ste_dma40.c 96 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Copyright (C) Ericsson AB 2007-2008
  4. * Copyright (C) ST-Ericsson SA 2008-2010
  5. * Author: Per Forlin <[email protected]> for ST-Ericsson
  6. * Author: Jonas Aaberg <[email protected]> for ST-Ericsson
  7. */
  8. #include <linux/dma-mapping.h>
  9. #include <linux/kernel.h>
  10. #include <linux/slab.h>
  11. #include <linux/export.h>
  12. #include <linux/dmaengine.h>
  13. #include <linux/platform_device.h>
  14. #include <linux/clk.h>
  15. #include <linux/delay.h>
  16. #include <linux/log2.h>
  17. #include <linux/pm.h>
  18. #include <linux/pm_runtime.h>
  19. #include <linux/err.h>
  20. #include <linux/of.h>
  21. #include <linux/of_dma.h>
  22. #include <linux/amba/bus.h>
  23. #include <linux/regulator/consumer.h>
  24. #include <linux/platform_data/dma-ste-dma40.h>
  25. #include "dmaengine.h"
  26. #include "ste_dma40_ll.h"
  27. #define D40_NAME "dma40"
  28. #define D40_PHY_CHAN -1
  29. /* For masking out/in 2 bit channel positions */
  30. #define D40_CHAN_POS(chan) (2 * (chan / 2))
  31. #define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
  32. /* Maximum iterations taken before giving up suspending a channel */
  33. #define D40_SUSPEND_MAX_IT 500
  34. /* Milliseconds */
  35. #define DMA40_AUTOSUSPEND_DELAY 100
  36. /* Hardware requirement on LCLA alignment */
  37. #define LCLA_ALIGNMENT 0x40000
  38. /* Max number of links per event group */
  39. #define D40_LCLA_LINK_PER_EVENT_GRP 128
  40. #define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP
  41. /* Max number of logical channels per physical channel */
  42. #define D40_MAX_LOG_CHAN_PER_PHY 32
  43. /* Attempts before giving up to trying to get pages that are aligned */
  44. #define MAX_LCLA_ALLOC_ATTEMPTS 256
  45. /* Bit markings for allocation map */
  46. #define D40_ALLOC_FREE BIT(31)
  47. #define D40_ALLOC_PHY BIT(30)
  48. #define D40_ALLOC_LOG_FREE 0
  49. #define D40_MEMCPY_MAX_CHANS 8
  50. /* Reserved event lines for memcpy only. */
  51. #define DB8500_DMA_MEMCPY_EV_0 51
  52. #define DB8500_DMA_MEMCPY_EV_1 56
  53. #define DB8500_DMA_MEMCPY_EV_2 57
  54. #define DB8500_DMA_MEMCPY_EV_3 58
  55. #define DB8500_DMA_MEMCPY_EV_4 59
  56. #define DB8500_DMA_MEMCPY_EV_5 60
  57. static int dma40_memcpy_channels[] = {
  58. DB8500_DMA_MEMCPY_EV_0,
  59. DB8500_DMA_MEMCPY_EV_1,
  60. DB8500_DMA_MEMCPY_EV_2,
  61. DB8500_DMA_MEMCPY_EV_3,
  62. DB8500_DMA_MEMCPY_EV_4,
  63. DB8500_DMA_MEMCPY_EV_5,
  64. };
  65. /* Default configuration for physical memcpy */
  66. static const struct stedma40_chan_cfg dma40_memcpy_conf_phy = {
  67. .mode = STEDMA40_MODE_PHYSICAL,
  68. .dir = DMA_MEM_TO_MEM,
  69. .src_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
  70. .src_info.psize = STEDMA40_PSIZE_PHY_1,
  71. .src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
  72. .dst_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
  73. .dst_info.psize = STEDMA40_PSIZE_PHY_1,
  74. .dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
  75. };
  76. /* Default configuration for logical memcpy */
  77. static const struct stedma40_chan_cfg dma40_memcpy_conf_log = {
  78. .mode = STEDMA40_MODE_LOGICAL,
  79. .dir = DMA_MEM_TO_MEM,
  80. .src_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
  81. .src_info.psize = STEDMA40_PSIZE_LOG_1,
  82. .src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
  83. .dst_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
  84. .dst_info.psize = STEDMA40_PSIZE_LOG_1,
  85. .dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
  86. };
  87. /**
  88. * enum 40_command - The different commands and/or statuses.
  89. *
  90. * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
  91. * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
  92. * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
  93. * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
  94. */
  95. enum d40_command {
  96. D40_DMA_STOP = 0,
  97. D40_DMA_RUN = 1,
  98. D40_DMA_SUSPEND_REQ = 2,
  99. D40_DMA_SUSPENDED = 3
  100. };
  101. /*
  102. * enum d40_events - The different Event Enables for the event lines.
  103. *
  104. * @D40_DEACTIVATE_EVENTLINE: De-activate Event line, stopping the logical chan.
  105. * @D40_ACTIVATE_EVENTLINE: Activate the Event line, to start a logical chan.
  106. * @D40_SUSPEND_REQ_EVENTLINE: Requesting for suspending a event line.
  107. * @D40_ROUND_EVENTLINE: Status check for event line.
  108. */
  109. enum d40_events {
  110. D40_DEACTIVATE_EVENTLINE = 0,
  111. D40_ACTIVATE_EVENTLINE = 1,
  112. D40_SUSPEND_REQ_EVENTLINE = 2,
  113. D40_ROUND_EVENTLINE = 3
  114. };
  115. /*
  116. * These are the registers that has to be saved and later restored
  117. * when the DMA hw is powered off.
  118. * TODO: Add save/restore of D40_DREG_GCC on dma40 v3 or later, if that works.
