev **prev,
  2097. u8 *num_mc,
  2098. const struct pci_id_table *table,
  2099. const unsigned devno,
  2100. const int multi_bus)
  2101. {
  2102. struct sbridge_dev *sbridge_dev = NULL;
  2103. const struct pci_id_descr *dev_descr = &table->descr[devno];
  2104. struct pci_dev *pdev = NULL;
  2105. int seg = 0;
  2106. u8 bus = 0;
  2107. int i = 0;
  2108. sbridge_printk(KERN_DEBUG,
  2109. "Seeking for: PCI ID %04x:%04x\n",
  2110. PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
  2111. pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
  2112. dev_descr->dev_id, *prev);
  2113. if (!pdev) {
  2114. if (*prev) {
  2115. *prev = pdev;
  2116. return 0;
  2117. }
  2118. if (dev_descr->optional)
  2119. return 0;
  2120. /* if the HA wasn't found */
  2121. if (devno == 0)
  2122. return -ENODEV;
  2123. sbridge_printk(KERN_INFO,
  2124. "Device not found: %04x:%04x\n",
  2125. PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
  2126. /* End of list, leave */
  2127. return -ENODEV;
  2128. }
  2129. seg = pci_domain_nr(pdev->bus);
  2130. bus = pdev->bus->number;
  2131. next_imc:
  2132. sbridge_dev = get_sbridge_dev(seg, bus, dev_descr->dom,
  2133. multi_bus, sbridge_dev);
  2134. if (!sbridge_dev) {
  2135. /* If the HA1 wasn't found, don't create EDAC second memory controller */
  2136. if (dev_descr->dom == IMC1 && devno != 1) {
  2137. edac_dbg(0, "Skip IMC1: %04x:%04x (since HA1 was absent)\n",
  2138. PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
  2139. pci_dev_put(pdev);
  2140. return 0;
  2141. }
  2142. if (dev_descr->dom == SOCK)
  2143. goto out_imc;
  2144. sbridge_dev = alloc_sbridge_dev(seg, bus, dev_descr->dom, table);
  2145. if (!sbridge_dev) {
  2146. pci_dev_put(pdev);
  2147. return -ENOMEM;
  2148. }
  2149. (*num_mc)++;
  2150. }
  2151. if (sbridge_dev->pdev[sbridge_dev->i_devs]) {
  2152. sbridge_printk(KERN_ERR,
  2153. "Duplicated device for %04x:%04x\n",
  2154. PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
  2155. pci_dev_put(pdev);
  2156. return -ENODEV;
  2157. }
  2158. sbridge_dev->pdev[sbridge_dev->i_devs++] = pdev;
  2159. /* pdev belongs to more than one IMC, do extra gets */
  2160. if (++i > 1)
  2161. pci_dev_get(pdev);
  2162. if (dev_descr->dom == SOCK && i < table->n_imcs_per_sock)
  2163. goto next_imc;
  2164. out_imc:
  2165. /* Be sure that the device is enabled */
  2166. if (unlikely(pci_enable_device(pdev) < 0)) {
  2167. sbridge_printk(KERN_ERR,
  2168. "Couldn't enable %04x:%04x\n",
  2169. PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
  2170. return -ENODEV;
  2171. }
  2172. edac_dbg(0, "Detected %04x:%04x\n",
  2173. PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
  2174. /*
  2175. * As stated on drivers/pci/search.c, the reference count for
  2176. * @from is always decremented if it is not %NULL. So, as we need
  2177. * to get all devices up to null, we need to do a get for the device
  2178. */
  2179. pci_dev_get(pdev);
  2180. *prev = pdev;
  2181. return 0;
  2182. }
  2183. /*
  2184. * sbridge_get_all_devices - Find and perform 'get' operation on the MCH's
  2185. * devices we want to reference for this driver.
  2186. * @num_mc: pointer to the memory controllers count, to be incremented in case
  2187. * of success.
  2188. * @table: model specific table
  2189. *
  2190. * returns 0 in case of success or error code
  2191. */
  2192. static int sbridge_get_all_devices(u8 *num_mc,
  2193. const struct pci_id_table *table)
  2194. {
  2195. int i, rc;
  2196. struct pci_dev *pdev = NULL;
  2197. int allow_dups = 0;
  2198. int multi_bus = 0;
  2199. if (table->type == KNIGHTS_LANDING)
  2200. allow_dups = multi_bus = 1;
  2201. while (table && table->descr) {
  2202. for (i = 0; i < table->n_devs_per_sock; i++) {
  2203. if (!allow_dups || i == 0 ||
  2204. table->descr[i].dev_id !=
  2205. table->descr[i-1].dev_id) {
  2206. pdev = NULL;
  2207. }
  2208. do {
  2209. rc = sbridge_get_onedevice(&pdev, num_mc,
  2210. table, i, multi_bus);
  2211. if (rc < 0) {
  2212. if (i == 0) {
  2213. i = table->n_devs_per_sock;
  2214. break;
  2215. }
  2216. sbridge_put_all_devices();
  2217. return -ENODEV;
  2218. }
  2219. } while (pdev && !allow_dups);
  2220. }
  2221. table++;
  2222. }
  2223. return 0;
  2224. }
  2225. /*
  2226. * Device IDs for {SBRIDGE,IBRIDGE,HASWELL,BROADWELL}_IMC_HA0_TAD0 are in
  2227. * the format: XXXa. So we can convert from a device to the corresponding
  2228. * channel like this
  2229. */
  2230. #define TAD_DEV_TO_CHAN(dev) (((dev) & 0xf) - 0xa)
  2231. static int sbridge_mci_bind_devs(struct mem_ctl_info *mci,
  2232. struct sbridge_dev *sbridge_dev)
  2233. {
  2234. struct sbridge_pvt *pvt = mci->pvt_info;
  2235. struct pci_dev *pdev;
  2236. u8 saw_chan_mask = 0;
  2237. int i;
  2238. for (i = 0; i < sbridge_dev->n_devs; i++) {
  2239. pdev = sbridge_dev->pdev[i];
  2240. if (!pdev)
  2241. continue;
  2242. switch (pdev->device) {
  2243. case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0:
  2244. pvt->pci_sad0 = pdev;
  2245. break;
  2246. case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1:
  2247. pvt->pci_sad1 = pdev;
  2248. break;
  2249. case PCI_DEVICE_ID_INTEL_SBRIDGE_BR:
  2250. pvt->pci_br0 = pdev;
  2251. break;
  2252. case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0:
  2253. pvt->pci_ha = pdev;
  2254. break;
  2255. case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA:
  2256. pvt->pci_ta = pdev;
  2257. break;
  2258. case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS:
  2259. pvt->pci_ras = pdev;
  2260. break;
  2261. case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0:
  2262. case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1:
  2263. case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2:
  2264. case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3:
  2265. {
  2266. int id = TAD_DEV_TO_CHAN(pdev->device);
  2267. pvt->pci_tad[id] = pdev;
  2268. saw_chan_mask |= 1 << id;
  2269. }
  2270. break;
  2271. case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO:
  2272. pvt->pci_ddrio = pdev;
  2273. break;
  2274. default:
  2275. goto error;
  2276. }
  2277. edac_dbg(0, "Associated PCI %02x:%02x, bus %d with dev = %p\n",
  2278. pdev->vendor, pdev->device,
  2279. sbridge_dev->bus,
  2280. pdev);
  2281. }
  2282. /* Check if everything were registered */
  2283. if (!pvt->pci_sad0 || !pvt->pci_sad1 || !pvt->pci_ha ||
  2284. !pvt->pci_ras || !pvt->pci_ta)
  2285. goto enodev;
  2286. if (saw_chan_mask != 0x0f)
  2287. goto enodev;
  2288. return 0;
  2289. enodev:
  2290. sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
  2291. return -ENODEV;
  2292. error:
  2293. sbridge_printk(KERN_ERR, "Unexpected device %02x:%02x\n",
  2294. PCI_VENDOR_ID_INTEL, pdev->device);
  2295. return -EINVAL;
  2296. }
  2297. static int ibridge_mci_bind_devs(struct mem_ctl_info *mci,
  2298. struct sbridge_dev *sbridge_dev)
  2299. {
  2300. struct sbridge_pvt *pvt = mci->pvt_info;
  2301. struct pci_dev *pdev;
  2302. u8 saw_chan_mask = 0;
  2303. int i;
  2304. for (i = 0; i < sbridge_dev->n_devs; i++) {
  2305. pdev = sbridge_dev->pdev[i];
  2306. if (!pdev)
  2307. continue;
  2308. switch (pdev->device) {
  2309. case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0:
  2310. case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1:
  2311. pvt->pci_ha = pdev;
  2312. break;
  2313. case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA:
  2314. case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA:
  2315. pvt->pci_ta = pdev;
  2316. break;
  2317. case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS:
  2318. case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS:
  2319. pvt->pci_ras = pdev;
  2320. break;
  2321. case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0:
  2322. case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1:
  2323. case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2:
  2324. case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3:
  2325. case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0:
  2326. case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1:
  2327. case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2:
  2328. case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3:
  2329. {
  2330. int id = TAD_DEV_TO_CHAN(pdev->device);
  2331. pvt->pci_tad[id] = pdev;
  2332. saw_chan_mask |= 1 << id;
  2333. }
  2334. break;
  2335. case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0:
  2336. pvt->pci_ddrio = pdev;
  2337. break;
  2338. case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0:
  2339. pvt->pci_ddrio = pdev;
  2340. break;
  2341. case PCI_DEVICE_ID_INTEL_IBRIDGE_SAD:
  2342. pvt->pci_sad0 = pdev;
  2343. break;
  2344. case PCI_DEVICE_ID_INTEL_IBRIDGE_BR0:
  2345. pvt->pci_br0 = pdev;
  2346. break;
  2347. case PCI_DEVICE_ID_INTEL_IBRIDGE_BR1:
  2348. pvt->pci_br1 = pdev;
  2349. break;
  2350. default:
  2351. goto error;
  2352. }
  2353. edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
  2354. sbridge_dev->bus,
  2355. PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
  2356. pdev);
  2357. }
  2358. /* Check if everything were registered */
  2359. if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_br0 ||
  2360. !pvt->pci_br1 || !pvt->pci_ras || !pvt->pci_ta)
  2361. goto enodev;
  2362. if (saw_chan_mask != 0x0f && /* -EN/-EX */
  2363. saw_chan_mask != 0x03) /* -EP */
  2364. goto enodev;
  2365. return 0;
  2366. enodev:
  2367. sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
  2368. return -ENODEV;
  2369. error:
  2370. sbridge_printk(KERN_ERR,
  2371. "Unexpected device %02x:%02x\n", PCI_VENDOR_ID_INTEL,
  2372. pdev->device);
  2373. return -EINVAL;
  2374. }
  2375. static int haswell_mci_bind_devs(struct mem_ctl_info *mci,
  2376. struct sbridge_dev *sbridge_dev)
  2377. {
  2378. struct sbridge_pvt *pvt = mci->pvt_info;
  2379. struct pci_dev *pdev;
  2380. u8 saw_chan_mask = 0;
  2381. int i;
  2382. /* there's only one device per system; not tied to any bus */
  2383. if (pvt->info.pci_vtd == NULL)
  2384. /* result will be checked later */
  2385. pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
  2386. PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC,
  2387. NULL);
  2388. for (i = 0; i < sbridge_dev->n_devs; i++) {
  2389. pdev = sbridge_dev->pdev[i];
  2390. if (!pdev)
  2391. continue;
  2392. switch (pdev->device) {
  2393. case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0:
  2394. pvt->pci_sad0 = pdev;
  2395. break;
  2396. case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1:
  2397. pvt->pci_sad1 = pdev;
  2398. break;
  2399. case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0:
  2400. case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1:
  2401. pvt->pci_ha = pdev;
  2402. break;
  2403. case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA:
  2404. case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA:
  2405. pvt->pci_ta = pdev;
  2406. break;
  2407. case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM:
  2408. case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM:
  2409. pvt->pci_ras = pdev;
  2410. break;
  2411. case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0:
  2412. case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1:
  2413. case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2:
  2414. case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3:
  2415. case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0:
  2416. case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1:
  2417. case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2:
  2418. case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3:
  2419. {
  2420. int id = TAD_DEV_TO_CHAN(pdev->device);
  2421. pvt->pci_tad[id] = pdev;
  2422. saw_chan_mask |= 1 << id;
  2423. }
  2424. break;
  2425. case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0:
  2426. case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1:
  2427. case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2:
  2428. case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3:
  2429. if (!pvt->pci_ddrio)
  2430. pvt->pci_ddrio = pdev;
  2431. break;
  2432. default:
  2433. break;
  2434. }
  2435. edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
  2436. sbridge_dev->bus,
  2437. PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
  2438. pdev);
  2439. }
  2440. /* Check if everything were registered */
  2441. if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_sad1 ||
  2442. !pvt->pci_ras || !pvt->pci_ta || !pvt->info.pci_vtd)
  2443. goto enodev;
  2444. if (saw_chan_mask != 0x0f && /* -EN/-EX */
  2445. saw_chan_mask != 0x03) /* -EP */
  2446. goto enodev;
  2447. return 0;
  2448. enodev:
  2449. sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
  2450. return -ENODEV;
  2451. }
  2452. static int broadwell_mci_bind_devs(struct mem_ctl_info *mci,
  2453. struct sbridge_dev *sbridge_dev)
  2454. {
  2455. struct sbridge_pvt *pvt = mci->pvt_info;
  2456. struct pci_dev *pdev;
  2457. u8 saw_chan_mask = 0;
  2458. int i;
  2459. /* there's only one device per system; not tied to any bus */
  2460. if (pvt->info.pci_vtd == NULL)
  2461. /* result will be checked later */
  2462. pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
  2463. PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC,
  2464. NULL);
  2465. for (i = 0; i < sbridge_dev->n_devs; i++) {
  2466. pdev = sbridge_dev->pdev[i];
  2467. if (!pdev)
  2468. continue;
  2469. switch (pdev->device) {
  2470. case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0:
  2471. pvt->pci_sad0 = pdev;
  2472. break;
  2473. case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1:
  2474. pvt->pci_sad1 = pdev;
  2475. break;
  2476. case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0:
  2477. case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1:
  2478. pvt->pci_ha = pdev;
  2479. break;
  2480. case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA:
  2481. case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA:
  2482. pvt->pci_ta = pdev;
  2483. break;
  2484. case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM:
  2485. case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM:
  2486. pvt->pci_ras = pdev;
  2487. break;
  2488. case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0:
  2489. case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1:
  2490. case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2:
  2491. case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3:
  2492. case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0:
  2493. case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1:
  2494. case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2:
  2495. case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3:
  2496. {
  2497. int id = TAD_DEV_TO_CHAN(pdev->device);
  2498. pvt->pci_tad[id] = pdev;
  2499. saw_chan_mask |= 1 << id;
  2500. }
  2501. break;
  2502. case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0:
  2503. pvt->pci_ddrio = pdev;
  2504. break;
  2505. default:
  2506. break;
  2507. }
  2508. edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
  2509. sbridge_dev->bus,
  2510. PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
  2511. pdev);
  2512. }
  2513. /* Check if everything were registered */
  2514. if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_sad1 ||
  2515. !pvt->pci_ras || !pvt->pci_ta || !pvt->info.pci_vtd)
  2516. goto enodev;
  2517. if (saw_chan_mask != 0x0f && /* -EN/-EX */
  2518. saw_chan_mask != 0x03) /* -EP */
  2519. goto enodev;
  2520. return 0;
  2521. enodev:
  2522. sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
  2523. return -ENODEV;
  2524. }
  2525. static int knl_mci_bind_devs(struct mem_ctl_info *mci,
  2526. struct sbridge_dev *sbridge_dev)
  2527. {
  2528. struct sbridge_pvt *pvt = mci->pvt_info;
  2529. struct pci_dev *pdev;
  2530. int dev, func;
  2531. int i;
  2532. int devidx;
  2533. for (i = 0; i < sbridge_dev->n_devs; i++) {
  2534. pdev = sbridge_dev->pdev[i];
  2535. if (!pdev)
  2536. continue;
  2537. /* Extract PCI device and function. */
  2538. dev = (pdev->devfn >> 3) & 0x1f;
  2539. func = pdev->devfn & 0x7;
  2540. switch (pdev->device) {
  2541. case PCI_DEVICE_ID_INTEL_KNL_IMC_MC:
  2542. if (dev == 8)
  2543. pvt->knl.pci_mc0 = pdev;
  2544. else if (dev == 9)
  2545. pvt->knl.pci_mc1 = pdev;
  2546. else {
  2547. sbridge_printk(KERN_ERR,
  2548. "Memory controller in unexpected place! (dev %d, fn %d)\n",
  2549. dev, func);
  2550. continue;
  2551. }
  2552. break;
  2553. case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0:
  2554. pvt->pci_sad0 = pdev;
  2555. break;
  2556. case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1:
  2557. pvt->pci_sad1 = pdev;
  2558. break;
  2559. case PCI_DEVICE_ID_INTEL_KNL_IMC_CHA:
  2560. /* There are one of these per tile, and range from
  2561. * 1.14.0 to 1.18.5.