  119. */
  120. static __maybe_unused u32 d40_backup_regs[] = {
  121. D40_DREG_LCPA,
  122. D40_DREG_LCLA,
  123. D40_DREG_PRMSE,
  124. D40_DREG_PRMSO,
  125. D40_DREG_PRMOE,
  126. D40_DREG_PRMOO,
  127. };
  128. #define BACKUP_REGS_SZ ARRAY_SIZE(d40_backup_regs)
  129. /*
  130. * since 9540 and 8540 has the same HW revision
  131. * use v4a for 9540 or ealier
  132. * use v4b for 8540 or later
  133. * HW revision:
  134. * DB8500ed has revision 0
  135. * DB8500v1 has revision 2
  136. * DB8500v2 has revision 3
  137. * AP9540v1 has revision 4
  138. * DB8540v1 has revision 4
  139. * TODO: Check if all these registers have to be saved/restored on dma40 v4a
  140. */
  141. static u32 d40_backup_regs_v4a[] = {
  142. D40_DREG_PSEG1,
  143. D40_DREG_PSEG2,
  144. D40_DREG_PSEG3,
  145. D40_DREG_PSEG4,
  146. D40_DREG_PCEG1,
  147. D40_DREG_PCEG2,
  148. D40_DREG_PCEG3,
  149. D40_DREG_PCEG4,
  150. D40_DREG_RSEG1,
  151. D40_DREG_RSEG2,
  152. D40_DREG_RSEG3,
  153. D40_DREG_RSEG4,
  154. D40_DREG_RCEG1,
  155. D40_DREG_RCEG2,
  156. D40_DREG_RCEG3,
  157. D40_DREG_RCEG4,
  158. };
  159. #define BACKUP_REGS_SZ_V4A ARRAY_SIZE(d40_backup_regs_v4a)
  160. static u32 d40_backup_regs_v4b[] = {
  161. D40_DREG_CPSEG1,
  162. D40_DREG_CPSEG2,
  163. D40_DREG_CPSEG3,
  164. D40_DREG_CPSEG4,
  165. D40_DREG_CPSEG5,
  166. D40_DREG_CPCEG1,
  167. D40_DREG_CPCEG2,
  168. D40_DREG_CPCEG3,
  169. D40_DREG_CPCEG4,
  170. D40_DREG_CPCEG5,
  171. D40_DREG_CRSEG1,
  172. D40_DREG_CRSEG2,
  173. D40_DREG_CRSEG3,
  174. D40_DREG_CRSEG4,
  175. D40_DREG_CRSEG5,
  176. D40_DREG_CRCEG1,
  177. D40_DREG_CRCEG2,
  178. D40_DREG_CRCEG3,
  179. D40_DREG_CRCEG4,
  180. D40_DREG_CRCEG5,
  181. };
  182. #define BACKUP_REGS_SZ_V4B ARRAY_SIZE(d40_backup_regs_v4b)
  183. static __maybe_unused u32 d40_backup_regs_chan[] = {
  184. D40_CHAN_REG_SSCFG,
  185. D40_CHAN_REG_SSELT,
  186. D40_CHAN_REG_SSPTR,
  187. D40_CHAN_REG_SSLNK,
  188. D40_CHAN_REG_SDCFG,
  189. D40_CHAN_REG_SDELT,
  190. D40_CHAN_REG_SDPTR,
  191. D40_CHAN_REG_SDLNK,
  192. };
  193. #define BACKUP_REGS_SZ_MAX ((BACKUP_REGS_SZ_V4A > BACKUP_REGS_SZ_V4B) ? \
  194. BACKUP_REGS_SZ_V4A : BACKUP_REGS_SZ_V4B)
  195. /**
  196. * struct d40_interrupt_lookup - lookup table for interrupt handler
  197. *
  198. * @src: Interrupt mask register.
  199. * @clr: Interrupt clear register.
  200. * @is_error: true if this is an error interrupt.
  201. * @offset: start delta in the lookup_log_chans in d40_base. If equals to
  202. * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
  203. */
  204. struct d40_interrupt_lookup {
  205. u32 src;
  206. u32 clr;
  207. bool is_error;
  208. int offset;
  209. };
  210. static struct d40_interrupt_lookup il_v4a[] = {
  211. {D40_DREG_LCTIS0, D40_DREG_LCICR0, false, 0},
  212. {D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
  213. {D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
  214. {D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
  215. {D40_DREG_LCEIS0, D40_DREG_LCICR0, true, 0},
  216. {D40_DREG_LCEIS1, D40_DREG_LCICR1, true, 32},
  217. {D40_DREG_LCEIS2, D40_DREG_LCICR2, true, 64},
  218. {D40_DREG_LCEIS3, D40_DREG_LCICR3, true, 96},
  219. {D40_DREG_PCTIS, D40_DREG_PCICR, false, D40_PHY_CHAN},
  220. {D40_DREG_PCEIS, D40_DREG_PCICR, true, D40_PHY_CHAN},
  221. };
  222. static struct d40_interrupt_lookup il_v4b[] = {
  223. {D40_DREG_CLCTIS1, D40_DREG_CLCICR1, false, 0},
  224. {D40_DREG_CLCTIS2, D40_DREG_CLCICR2, false, 32},
  225. {D40_DREG_CLCTIS3, D40_DREG_CLCICR3, false, 64},
  226. {D40_DREG_CLCTIS4, D40_DREG_CLCICR4, false, 96},
  227. {D40_DREG_CLCTIS5, D40_DREG_CLCICR5, false, 128},
  228. {D40_DREG_CLCEIS1, D40_DREG_CLCICR1, true, 0},
  229. {D40_DREG_CLCEIS2, D40_DREG_CLCICR2, true, 32},
  230. {D40_DREG_CLCEIS3, D40_DREG_CLCICR3, true, 64},
  231. {D40_DREG_CLCEIS4, D40_DREG_CLCICR4, true, 96},
  232. {D40_DREG_CLCEIS5, D40_DREG_CLCICR5, true, 128},
  233. {D40_DREG_CPCTIS, D40_DREG_CPCICR, false, D40_PHY_CHAN},
  234. {D40_DREG_CPCEIS, D40_DREG_CPCICR, true, D40_PHY_CHAN},
  235. };
  236. /**
  237. * struct d40_reg_val - simple lookup struct
  238. *
  239. * @reg: The register.
  240. * @val: The value that belongs to the register in reg.
  241. */
  242. struct d40_reg_val {
  243. unsigned int reg;
  244. unsigned int val;
  245. };
  246. static __initdata struct d40_reg_val dma_init_reg_v4a[] = {
  247. /* Clock every part of the DMA block from start */
  248. { .reg = D40_DREG_GCC, .val = D40_DREG_GCC_ENABLE_ALL},
  249. /* Interrupts on all logical channels */
  250. { .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
  251. { .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
  252. { .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
  253. { .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
  254. { .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
  255. { .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
  256. { .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
  257. { .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
  258. { .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
  259. { .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
  260. { .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
  261. { .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
  262. };
  263. static __initdata struct d40_reg_val dma_init_reg_v4b[] = {
  264. /* Clock every part of the DMA block from start */
  265. { .reg = D40_DREG_GCC, .val = D40_DREG_GCC_ENABLE_ALL},
  266. /* Interrupts on all logical channels */
  267. { .reg = D40_DREG_CLCMIS1, .val = 0xFFFFFFFF},
  268. { .reg = D40_DREG_CLCMIS2, .val = 0xFFFFFFFF},
  269. { .reg = D40_DREG_CLCMIS3, .val = 0xFFFFFFFF},
  270. { .reg = D40_DREG_CLCMIS4, .val = 0xFFFFFFFF},
  271. { .reg = D40_DREG_CLCMIS5, .val = 0xFFFFFFFF},
  272. { .reg = D40_DREG_CLCICR1, .val = 0xFFFFFFFF},
  273. { .reg = D40_DREG_CLCICR2, .val = 0xFFFFFFFF},
  274. { .reg = D40_DREG_CLCICR3, .val = 0xFFFFFFFF},
  275. { .reg = D40_DREG_CLCICR4, .val = 0xFFFFFFFF},
  276. { .reg = D40_DREG_CLCICR5, .val = 0xFFFFFFFF},
  277. { .reg = D40_DREG_CLCTIS1, .val = 0xFFFFFFFF},
  278. { .reg = D40_DREG_CLCTIS2, .val = 0xFFFFFFFF},
  279. { .reg = D40_DREG_CLCTIS3, .val = 0xFFFFFFFF},
  280. { .reg = D40_DREG_CLCTIS4, .val = 0xFFFFFFFF},
  281. { .reg = D40_DREG_CLCTIS5, .val = 0xFFFFFFFF}
  282. };
  283. /**
  284. * struct d40_lli_pool - Structure for keeping LLIs in memory
  285. *
  286. * @base: Pointer to memory area when the pre_alloc_lli's are not large
  287. * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
  288. * pre_alloc_lli is used.
  289. * @dma_addr: DMA address, if mapped
  290. * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
  291. * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
  292. * one buffer to one buffer.
  293. */
  294. struct d40_lli_pool {
  295. void *base;
  296. int size;
  297. dma_addr_t dma_addr;
  298. /* Space for dst and src, plus an extra for padding */
  299. u8 pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
  300. };
  301. /**
  302. * struct d40_desc - A descriptor is one DMA job.
  303. *
  304. * @lli_phy: LLI settings for physical channel. Both src and dst=
  305. * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
  306. * lli_len equals one.
  307. * @lli_log: Same as above but for logical channels.
  308. * @lli_pool: The pool with two entries pre-allocated.
  309. * @lli_len: Number of llis of current descriptor.
  310. * @lli_current: Number of transferred llis.
  311. * @lcla_alloc: Number of LCLA entries allocated.
  312. * @txd: DMA engine struct. Used for among other things for communication
  313. * during a transfer.
  314. * @node: List entry.
  315. * @is_in_client_list: true if the client owns this descriptor.
  316. * @cyclic: true if this is a cyclic job
  317. *
  318. * This descriptor is used for both logical and physical transfers.
  319. */
  320. struct d40_desc {
  321. /* LLI physical */
  322. struct d40_phy_lli_bidir lli_phy;
  323. /* LLI logical */
  324. struct d40_log_lli_bidir lli_log;
  325. struct d40_lli_pool lli_pool;
  326. int lli_len;
  327. int lli_current;
  328. int lcla_alloc;
  329. struct dma_async_tx_descriptor txd;
  330. struct list_head node;
  331. bool is_in_client_list;
  332. bool cyclic;
  333. };
  334. /**
  335. * struct d40_lcla_pool - LCLA pool settings and data.
  336. *
  337. * @base: The virtual address of LCLA. 18 bit aligned.
  338. * @dma_addr: DMA address, if mapped
  339. * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
  340. * This pointer is only there for clean-up on error.
  341. * @pages: The number of pages needed for all physical channels.
  342. * Only used later for clean-up on error
  343. * @lock: Lock to protect the content in this struct.
  344. * @alloc_map: big map over which LCLA entry is own by which job.
  345. */
  346. struct d40_lcla_pool {
  347. void *base;
  348. dma_addr_t dma_addr;
  349. void *base_unaligned;
  350. int pages;
  351. spinlock_t lock;
  352. struct d40_desc **alloc_map;
  353. };
  354. /**
  355. * struct d40_phy_res - struct for handling eventlines mapped to physical
  356. * channels.
  357. *
  358. * @lock: A lock protection this entity.
  359. * @reserved: True if used by secure world or otherwise.
  360. * @num: The physical channel number of this entity.
  361. * @allocated_src: Bit mapped to show which src event line's are mapped to
  362. * this physical channel. Can also be free or physically allocated.
  363. * @allocated_dst: Same as for src but is dst.
  364. * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
  365. * event line number.
  366. * @use_soft_lli: To mark if the linked lists of channel are managed by SW.
  367. */
  368. struct d40_phy_res {
  369. spinlock_t lock;
  370. bool reserved;
  371. int num;
  372. u32 allocated_src;
  373. u32 allocated_dst;
  374. bool use_soft_lli;
  375. };
  376. struct d40_base;
  377. /**
  378. * struct d40_chan - Struct that describes a channel.
  379. *
  380. * @lock: A spinlock to protect this struct.
  381. * @log_num: The logical number, if any of this channel.
  382. * @pending_tx: The number of pending transfers. Used between interrupt handler
  383. * and tasklet.
  384. * @busy: Set to true when transfer is ongoing on this channel.
  385. * @phy_chan: Pointer to physical channel which this instance runs on. If this
  386. * point is NULL, then the channel is not allocated.
  387. * @chan: DMA engine handle.
  388. * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
  389. * transfer and call client callback.
  390. * @client: Cliented owned descriptor list.
  391. * @pending_queue: Submitted jobs, to be issued by issue_pending()
  392. * @active: Active descriptor.
  393. * @done: Completed jobs
  394. * @queue: Queued jobs.
  395. * @prepare_queue: Prepared jobs.
  396. * @dma_cfg: The client configuration of this dma channel.
  397. * @slave_config: DMA slave configuration.
  398. * @configured: whether the dma_cfg configuration is valid
  399. * @base: Pointer to the device instance struct.
  400. * @src_def_cfg: Default cfg register setting for src.
  401. * @dst_def_cfg: Default cfg register setting for dst.
  402. * @log_def: Default logical channel settings.
  403. * @lcpa: Pointer to dst and src lcpa settings.
  404. * @runtime_addr: runtime configured address.
  405. * @runtime_direction: runtime configured direction.
  406. *
  407. * This struct can either "be" a logical or a physical channel.
  408. */
  409. struct d40_chan {
  410. spinlock_t lock;
  411. int log_num;
  412. int pending_tx;
  413. bool busy;
  414. struct d40_phy_res *phy_chan;
  415. struct dma_chan chan;
  416. struct tasklet_struct tasklet;
  417. struct list_head client;
  418. struct list_head pending_queue;
  419. struct list_head active;
  420. struct list_head done;
  421. struct list_head queue;
  422. struct list_head prepare_queue;
  423. struct stedma40_chan_cfg dma_cfg;
  424. struct dma_slave_config slave_config;
  425. bool configured;
  426. struct d40_base *base;
  427. /* Default register configurations */
  428. u32 src_def_cfg;
  429. u32 dst_def_cfg;
  430. struct d40_def_lcsp log_def;
  431. struct d40_log_lli_full *lcpa;
  432. /* Runtime reconfiguration */
  433. dma_addr_t runtime_addr;
  434. enum dma_transfer_direction runtime_direction;
  435. };
  436. /**
  437. * struct d40_gen_dmac - generic values to represent u8500/u8540 DMA
  438. * controller
  439. *
  440. * @backup: the pointer to the registers address array for backup
  441. * @backup_size: the size of the registers address array for backup
  442. * @realtime_en: the realtime enable register
  443. * @realtime_clear: the realtime clear register
  444. * @high_prio_en: the high priority enable register
  445. * @high_prio_clear: the high priority clear register
  446. * @interrupt_en: the interrupt enable register
  447. * @interrupt_clear: the interrupt clear register
  448. * @il: the pointer to struct d40_interrupt_lookup
  449. * @il_size: the size of d40_interrupt_lookup array
  450. * @init_reg: the pointer to the struct d40_reg_val
  451. * @init_reg_size: the size of d40_reg_val array
  452. */
  453. struct d40_gen_dmac {
  454. u32 *backup;
  455. u32 backup_size;
  456. u32 realtime_en;
  457. u32 realtime_clear;
  458. u32 high_prio_en;
  459. u32 high_prio_clear;
  460. u32 interrupt_en;
  461. u32 interrupt_clear;
  462. struct d40_interrupt_lookup *il;
  463. u32 il_size;
  464. struct d40_reg_val *init_reg;
  465. u32 init_reg_size;
  466. };
  467. /**
  468. * struct d40_base - The big global struct, one for each probe'd instance.