  2562. */
  2563. devidx = ((dev-14)*8)+func;
  2564. if (devidx < 0 || devidx >= KNL_MAX_CHAS) {
  2565. sbridge_printk(KERN_ERR,
  2566. "Caching and Home Agent in unexpected place! (dev %d, fn %d)\n",
  2567. dev, func);
  2568. continue;
  2569. }
  2570. WARN_ON(pvt->knl.pci_cha[devidx] != NULL);
  2571. pvt->knl.pci_cha[devidx] = pdev;
  2572. break;
  2573. case PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN:
  2574. devidx = -1;
  2575. /*
  2576. * MC0 channels 0-2 are device 9 function 2-4,
  2577. * MC1 channels 3-5 are device 8 function 2-4.
  2578. */
  2579. if (dev == 9)
  2580. devidx = func-2;
  2581. else if (dev == 8)
  2582. devidx = 3 + (func-2);
  2583. if (devidx < 0 || devidx >= KNL_MAX_CHANNELS) {
  2584. sbridge_printk(KERN_ERR,
  2585. "DRAM Channel Registers in unexpected place! (dev %d, fn %d)\n",
  2586. dev, func);
  2587. continue;
  2588. }
  2589. WARN_ON(pvt->knl.pci_channel[devidx] != NULL);
  2590. pvt->knl.pci_channel[devidx] = pdev;
  2591. break;
  2592. case PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM:
  2593. pvt->knl.pci_mc_info = pdev;
  2594. break;
  2595. case PCI_DEVICE_ID_INTEL_KNL_IMC_TA:
  2596. pvt->pci_ta = pdev;
  2597. break;
  2598. default:
  2599. sbridge_printk(KERN_ERR, "Unexpected device %d\n",
  2600. pdev->device);
  2601. break;
  2602. }
  2603. }
  2604. if (!pvt->knl.pci_mc0 || !pvt->knl.pci_mc1 ||
  2605. !pvt->pci_sad0 || !pvt->pci_sad1 ||
  2606. !pvt->pci_ta) {
  2607. goto enodev;
  2608. }
  2609. for (i = 0; i < KNL_MAX_CHANNELS; i++) {
  2610. if (!pvt->knl.pci_channel[i]) {
  2611. sbridge_printk(KERN_ERR, "Missing channel %d\n", i);
  2612. goto enodev;
  2613. }
  2614. }
  2615. for (i = 0; i < KNL_MAX_CHAS; i++) {
  2616. if (!pvt->knl.pci_cha[i]) {
  2617. sbridge_printk(KERN_ERR, "Missing CHA %d\n", i);
  2618. goto enodev;
  2619. }
  2620. }
  2621. return 0;
  2622. enodev:
  2623. sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
  2624. return -ENODEV;
  2625. }
  2626. /****************************************************************************
  2627. Error check routines
  2628. ****************************************************************************/
  2629. /*
  2630. * While Sandy Bridge has error count registers, SMI BIOS read values from
  2631. * and resets the counters. So, they are not reliable for the OS to read
  2632. * from them. So, we have no option but to just trust on whatever MCE is
  2633. * telling us about the errors.
  2634. */
  2635. static void sbridge_mce_output_error(struct mem_ctl_info *mci,
  2636. const struct mce *m)
  2637. {
  2638. struct mem_ctl_info *new_mci;
  2639. struct sbridge_pvt *pvt = mci->pvt_info;
  2640. enum hw_event_mc_err_type tp_event;
  2641. char *optype, msg[256], msg_full[512];
  2642. bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0);
  2643. bool overflow = GET_BITFIELD(m->status, 62, 62);
  2644. bool uncorrected_error = GET_BITFIELD(m->status, 61, 61);
  2645. bool recoverable;
  2646. u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
  2647. u32 mscod = GET_BITFIELD(m->status, 16, 31);
  2648. u32 errcode = GET_BITFIELD(m->status, 0, 15);
  2649. u32 channel = GET_BITFIELD(m->status, 0, 3);
  2650. u32 optypenum = GET_BITFIELD(m->status, 4, 6);
  2651. /*
  2652. * Bits 5-0 of MCi_MISC give the least significant bit that is valid.
  2653. * A value 6 is for cache line aligned address, a value 12 is for page
  2654. * aligned address reported by patrol scrubber.
  2655. */
  2656. u32 lsb = GET_BITFIELD(m->misc, 0, 5);
  2657. long channel_mask, first_channel;
  2658. u8 rank = 0xff, socket, ha;
  2659. int rc, dimm;
  2660. char *area_type = "DRAM";
  2661. if (pvt->info.type != SANDY_BRIDGE)
  2662. recoverable = true;
  2663. else
  2664. recoverable = GET_BITFIELD(m->status, 56, 56);
  2665. if (uncorrected_error) {
  2666. core_err_cnt = 1;
  2667. if (ripv) {
  2668. tp_event = HW_EVENT_ERR_UNCORRECTED;
  2669. } else {
  2670. tp_event = HW_EVENT_ERR_FATAL;
  2671. }
  2672. } else {
  2673. tp_event = HW_EVENT_ERR_CORRECTED;
  2674. }
  2675. /*
  2676. * According with Table 15-9 of the Intel Architecture spec vol 3A,
  2677. * memory errors should fit in this mask:
  2678. * 000f 0000 1mmm cccc (binary)
  2679. * where:
  2680. * f = Correction Report Filtering Bit. If 1, subsequent errors
  2681. * won't be shown
  2682. * mmm = error type
  2683. * cccc = channel
  2684. * If the mask doesn't match, report an error to the parsing logic
  2685. */
  2686. switch (optypenum) {
  2687. case 0:
  2688. optype = "generic undef request error";
  2689. break;
  2690. case 1:
  2691. optype = "memory read error";
  2692. break;
  2693. case 2:
  2694. optype = "memory write error";
  2695. break;
  2696. case 3:
  2697. optype = "addr/cmd error";
  2698. break;
  2699. case 4:
  2700. optype = "memory scrubbing error";
  2701. break;
  2702. default:
  2703. optype = "reserved";
  2704. break;
  2705. }
  2706. if (pvt->info.type == KNIGHTS_LANDING) {
  2707. if (channel == 14) {
  2708. edac_dbg(0, "%s%s err_code:%04x:%04x EDRAM bank %d\n",
  2709. overflow ? " OVERFLOW" : "",
  2710. (uncorrected_error && recoverable)
  2711. ? " recoverable" : "",
  2712. mscod, errcode,
  2713. m->bank);
  2714. } else {
  2715. char A = *("A");
  2716. /*
  2717. * Reported channel is in range 0-2, so we can't map it
  2718. * back to mc. To figure out mc we check machine check
  2719. * bank register that reported this error.