  469. *
  470. * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
  471. * @execmd_lock: Lock for execute command usage since several channels share
  472. * the same physical register.
  473. * @dev: The device structure.
  474. * @virtbase: The virtual base address of the DMA's register.
  475. * @rev: silicon revision detected.
  476. * @clk: Pointer to the DMA clock structure.
  477. * @phy_start: Physical memory start of the DMA registers.
  478. * @phy_size: Size of the DMA register map.
  479. * @irq: The IRQ number.
  480. * @num_memcpy_chans: The number of channels used for memcpy (mem-to-mem
  481. * transfers).
  482. * @num_phy_chans: The number of physical channels. Read from HW. This
  483. * is the number of available channels for this driver, not counting "Secure
  484. * mode" allocated physical channels.
  485. * @num_log_chans: The number of logical channels. Calculated from
  486. * num_phy_chans.
  487. * @dma_both: dma_device channels that can do both memcpy and slave transfers.
  488. * @dma_slave: dma_device channels that can do only do slave transfers.
  489. * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
  490. * @phy_chans: Room for all possible physical channels in system.
  491. * @log_chans: Room for all possible logical channels in system.
  492. * @lookup_log_chans: Used to map interrupt number to logical channel. Points
  493. * to log_chans entries.
  494. * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
  495. * to phy_chans entries.
  496. * @plat_data: Pointer to provided platform_data which is the driver
  497. * configuration.
  498. * @lcpa_regulator: Pointer to hold the regulator for the esram bank for lcla.
  499. * @phy_res: Vector containing all physical channels.
  500. * @lcla_pool: lcla pool settings and data.
  501. * @lcpa_base: The virtual mapped address of LCPA.
  502. * @phy_lcpa: The physical address of the LCPA.
  503. * @lcpa_size: The size of the LCPA area.
  504. * @desc_slab: cache for descriptors.
  505. * @reg_val_backup: Here the values of some hardware registers are stored
  506. * before the DMA is powered off. They are restored when the power is back on.
  507. * @reg_val_backup_v4: Backup of registers that only exits on dma40 v3 and
  508. * later
  509. * @reg_val_backup_chan: Backup data for standard channel parameter registers.
  510. * @regs_interrupt: Scratch space for registers during interrupt.
  511. * @gcc_pwr_off_mask: Mask to maintain the channels that can be turned off.
  512. * @gen_dmac: the struct for generic registers values to represent u8500/8540
  513. * DMA controller
  514. */
  515. struct d40_base {
  516. spinlock_t interrupt_lock;
  517. spinlock_t execmd_lock;
  518. struct device *dev;
  519. void __iomem *virtbase;
  520. u8 rev:4;
  521. struct clk *clk;
  522. phys_addr_t phy_start;
  523. resource_size_t phy_size;
  524. int irq;
  525. int num_memcpy_chans;
  526. int num_phy_chans;
  527. int num_log_chans;
  528. struct dma_device dma_both;
  529. struct dma_device dma_slave;
  530. struct dma_device dma_memcpy;
  531. struct d40_chan *phy_chans;
  532. struct d40_chan *log_chans;
  533. struct d40_chan **lookup_log_chans;
  534. struct d40_chan **lookup_phy_chans;
  535. struct stedma40_platform_data *plat_data;
  536. struct regulator *lcpa_regulator;
  537. /* Physical half channels */
  538. struct d40_phy_res *phy_res;
  539. struct d40_lcla_pool lcla_pool;
  540. void *lcpa_base;
  541. dma_addr_t phy_lcpa;
  542. resource_size_t lcpa_size;
  543. struct kmem_cache *desc_slab;
  544. u32 reg_val_backup[BACKUP_REGS_SZ];
  545. u32 reg_val_backup_v4[BACKUP_REGS_SZ_MAX];
  546. u32 *reg_val_backup_chan;
  547. u32 *regs_interrupt;
  548. u16 gcc_pwr_off_mask;
  549. struct d40_gen_dmac gen_dmac;
  550. };
  551. static struct device *chan2dev(struct d40_chan *d40c)
  552. {
  553. return &d40c->chan.dev->device;
  554. }
  555. static bool chan_is_physical(struct d40_chan *chan)
  556. {
  557. return chan->log_num == D40_PHY_CHAN;
  558. }
  559. static bool chan_is_logical(struct d40_chan *chan)
  560. {
  561. return !chan_is_physical(chan);
  562. }
  563. static void __iomem *chan_base(struct d40_chan *chan)
  564. {
  565. return chan->base->virtbase + D40_DREG_PCBASE +
  566. chan->phy_chan->num * D40_DREG_PCDELTA;
  567. }
  568. #define d40_err(dev, format, arg...) \
  569. dev_err(dev, "[%s] " format, __func__, ## arg)
  570. #define chan_err(d40c, format, arg...) \
  571. d40_err(chan2dev(d40c), format, ## arg)
  572. static int d40_set_runtime_config_write(struct dma_chan *chan,
  573. struct dma_slave_config *config,
  574. enum dma_transfer_direction direction);
  575. static int d40_pool_lli_alloc(struct d40_chan *d40c, struct d40_desc *d40d,
  576. int lli_len)
  577. {
  578. bool is_log = chan_is_logical(d40c);
  579. u32 align;
  580. void *base;
  581. if (is_log)
  582. align = sizeof(struct d40_log_lli);
  583. else
  584. align = sizeof(struct d40_phy_lli);
  585. if (lli_len == 1) {
  586. base = d40d->lli_pool.pre_alloc_lli;
  587. d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
  588. d40d->lli_pool.base = NULL;
  589. } else {
  590. d40d->lli_pool.size = lli_len * 2 * align;
  591. base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
  592. d40d->lli_pool.base = base;
  593. if (d40d->lli_pool.base == NULL)
  594. return -ENOMEM;
  595. }
  596. if (is_log) {
  597. d40d->lli_log.src = PTR_ALIGN(base, align);
  598. d40d->lli_log.dst = d40d->lli_log.src + lli_len;
  599. d40d->lli_pool.dma_addr = 0;
  600. } else {
  601. d40d->lli_phy.src = PTR_ALIGN(base, align);
  602. d40d->lli_phy.dst = d40d->lli_phy.src + lli_len;
  603. d40d->lli_pool.dma_addr = dma_map_single(d40c->base->dev,
  604. d40d->lli_phy.src,
  605. d40d->lli_pool.size,
  606. DMA_TO_DEVICE);
  607. if (dma_mapping_error(d40c->base->dev,
  608. d40d->lli_pool.dma_addr)) {
  609. kfree(d40d->lli_pool.base);
  610. d40d->lli_pool.base = NULL;
  611. d40d->lli_pool.dma_addr = 0;
  612. return -ENOMEM;
  613. }
  614. }
  615. return 0;
  616. }
  617. static void d40_pool_lli_free(struct d40_chan *d40c, struct d40_desc *d40d)
  618. {
  619. if (d40d->lli_pool.dma_addr)
  620. dma_unmap_single(d40c->base->dev, d40d->lli_pool.dma_addr,
  621. d40d->lli_pool.size, DMA_TO_DEVICE);
  622. kfree(d40d->lli_pool.base);
  623. d40d->lli_pool.base = NULL;
  624. d40d->lli_pool.size = 0;
  625. d40d->lli_log.src = NULL;
  626. d40d->lli_log.dst = NULL;
  627. d40d->lli_phy.src = NULL;
  628. d40d->lli_phy.dst = NULL;
  629. }
  630. static int d40_lcla_alloc_one(struct d40_chan *d40c,
  631. struct d40_desc *d40d)
  632. {
  633. unsigned long flags;
  634. int i;
  635. int ret = -EINVAL;
  636. spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
  637. /*
  638. * Allocate both src and dst at the same time, therefore the half
  639. * start on 1 since 0 can't be used since zero is used as end marker.
  640. */
  641. for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
  642. int idx = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP + i;
  643. if (!d40c->base->lcla_pool.alloc_map[idx]) {
  644. d40c->base->lcla_pool.alloc_map[idx] = d40d;
  645. d40d->lcla_alloc++;
  646. ret = i;
  647. break;
  648. }
  649. }
  650. spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
  651. return ret;
  652. }
  653. static int d40_lcla_free_all(struct d40_chan *d40c,
  654. struct d40_desc *d40d)
  655. {
  656. unsigned long flags;
  657. int i;
  658. int ret = -EINVAL;
  659. if (chan_is_physical(d40c))
  660. return 0;
  661. spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
  662. for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
  663. int idx = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP + i;
  664. if (d40c->base->lcla_pool.alloc_map[idx] == d40d) {
  665. d40c->base->lcla_pool.alloc_map[idx] = NULL;
  666. d40d->lcla_alloc--;
  667. if (d40d->lcla_alloc == 0) {
  668. ret = 0;
  669. break;
  670. }
  671. }
  672. }
  673. spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
  674. return ret;
  675. }
  676. static void d40_desc_remove(struct d40_desc *d40d)
  677. {
  678. list_del(&d40d->node);
  679. }
  680. static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
  681. {
  682. struct d40_desc *desc = NULL;
  683. if (!list_empty(&d40c->client)) {
  684. struct d40_desc *d;
  685. struct d40_desc *_d;
  686. list_for_each_entry_safe(d, _d, &d40c->client, node) {
  687. if (async_tx_test_ack(&d->txd)) {
  688. d40_desc_remove(d);
  689. desc = d;
  690. memset(desc, 0, sizeof(*desc));
  691. break;
  692. }
  693. }
  694. }
  695. if (!desc)
  696. desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT);
  697. if (desc)
  698. INIT_LIST_HEAD(&desc->node);
  699. return desc;
  700. }
  701. static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
  702. {
  703. d40_pool_lli_free(d40c, d40d);
  704. d40_lcla_free_all(d40c, d40d);
  705. kmem_cache_free(d40c->base->desc_slab, d40d);
  706. }
  707. static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
  708. {
  709. list_add_tail(&desc->node, &d40c->active);
  710. }
  711. static void d40_phy_lli_load(struct d40_chan *chan, struct d40_desc *desc)
  712. {
  713. struct d40_phy_lli *lli_dst = desc->lli_phy.dst;
  714. struct d40_phy_lli *lli_src = desc->lli_phy.src;
  715. void __iomem *base = chan_base(chan);
  716. writel(lli_src->reg_cfg, base + D40_CHAN_REG_SSCFG);
  717. writel(lli_src->reg_elt, base + D40_CHAN_REG_SSELT);
  718. writel(lli_src->reg_ptr, base + D40_CHAN_REG_SSPTR);
  719. writel(lli_src->reg_lnk, base + D40_CHAN_REG_SSLNK);
  720. writel(lli_dst->reg_cfg, base + D40_CHAN_REG_SDCFG);
  721. writel(lli_dst->reg_elt, base + D40_CHAN_REG_SDELT);
  722. writel(lli_dst->reg_ptr, base + D40_CHAN_REG_SDPTR);
  723. writel(lli_dst->reg_lnk, base + D40_CHAN_REG_SDLNK);
  724. }
  725. static void d40_desc_done(struct d40_chan *d40c, struct d40_desc *desc)
  726. {
  727. list_add_tail(&desc->node, &d40c->done);
  728. }
  729. static void d40_log_lli_to_lcxa(struct d40_chan *chan, struct d40_desc *desc)
  730. {
  731. struct d40_lcla_pool *pool = &chan->base->lcla_pool;
  732. struct d40_log_lli_bidir *lli = &desc->lli_log;
  733. int lli_current = desc->lli_current;
  734. int lli_len = desc->lli_len;
  735. bool cyclic = desc->cyclic;
  736. int curr_lcla = -EINVAL;
  737. int first_lcla = 0;
  738. bool use_esram_lcla = chan->base->plat_data->use_esram_lcla;
  739. bool linkback;
  740. /*
  741. * We may have partially running cyclic transfers, in case we did't get
  742. * enough LCLA entries.
  743. */
  744. linkback = cyclic && lli_current == 0;
  745. /*
  746. * For linkback, we need one LCLA even with only one link, because we
  747. * can't link back to the one in LCPA space
  748. */
  749. if (linkback || (lli_len - lli_current > 1)) {
  750. /*
  751. * If the channel is expected to use only soft_lli don't
  752. * allocate a lcla. This is to avoid a HW issue that exists
  753. * in some controller during a peripheral to memory transfer
  754. * that uses linked lists.
  755. */
  756. if (!(chan->phy_chan->use_soft_lli &&
  757. chan->dma_cfg.dir == DMA_DEV_TO_MEM))
  758. curr_lcla = d40_lcla_alloc_one(chan, desc);
  759. first_lcla = curr_lcla;
  760. }
  761. /*
  762. * For linkback, we normally load the LCPA in the loop since we need to
  763. * link it to the second LCLA and not the first. However, if we
  764. * couldn't even get a first LCLA, then we have to run in LCPA and
  765. * reload manually.