  2720. * bank15 means mc0 and bank16 means mc1.
  2721. */
  2722. channel = knl_channel_remap(m->bank == 16, channel);
  2723. channel_mask = 1 << channel;
  2724. snprintf(msg, sizeof(msg),
  2725. "%s%s err_code:%04x:%04x channel:%d (DIMM_%c)",
  2726. overflow ? " OVERFLOW" : "",
  2727. (uncorrected_error && recoverable)
  2728. ? " recoverable" : " ",
  2729. mscod, errcode, channel, A + channel);
  2730. edac_mc_handle_error(tp_event, mci, core_err_cnt,
  2731. m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
  2732. channel, 0, -1,
  2733. optype, msg);
  2734. }
  2735. return;
  2736. } else if (lsb < 12) {
  2737. rc = get_memory_error_data(mci, m->addr, &socket, &ha,
  2738. &channel_mask, &rank,
  2739. &area_type, msg);
  2740. } else {
  2741. rc = get_memory_error_data_from_mce(mci, m, &socket, &ha,
  2742. &channel_mask, msg);
  2743. }
  2744. if (rc < 0)
  2745. goto err_parsing;
  2746. new_mci = get_mci_for_node_id(socket, ha);
  2747. if (!new_mci) {
  2748. strcpy(msg, "Error: socket got corrupted!");
  2749. goto err_parsing;
  2750. }
  2751. mci = new_mci;
  2752. pvt = mci->pvt_info;
  2753. first_channel = find_first_bit(&channel_mask, NUM_CHANNELS);
  2754. if (rank == 0xff)
  2755. dimm = -1;
  2756. else if (rank < 4)
  2757. dimm = 0;
  2758. else if (rank < 8)
  2759. dimm = 1;
  2760. else
  2761. dimm = 2;
  2762. /*
  2763. * FIXME: On some memory configurations (mirror, lockstep), the
  2764. * Memory Controller can't point the error to a single DIMM. The
  2765. * EDAC core should be handling the channel mask, in order to point
  2766. * to the group of dimm's where the error may be happening.
  2767. */
  2768. if (!pvt->is_lockstep && !pvt->is_cur_addr_mirrored && !pvt->is_close_pg)
  2769. channel = first_channel;
  2770. snprintf(msg_full, sizeof(msg_full),
  2771. "%s%s area:%s err_code:%04x:%04x socket:%d ha:%d channel_mask:%ld rank:%d %s",
  2772. overflow ? " OVERFLOW" : "",
  2773. (uncorrected_error && recoverable) ? " recoverable" : "",
  2774. area_type,
  2775. mscod, errcode,
  2776. socket, ha,
  2777. channel_mask,
  2778. rank, msg);
  2779. edac_dbg(0, "%s\n", msg_full);
  2780. /* FIXME: need support for channel mask */
  2781. if (channel == CHANNEL_UNSPECIFIED)
  2782. channel = -1;
  2783. /* Call the helper to output message */
  2784. edac_mc_handle_error(tp_event, mci, core_err_cnt,
  2785. m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
  2786. channel, dimm, -1,
  2787. optype, msg_full);
  2788. return;
  2789. err_parsing:
  2790. edac_mc_handle_error(tp_event, mci, core_err_cnt, 0, 0, 0,
  2791. -1, -1, -1,
  2792. msg, "");
  2793. }
  2794. /*
  2795. * Check that logging is enabled and that this is the right type
  2796. * of error for us to handle.
  2797. */
  2798. static int sbridge_mce_check_error(struct notifier_block *nb, unsigned long val,
  2799. void *data)
  2800. {
  2801. struct mce *mce = (struct mce *)data;
  2802. struct mem_ctl_info *mci;
  2803. char *type;
  2804. if (mce->kflags & MCE_HANDLED_CEC)
  2805. return NOTIFY_DONE;
  2806. /*
  2807. * Just let mcelog handle it if the error is
  2808. * outside the memory controller. A memory error
  2809. * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0.
  2810. * bit 12 has an special meaning.