  766. */
  767. if (!linkback || curr_lcla == -EINVAL) {
  768. unsigned int flags = 0;
  769. if (curr_lcla == -EINVAL)
  770. flags |= LLI_TERM_INT;
  771. d40_log_lli_lcpa_write(chan->lcpa,
  772. &lli->dst[lli_current],
  773. &lli->src[lli_current],
  774. curr_lcla,
  775. flags);
  776. lli_current++;
  777. }
  778. if (curr_lcla < 0)
  779. goto set_current;
  780. for (; lli_current < lli_len; lli_current++) {
  781. unsigned int lcla_offset = chan->phy_chan->num * 1024 +
  782. 8 * curr_lcla * 2;
  783. struct d40_log_lli *lcla = pool->base + lcla_offset;
  784. unsigned int flags = 0;
  785. int next_lcla;
  786. if (lli_current + 1 < lli_len)
  787. next_lcla = d40_lcla_alloc_one(chan, desc);
  788. else
  789. next_lcla = linkback ? first_lcla : -EINVAL;
  790. if (cyclic || next_lcla == -EINVAL)
  791. flags |= LLI_TERM_INT;
  792. if (linkback && curr_lcla == first_lcla) {
  793. /* First link goes in both LCPA and LCLA */
  794. d40_log_lli_lcpa_write(chan->lcpa,
  795. &lli->dst[lli_current],
  796. &lli->src[lli_current],
  797. next_lcla, flags);
  798. }
  799. /*
  800. * One unused LCLA in the cyclic case if the very first
  801. * next_lcla fails...
  802. */
  803. d40_log_lli_lcla_write(lcla,
  804. &lli->dst[lli_current],
  805. &lli->src[lli_current],
  806. next_lcla, flags);
  807. /*
  808. * Cache maintenance is not needed if lcla is
  809. * mapped in esram
  810. */
  811. if (!use_esram_lcla) {
  812. dma_sync_single_range_for_device(chan->base->dev,
  813. pool->dma_addr, lcla_offset,
  814. 2 * sizeof(struct d40_log_lli),
  815. DMA_TO_DEVICE);
  816. }
  817. curr_lcla = next_lcla;
  818. if (curr_lcla == -EINVAL || curr_lcla == first_lcla) {
  819. lli_current++;
  820. break;
  821. }
  822. }
  823. set_current:
  824. desc->lli_current = lli_current;
  825. }
  826. static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
  827. {
  828. if (chan_is_physical(d40c)) {
  829. d40_phy_lli_load(d40c, d40d);
  830. d40d->lli_current = d40d->lli_len;
  831. } else
  832. d40_log_lli_to_lcxa(d40c, d40d);
  833. }
  834. static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
  835. {
  836. return list_first_entry_or_null(&d40c->active, struct d40_desc, node);
  837. }
  838. /* remove desc from current queue and add it to the pending_queue */
  839. static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
  840. {
  841. d40_desc_remove(desc);
  842. desc->is_in_client_list = false;
  843. list_add_tail(&desc->node, &d40c->pending_queue);
  844. }
  845. static struct d40_desc *d40_first_pending(struct d40_chan *d40c)
  846. {
  847. return list_first_entry_or_null(&d40c->pending_queue, struct d40_desc,
  848. node);
  849. }
  850. static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
  851. {
  852. return list_first_entry_or_null(&d40c->queue, struct d40_desc, node);
  853. }
  854. static struct d40_desc *d40_first_done(struct d40_chan *d40c)
  855. {
  856. return list_first_entry_or_null(&d40c->done, struct d40_desc, node);
  857. }
  858. static int d40_psize_2_burst_size(bool is_log, int psize)
  859. {
  860. if (is_log) {
  861. if (psize == STEDMA40_PSIZE_LOG_1)
  862. return 1;
  863. } else {
  864. if (psize == STEDMA40_PSIZE_PHY_1)
  865. return 1;
  866. }
  867. return 2 << psize;
  868. }
  869. /*
  870. * The dma only supports transmitting packages up to
  871. * STEDMA40_MAX_SEG_SIZE * data_width, where data_width is stored in Bytes.
  872. *
  873. * Calculate the total number of dma elements required to send the entire sg list.
  874. */
  875. static int d40_size_2_dmalen(int size, u32 data_width1, u32 data_width2)
  876. {
  877. int dmalen;
  878. u32 max_w = max(data_width1, data_width2);
  879. u32 min_w = min(data_width1, data_width2);
  880. u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE * min_w, max_w);
  881. if (seg_max > STEDMA40_MAX_SEG_SIZE)
  882. seg_max -= max_w;
  883. if (!IS_ALIGNED(size, max_w))
  884. return -EINVAL;
  885. if (size <= seg_max)
  886. dmalen = 1;
  887. else {
  888. dmalen = size / seg_max;
  889. if (dmalen * seg_max < size)
  890. dmalen++;
  891. }
  892. return dmalen;
  893. }
  894. static int d40_sg_2_dmalen(struct scatterlist *sgl, int sg_len,
  895. u32 data_width1, u32 data_width2)
  896. {
  897. struct scatterlist *sg;
  898. int i;
  899. int len = 0;
  900. int ret;
  901. for_each_sg(sgl, sg, sg_len, i) {
  902. ret = d40_size_2_dmalen(sg_dma_len(sg),
  903. data_width1, data_width2);
  904. if (ret < 0)
  905. return ret;
  906. len += ret;
  907. }
  908. return len;
  909. }
  910. static int __d40_execute_command_phy(struct d40_chan *d40c,
  911. enum d40_command command)
  912. {
  913. u32 status;
  914. int i;
  915. void __iomem *active_reg;
  916. int ret = 0;
  917. unsigned long flags;
  918. u32 wmask;
  919. if (command == D40_DMA_STOP) {
  920. ret = __d40_execute_command_phy(d40c, D40_DMA_SUSPEND_REQ);
  921. if (ret)
  922. return ret;
  923. }
  924. spin_lock_irqsave(&d40c->base->execmd_lock, flags);
  925. if (d40c->phy_chan->num % 2 == 0)
  926. active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
  927. else
  928. active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
  929. if (command == D40_DMA_SUSPEND_REQ) {
  930. status = (readl(active_reg) &
  931. D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
  932. D40_CHAN_POS(d40c->phy_chan->num);
  933. if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
  934. goto unlock;
  935. }
  936. wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
  937. writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
  938. active_reg);
  939. if (command == D40_DMA_SUSPEND_REQ) {
  940. for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
  941. status = (readl(active_reg) &
  942. D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
  943. D40_CHAN_POS(d40c->phy_chan->num);
  944. cpu_relax();
  945. /*
  946. * Reduce the number of bus accesses while
  947. * waiting for the DMA to suspend.