  2811. */
  2812. if ((mce->status & 0xefff) >> 7 != 1)
  2813. return NOTIFY_DONE;
  2814. /* Check ADDRV bit in STATUS */
  2815. if (!GET_BITFIELD(mce->status, 58, 58))
  2816. return NOTIFY_DONE;
  2817. /* Check MISCV bit in STATUS */
  2818. if (!GET_BITFIELD(mce->status, 59, 59))
  2819. return NOTIFY_DONE;
  2820. /* Check address type in MISC (physical address only) */
  2821. if (GET_BITFIELD(mce->misc, 6, 8) != 2)
  2822. return NOTIFY_DONE;
  2823. mci = get_mci_for_node_id(mce->socketid, IMC0);
  2824. if (!mci)
  2825. return NOTIFY_DONE;
  2826. if (mce->mcgstatus & MCG_STATUS_MCIP)
  2827. type = "Exception";
  2828. else
  2829. type = "Event";
  2830. sbridge_mc_printk(mci, KERN_DEBUG, "HANDLING MCE MEMORY ERROR\n");
  2831. sbridge_mc_printk(mci, KERN_DEBUG, "CPU %d: Machine Check %s: %Lx "
  2832. "Bank %d: %016Lx\n", mce->extcpu, type,
  2833. mce->mcgstatus, mce->bank, mce->status);
  2834. sbridge_mc_printk(mci, KERN_DEBUG, "TSC %llx ", mce->tsc);
  2835. sbridge_mc_printk(mci, KERN_DEBUG, "ADDR %llx ", mce->addr);
  2836. sbridge_mc_printk(mci, KERN_DEBUG, "MISC %llx ", mce->misc);
  2837. sbridge_mc_printk(mci, KERN_DEBUG, "PROCESSOR %u:%x TIME %llu SOCKET "
  2838. "%u APIC %x\n", mce->cpuvendor, mce->cpuid,
  2839. mce->time, mce->socketid, mce->apicid);
  2840. sbridge_mce_output_error(mci, mce);
  2841. /* Advice mcelog that the error were handled */
  2842. mce->kflags |= MCE_HANDLED_EDAC;
  2843. return NOTIFY_OK;
  2844. }
  2845. static struct notifier_block sbridge_mce_dec = {
  2846. .notifier_call = sbridge_mce_check_error,
  2847. .priority = MCE_PRIO_EDAC,
  2848. };
  2849. /****************************************************************************
  2850. EDAC register/unregister logic
  2851. ****************************************************************************/
  2852. static void sbridge_unregister_mci(struct sbridge_dev *sbridge_dev)
  2853. {
  2854. struct mem_ctl_info *mci = sbridge_dev->mci;
  2855. if (unlikely(!mci || !mci->pvt_info)) {
  2856. edac_dbg(0, "MC: dev = %p\n", &sbridge_dev->pdev[0]->dev);
  2857. sbridge_printk(KERN_ERR, "Couldn't find mci handler\n");
  2858. return;
  2859. }
  2860. edac_dbg(0, "MC: mci = %p, dev = %p\n",
  2861. mci, &sbridge_dev->pdev[0]->dev);
  2862. /* Remove MC sysfs nodes */
  2863. edac_mc_del_mc(mci->pdev);
  2864. edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
  2865. kfree(mci->ctl_name);
  2866. edac_mc_free(mci);
  2867. sbridge_dev->mci = NULL;
  2868. }
  2869. static int sbridge_register_mci(struct sbridge_dev *sbridge_dev, enum type type)
  2870. {
  2871. struct mem_ctl_info *mci;
  2872. struct edac_mc_layer layers[2];
  2873. struct sbridge_pvt *pvt;
  2874. struct pci_dev *pdev = sbridge_dev->pdev[0];
  2875. int rc;
  2876. /* allocate a new MC control structure */
  2877. layers[0].type = EDAC_MC_LAYER_CHANNEL;
  2878. layers[0].size = type == KNIGHTS_LANDING ?
  2879. KNL_MAX_CHANNELS : NUM_CHANNELS;
  2880. layers[0].is_virt_csrow = false;
  2881. layers[1].type = EDAC_MC_LAYER_SLOT;
  2882. layers[1].size = type == KNIGHTS_LANDING ? 1 : MAX_DIMMS;
  2883. layers[1].is_virt_csrow = true;
  2884. mci = edac_mc_alloc(sbridge_dev->mc, ARRAY_SIZE(layers), layers,
  2885. sizeof(*pvt));
  2886. if (unlikely(!mci))
  2887. return -ENOMEM;
  2888. edac_dbg(0, "MC: mci = %p, dev = %p\n",
  2889. mci, &pdev->dev);
  2890. pvt = mci->pvt_info;
  2891. memset(pvt, 0, sizeof(*pvt));
  2892. /* Associate sbridge_dev and mci for future usage */
  2893. pvt->sbridge_dev = sbridge_dev;
  2894. sbridge_dev->mci = mci;
  2895. mci->mtype_cap = type == KNIGHTS_LANDING ?
  2896. MEM_FLAG_DDR4 : MEM_FLAG_DDR3;
  2897. mci->edac_ctl_cap = EDAC_FLAG_NONE;
  2898. mci->edac_cap = EDAC_FLAG_NONE;
  2899. mci->mod_name = EDAC_MOD_STR;
  2900. mci->dev_name = pci_name(pdev);
  2901. mci->ctl_page_to_phys = NULL;
  2902. pvt->info.type = type;
  2903. switch (type) {
  2904. case IVY_BRIDGE:
  2905. pvt->info.rankcfgr = IB_RANK_CFG_A;
  2906. pvt->info.get_tolm = ibridge_get_tolm;
  2907. pvt->info.get_tohm = ibridge_get_tohm;
  2908. pvt->info.dram_rule = ibridge_dram_rule;
  2909. pvt->info.get_memory_type = get_memory_type;
  2910. pvt->info.get_node_id = get_node_id;
  2911. pvt->info.get_ha = ibridge_get_ha;
  2912. pvt->info.rir_limit = rir_limit;
  2913. pvt->info.sad_limit = sad_limit;
  2914. pvt->info.interleave_mode = interleave_mode;
  2915. pvt->info.dram_attr = dram_attr;
  2916. pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
  2917. pvt->info.interleave_list = ibridge_interleave_list;
  2918. pvt->info.interleave_pkg = ibridge_interleave_pkg;
  2919. pvt->info.get_width = ibridge_get_width;
  2920. /* Store pci devices at mci for faster access */
  2921. rc = ibridge_mci_bind_devs(mci, sbridge_dev);
  2922. if (unlikely(rc < 0))
  2923. goto fail0;
  2924. get_source_id(mci);
  2925. mci->ctl_name = kasprintf(GFP_KERNEL, "Ivy Bridge SrcID#%d_Ha#%d",
  2926. pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
  2927. break;
  2928. case SANDY_BRIDGE:
  2929. pvt->info.rankcfgr = SB_RANK_CFG_A;
  2930. pvt->info.get_tolm = sbridge_get_tolm;
  2931. pvt->info.get_tohm = sbridge_get_tohm;
  2932. pvt->info.dram_rule = sbridge_dram_rule;
  2933. pvt->info.get_memory_type = get_memory_type;
  2934. pvt->info.get_node_id = get_node_id;
  2935. pvt->info.get_ha = sbridge_get_ha;
  2936. pvt->info.rir_limit = rir_limit;
  2937. pvt->info.sad_limit = sad_limit;
  2938. pvt->info.interleave_mode = interleave_mode;
  2939. pvt->info.dram_attr = dram_attr;
  2940. pvt->info.max_sad = ARRAY_SIZE(sbridge_dram_rule);
  2941. pvt->info.interleave_list = sbridge_interleave_list;
  2942. pvt->info.interleave_pkg = sbridge_interleave_pkg;
  2943. pvt->info.get_width = sbridge_get_width;
  2944. /* Store pci devices at mci for faster access */
  2945. rc = sbridge_mci_bind_devs(mci, sbridge_dev);
  2946. if (unlikely(rc < 0))
  2947. goto fail0;
  2948. get_source_id(mci);
  2949. mci->ctl_name = kasprintf(GFP_KERNEL, "Sandy Bridge SrcID#%d_Ha#%d",
  2950. pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
  2951. break;
  2952. case HASWELL:
  2953. /* rankcfgr isn't used */
  2954. pvt->info.get_tolm = haswell_get_tolm;
  2955. pvt->info.get_tohm = haswell_get_tohm;
  2956. pvt->info.dram_rule = ibridge_dram_rule;
  2957. pvt->info.get_memory_type = haswell_get_memory_type;
  2958. pvt->info.get_node_id = haswell_get_node_id;
  2959. pvt->info.get_ha = ibridge_get_ha;
  2960. pvt->info.rir_limit = haswell_rir_limit;
  2961. pvt->info.sad_limit = sad_limit;
  2962. pvt->info.interleave_mode = interleave_mode;
  2963. pvt->info.dram_attr = dram_attr;
  2964. pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
  2965. pvt->info.interleave_list = ibridge_interleave_list;
  2966. pvt->info.interleave_pkg = ibridge_interleave_pkg;
  2967. pvt->info.get_width = ibridge_get_width;
  2968. /* Store pci devices at mci for faster access */
  2969. rc = haswell_mci_bind_devs(mci, sbridge_dev);
  2970. if (unlikely(rc < 0))
  2971. goto fail0;
  2972. get_source_id(mci);
  2973. mci->ctl_name = kasprintf(GFP_KERNEL, "Haswell SrcID#%d_Ha#%d",
  2974. pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
  2975. break;
  2976. case BROADWELL:
  2977. /* rankcfgr isn't used */
  2978. pvt->info.get_tolm = haswell_get_tolm;
  2979. pvt->info.get_tohm = haswell_get_tohm;
  2980. pvt->info.dram_rule = ibridge_dram_rule;
  2981. pvt->info.get_memory_type = haswell_get_memory_type;
  2982. pvt->info.get_node_id = haswell_get_node_id;
  2983. pvt->info.get_ha = ibridge_get_ha;
  2984. pvt->info.rir_limit = haswell_rir_limit;
  2985. pvt->info.sad_limit = sad_limit;
  2986. pvt->info.interleave_mode = interleave_mode;
  2987. pvt->info.dram_attr = dram_attr;
  2988. pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
  2989. pvt->info.interleave_list = ibridge_interleave_list;
  2990. pvt->info.interleave_pkg = ibridge_interleave_pkg;
  2991. pvt->info.get_width = broadwell_get_width;
  2992. /* Store pci devices at mci for faster access */
  2993. rc = broadwell_mci_bind_devs(mci, sbridge_dev);
  2994. if (unlikely(rc < 0))
  2995. goto fail0;
  2996. get_source_id(mci);
  2997. mci->ctl_name = kasprintf(GFP_KERNEL, "Broadwell SrcID#%d_Ha#%d",
  2998. pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
  2999. break;
  3000. case KNIGHTS_LANDING:
  3001. /* pvt->info.rankcfgr == ??? */
  3002. pvt->info.get_tolm = knl_get_tolm;
  3003. pvt->info.get_tohm = knl_get_tohm;
  3004. pvt->info.dram_rule = knl_dram_rule;
  3005. pvt->info.get_memory_type = knl_get_memory_type;
  3006. pvt->info.get_node_id = knl_get_node_id;
  3007. pvt->info.get_ha = knl_get_ha;
  3008. pvt->info.rir_limit = NULL;
  3009. pvt->info.sad_limit = knl_sad_limit;
  3010. pvt->info.interleave_mode = knl_interleave_mode;
  3011. pvt->info.dram_attr = dram_attr_knl;
  3012. pvt->info.max_sad = ARRAY_SIZE(knl_dram_rule);