  948. */
  949. udelay(3);
  950. if (status == D40_DMA_STOP ||
  951. status == D40_DMA_SUSPENDED)
  952. break;
  953. }
  954. if (i == D40_SUSPEND_MAX_IT) {
  955. chan_err(d40c,
  956. "unable to suspend the chl %d (log: %d) status %x\n",
  957. d40c->phy_chan->num, d40c->log_num,
  958. status);
  959. dump_stack();
  960. ret = -EBUSY;
  961. }
  962. }
  963. unlock:
  964. spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
  965. return ret;
  966. }
  967. static void d40_term_all(struct d40_chan *d40c)
  968. {
  969. struct d40_desc *d40d;
  970. struct d40_desc *_d;
  971. /* Release completed descriptors */
  972. while ((d40d = d40_first_done(d40c))) {
  973. d40_desc_remove(d40d);
  974. d40_desc_free(d40c, d40d);
  975. }
  976. /* Release active descriptors */
  977. while ((d40d = d40_first_active_get(d40c))) {
  978. d40_desc_remove(d40d);
  979. d40_desc_free(d40c, d40d);
  980. }
  981. /* Release queued descriptors waiting for transfer */
  982. while ((d40d = d40_first_queued(d40c))) {
  983. d40_desc_remove(d40d);
  984. d40_desc_free(d40c, d40d);
  985. }
  986. /* Release pending descriptors */
  987. while ((d40d = d40_first_pending(d40c))) {
  988. d40_desc_remove(d40d);
  989. d40_desc_free(d40c, d40d);
  990. }
  991. /* Release client owned descriptors */
  992. if (!list_empty(&d40c->client))
  993. list_for_each_entry_safe(d40d, _d, &d40c->client, node) {
  994. d40_desc_remove(d40d);
  995. d40_desc_free(d40c, d40d);
  996. }
  997. /* Release descriptors in prepare queue */
  998. if (!list_empty(&d40c->prepare_queue))
  999. list_for_each_entry_safe(d40d, _d,
  1000. &d40c->prepare_queue, node) {
  1001. d40_desc_remove(d40d);
  1002. d40_desc_free(d40c, d40d);
  1003. }
  1004. d40c->pending_tx = 0;
  1005. }
  1006. static void __d40_config_set_event(struct d40_chan *d40c,
  1007. enum d40_events event_type, u32 event,
  1008. int reg)
  1009. {
  1010. void __iomem *addr = chan_base(d40c) + reg;
  1011. int tries;
  1012. u32 status;
  1013. switch (event_type) {
  1014. case D40_DEACTIVATE_EVENTLINE:
  1015. writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
  1016. | ~D40_EVENTLINE_MASK(event), addr);
  1017. break;
  1018. case D40_SUSPEND_REQ_EVENTLINE:
  1019. status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
  1020. D40_EVENTLINE_POS(event);
  1021. if (status == D40_DEACTIVATE_EVENTLINE ||
  1022. status == D40_SUSPEND_REQ_EVENTLINE)
  1023. break;
  1024. writel((D40_SUSPEND_REQ_EVENTLINE << D40_EVENTLINE_POS(event))
  1025. | ~D40_EVENTLINE_MASK(event), addr);
  1026. for (tries = 0 ; tries < D40_SUSPEND_MAX_IT; tries++) {
  1027. status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
  1028. D40_EVENTLINE_POS(event);
  1029. cpu_relax();
  1030. /*
  1031. * Reduce the number of bus accesses while
  1032. * waiting for the DMA to suspend.
  1033. */
  1034. udelay(3);
  1035. if (status == D40_DEACTIVATE_EVENTLINE)
  1036. break;
  1037. }
  1038. if (tries == D40_SUSPEND_MAX_IT) {
  1039. chan_err(d40c,
  1040. "unable to stop the event_line chl %d (log: %d)"
  1041. "status %x\n", d40c->phy_chan->num,
  1042. d40c->log_num, status);
  1043. }
  1044. break;
  1045. case D40_ACTIVATE_EVENTLINE:
  1046. /*
  1047. * The hardware sometimes doesn't register the enable when src and dst
  1048. * event lines are active on the same logical channel. Retry to ensure
  1049. * it does. Usually only one retry is sufficient.
  1050. */
  1051. tries = 100;
  1052. while (--tries) {
  1053. writel((D40_ACTIVATE_EVENTLINE <<
  1054. D40_EVENTLINE_POS(event)) |
  1055. ~D40_EVENTLINE_MASK(event), addr);
  1056. if (readl(addr) & D40_EVENTLINE_MASK(event))
  1057. break;
  1058. }
  1059. if (tries != 99)
  1060. dev_dbg(chan2dev(d40c),
  1061. "[%s] workaround enable S%cLNK (%d tries)\n",
  1062. __func__, reg == D40_CHAN_REG_SSLNK ? 'S' : 'D',
  1063. 100 - tries);
  1064. WARN_ON(!tries);
  1065. break;
  1066. case D40_ROUND_EVENTLINE:
  1067. BUG();
  1068. break;
  1069. }
  1070. }
  1071. static void d40_config_set_event(struct d40_chan *d40c,
  1072. enum d40_events event_type)
  1073. {
  1074. u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
  1075. /* Enable event line connected to device (or memcpy) */
  1076. if ((d40c->dma_cfg.dir == DMA_DEV_TO_MEM) ||
  1077. (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
  1078. __d40_config_set_event(d40c, event_type, event,
  1079. D40_CHAN_REG_SSLNK);
  1080. if (d40c->dma_cfg.dir != DMA_DEV_TO_MEM)
  1081. __d40_config_set_event(d40c, event_type, event,
  1082. D40_CHAN_REG_SDLNK);
  1083. }
  1084. static u32 d40_chan_has_events(struct d40_chan *d40c)
  1085. {
  1086. void __iomem *chanbase = chan_base(d40c);
  1087. u32 val;
  1088. val = readl(chanbase + D40_CHAN_REG_SSLNK);
  1089. val |= readl(chanbase + D40_CHAN_REG_SDLNK);
  1090. return val;
  1091. }
  1092. static int
  1093. __d40_execute_command_log(struct d40_chan *d40c, enum d40_command command)
  1094. {
  1095. unsigned long flags;
  1096. int ret = 0;
  1097. u32 active_status;
  1098. void __iomem *active_reg;
  1099. if (d40c->phy_chan->num % 2 == 0)
  1100. active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
  1101. else
  1102. active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
  1103. spin_lock_irqsave(&d40c->phy_chan->lock, flags);
  1104. switch (command) {
  1105. case D40_DMA_STOP:
  1106. case D40_DMA_SUSPEND_REQ:
  1107. active_status = (readl(active_reg) &
  1108. D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
  1109. D40_CHAN_POS(d40c->phy_chan->num);
  1110. if (active_status == D40_DMA_RUN)
  1111. d40_config_set_event(d40c, D40_SUSPEND_REQ_EVENTLINE);
  1112. else
  1113. d40_config_set_event(d40c, D40_DEACTIVATE_EVENTLINE);
  1114. if (!d40_chan_has_events(d40c) && (command == D40_DMA_STOP))
  1115. ret = __d40_execute_command_phy(d40c, command);
  1116. break;
  1117. case D40_DMA_RUN:
  1118. d40_config_set_event(d40c, D40_ACTIVATE_EVENTLINE);
  1119. ret = __d40_execute_command_phy(d40c, command);
  1120. break;
  1121. case D40_DMA_SUSPENDED:
  1122. BUG();
  1123. break;
  1124. }