  3013. pvt->info.interleave_list = knl_interleave_list;
  3014. pvt->info.interleave_pkg = ibridge_interleave_pkg;
  3015. pvt->info.get_width = knl_get_width;
  3016. rc = knl_mci_bind_devs(mci, sbridge_dev);
  3017. if (unlikely(rc < 0))
  3018. goto fail0;
  3019. get_source_id(mci);
  3020. mci->ctl_name = kasprintf(GFP_KERNEL, "Knights Landing SrcID#%d_Ha#%d",
  3021. pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
  3022. break;
  3023. }
  3024. if (!mci->ctl_name) {
  3025. rc = -ENOMEM;
  3026. goto fail0;
  3027. }
  3028. /* Get dimm basic config and the memory layout */
  3029. rc = get_dimm_config(mci);
  3030. if (rc < 0) {
  3031. edac_dbg(0, "MC: failed to get_dimm_config()\n");
  3032. goto fail;
  3033. }
  3034. get_memory_layout(mci);
  3035. /* record ptr to the generic device */
  3036. mci->pdev = &pdev->dev;
  3037. /* add this new MC control structure to EDAC's list of MCs */
  3038. if (unlikely(edac_mc_add_mc(mci))) {
  3039. edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
  3040. rc = -EINVAL;
  3041. goto fail;
  3042. }
  3043. return 0;
  3044. fail:
  3045. kfree(mci->ctl_name);
  3046. fail0:
  3047. edac_mc_free(mci);
  3048. sbridge_dev->mci = NULL;
  3049. return rc;
  3050. }
  3051. static const struct x86_cpu_id sbridge_cpuids[] = {
  3052. X86_MATCH_INTEL_FAM6_MODEL(SANDYBRIDGE_X, &pci_dev_descr_sbridge_table),
  3053. X86_MATCH_INTEL_FAM6_MODEL(IVYBRIDGE_X, &pci_dev_descr_ibridge_table),
  3054. X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X, &pci_dev_descr_haswell_table),
  3055. X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X, &pci_dev_descr_broadwell_table),
  3056. X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_D, &pci_dev_descr_broadwell_table),
  3057. X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNL, &pci_dev_descr_knl_table),
  3058. X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNM, &pci_dev_descr_knl_table),
  3059. { }
  3060. };
  3061. MODULE_DEVICE_TABLE(x86cpu, sbridge_cpuids);
  3062. /*
  3063. * sbridge_probe Get all devices and register memory controllers
  3064. * present.
  3065. * return:
  3066. * 0 for FOUND a device
  3067. * < 0 for error code
  3068. */
  3069. static int sbridge_probe(const struct x86_cpu_id *id)
  3070. {
  3071. int rc;
  3072. u8 mc, num_mc = 0;
  3073. struct sbridge_dev *sbridge_dev;
  3074. struct pci_id_table *ptable = (struct pci_id_table *)id->driver_data;
  3075. /* get the pci devices we want to reserve for our use */
  3076. rc = sbridge_get_all_devices(&num_mc, ptable);
  3077. if (unlikely(rc < 0)) {
  3078. edac_dbg(0, "couldn't get all devices\n");
  3079. goto fail0;
  3080. }
  3081. mc = 0;
  3082. list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
  3083. edac_dbg(0, "Registering MC#%d (%d of %d)\n",
  3084. mc, mc + 1, num_mc);
  3085. sbridge_dev->mc = mc++;
  3086. rc = sbridge_register_mci(sbridge_dev, ptable->type);
  3087. if (unlikely(rc < 0))
  3088. goto fail1;
  3089. }
  3090. sbridge_printk(KERN_INFO, "%s\n", SBRIDGE_REVISION);
  3091. return 0;
  3092. fail1:
  3093. list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
  3094. sbridge_unregister_mci(sbridge_dev);
  3095. sbridge_put_all_devices();
  3096. fail0:
  3097. return rc;
  3098. }
  3099. /*
  3100. * sbridge_remove cleanup
  3101. *
  3102. */
  3103. static void sbridge_remove(void)
  3104. {
  3105. struct sbridge_dev *sbridge_dev;
  3106. edac_dbg(0, "\n");
  3107. list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
  3108. sbridge_unregister_mci(sbridge_dev);
  3109. /* Release PCI resources */
  3110. sbridge_put_all_devices();
  3111. }
  3112. /*
  3113. * sbridge_init Module entry function
  3114. * Try to initialize this module for its devices
  3115. */
  3116. static int __init sbridge_init(void)
  3117. {
  3118. const struct x86_cpu_id *id;
  3119. const char *owner;
  3120. int rc;
  3121. edac_dbg(2, "\n");
  3122. owner = edac_get_owner();
  3123. if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR)))
  3124. return -EBUSY;
  3125. if (cpu_feature_enabled(X86_FEATURE_HYPERVISOR))
  3126. return -ENODEV;
  3127. id = x86_match_cpu(sbridge_cpuids);
  3128. if (!id)
  3129. return -ENODEV;
  3130. /* Ensure that the OPSTATE is set correctly for POLL or NMI */
  3131. opstate_init();
  3132. rc = sbridge_probe(id);
  3133. if (rc >= 0) {
  3134. mce_register_decode_chain(&sbridge_mce_dec);
  3135. return 0;
  3136. }
  3137. sbridge_printk(KERN_ERR, "Failed to register device with error %d.\n",
  3138. rc);
  3139. return rc;
  3140. }
  3141. /*
  3142. * sbridge_exit() Module exit function
  3143. * Unregister the driver
  3144. */
  3145. static void __exit sbridge_exit(void)
  3146. {
  3147. edac_dbg(2, "\n");
  3148. sbridge_remove();
  3149. mce_unregister_decode_chain(&sbridge_mce_dec);
  3150. }
  3151. module_init(sbridge_init);
  3152. module_exit(sbridge_exit);
  3153. module_param(edac_op_state, int, 0444);
  3154. MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
  3155. MODULE_LICENSE("GPL");
  3156. MODULE_AUTHOR("Mauro Carvalho Chehab");
  3157. MODULE_AUTHOR("Red Hat Inc. (https://www.redhat.com)");
  3158. MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge and Ivy Bridge memory controllers - "
  3159. SBRIDGE_REVISION);