  1125. spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
  1126. return ret;
  1127. }
  1128. static int d40_channel_execute_command(struct d40_chan *d40c,
  1129. enum d40_command command)
  1130. {
  1131. if (chan_is_logical(d40c))
  1132. return __d40_execute_command_log(d40c, command);
  1133. else
  1134. return __d40_execute_command_phy(d40c, command);
  1135. }
  1136. static u32 d40_get_prmo(struct d40_chan *d40c)
  1137. {
  1138. static const unsigned int phy_map[] = {
  1139. [STEDMA40_PCHAN_BASIC_MODE]
  1140. = D40_DREG_PRMO_PCHAN_BASIC,
  1141. [STEDMA40_PCHAN_MODULO_MODE]
  1142. = D40_DREG_PRMO_PCHAN_MODULO,
  1143. [STEDMA40_PCHAN_DOUBLE_DST_MODE]
  1144. = D40_DREG_PRMO_PCHAN_DOUBLE_DST,
  1145. };
  1146. static const unsigned int log_map[] = {
  1147. [STEDMA40_LCHAN_SRC_PHY_DST_LOG]
  1148. = D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG,
  1149. [STEDMA40_LCHAN_SRC_LOG_DST_PHY]
  1150. = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY,
  1151. [STEDMA40_LCHAN_SRC_LOG_DST_LOG]
  1152. = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG,
  1153. };
  1154. if (chan_is_physical(d40c))
  1155. return phy_map[d40c->dma_cfg.mode_opt];
  1156. else
  1157. return log_map[d40c->dma_cfg.mode_opt];
  1158. }
  1159. static void d40_config_write(struct d40_chan *d40c)
  1160. {
  1161. u32 addr_base;
  1162. u32 var;
  1163. /* Odd addresses are even addresses + 4 */
  1164. addr_base = (d40c->phy_chan->num % 2) * 4;
  1165. /* Setup channel mode to logical or physical */
  1166. var = ((u32)(chan_is_logical(d40c)) + 1) <<
  1167. D40_CHAN_POS(d40c->phy_chan->num);
  1168. writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);
  1169. /* Setup operational mode option register */
  1170. var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num);
  1171. writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);
  1172. if (chan_is_logical(d40c)) {
  1173. int lidx = (d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS)
  1174. & D40_SREG_ELEM_LOG_LIDX_MASK;
  1175. void __iomem *chanbase = chan_base(d40c);
  1176. /* Set default config for CFG reg */
  1177. writel(d40c->src_def_cfg, chanbase + D40_CHAN_REG_SSCFG);
  1178. writel(d40c->dst_def_cfg, chanbase + D40_CHAN_REG_SDCFG);
  1179. /* Set LIDX for lcla */
  1180. writel(lidx, chanbase + D40_CHAN_REG_SSELT);
  1181. writel(lidx, chanbase + D40_CHAN_REG_SDELT);
  1182. /* Clear LNK which will be used by d40_chan_has_events() */
  1183. writel(0, chanbase + D40_CHAN_REG_SSLNK);
  1184. writel(0, chanbase + D40_CHAN_REG_SDLNK);
  1185. }
  1186. }
  1187. static u32 d40_residue(struct d40_chan *d40c)
  1188. {
  1189. u32 num_elt;
  1190. if (chan_is_logical(d40c))
  1191. num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
  1192. >> D40_MEM_LCSP2_ECNT_POS;
  1193. else {
  1194. u32 val = readl(chan_base(d40c) + D40_CHAN_REG_SDELT);
  1195. num_elt = (val & D40_SREG_ELEM_PHY_ECNT_MASK)
  1196. >> D40_SREG_ELEM_PHY_ECNT_POS;
  1197. }
  1198. return num_elt * d40c->dma_cfg.dst_info.data_width;
  1199. }
  1200. static bool d40_tx_is_linked(struct d40_chan *d40c)
  1201. {
  1202. bool is_link;
  1203. if (chan_is_logical(d40c))
  1204. is_link = readl(&d40c->lcpa->lcsp3) & D40_MEM_LCSP3_DLOS_MASK;
  1205. else
  1206. is_link = readl(chan_base(d40c) + D40_CHAN_REG_SDLNK)
  1207. & D40_SREG_LNK_PHYS_LNK_MASK;
  1208. return is_link;
  1209. }
  1210. static int d40_pause(struct dma_chan *chan)
  1211. {
  1212. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  1213. int res = 0;
  1214. unsigned long flags;
  1215. if (d40c->phy_chan == NULL) {
  1216. chan_err(d40c, "Channel is not allocated!\n");
  1217. return -EINVAL;
  1218. }
  1219. if (!d40c->busy)
  1220. return 0;
  1221. spin_lock_irqsave(&d40c->lock, flags);
  1222. pm_runtime_get_sync(d40c->base->dev);
  1223. res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
  1224. pm_runtime_mark_last_busy(d40c->base->dev);
  1225. pm_runtime_put_autosuspend(d40c->base->dev);
  1226. spin_unlock_irqrestore(&d40c->lock, flags);
  1227. return res;
  1228. }
  1229. static int d40_resume(struct dma_chan *chan)
  1230. {
  1231. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  1232. int res = 0;
  1233. unsigned long flags;
  1234. if (d40c->phy_chan == NULL) {
  1235. chan_err(d40c, "Channel is not allocated!\n");
  1236. return -EINVAL;
  1237. }
  1238. if (!d40c->busy)
  1239. return 0;
  1240. spin_lock_irqsave(&d40c->lock, flags);
  1241. pm_runtime_get_sync(d40c->base->dev);
  1242. /* If bytes left to transfer or linked tx resume job */
  1243. if (d40_residue(d40c) || d40_tx_is_linked(d40c))
  1244. res = d40_channel_execute_command(d40c, D40_DMA_RUN);
  1245. pm_runtime_mark_last_busy(d40c->base->dev);
  1246. pm_runtime_put_autosuspend(d40c->base->dev);
  1247. spin_unlock_irqrestore(&d40c->lock, flags);
  1248. return res;
  1249. }
  1250. static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
  1251. {
  1252. struct d40_chan *d40c = container_of(tx->chan,
  1253. struct d40_chan,
  1254. chan);
  1255. struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
  1256. unsigned long flags;
  1257. dma_cookie_t cookie;
  1258. spin_lock_irqsave(&d40c->lock, flags);
  1259. cookie = dma_cookie_assign(tx);
  1260. d40_desc_queue(d40c, d40d);
  1261. spin_unlock_irqrestore(&d40c->lock, flags);
  1262. return cookie;
  1263. }
  1264. static int d40_start(struct d40_chan *d40c)
  1265. {
  1266. return d40_channel_execute_command(d40c, D40_DMA_RUN);
  1267. }
  1268. static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
  1269. {
  1270. struct d40_desc *d40d;
  1271. int err;
  1272. /* Start queued jobs, if any */
  1273. d40d = d40_first_queued(d40c);
  1274. if (d40d != NULL) {
  1275. if (!d40c->busy) {
  1276. d40c->busy = true;
  1277. pm_runtime_get_sync(d40c->base->dev);
  1278. }
  1279. /* Remove from queue */
  1280. d40_desc_remove(d40d);
  1281. /* Add to active queue */
  1282. d40_desc_submit(d40c, d40d);
  1283. /* Initiate DMA job */
  1284. d40_desc_load(d40c, d40d);
  1285. /* Start dma job */
  1286. err = d40_start(d40c);
  1287. if (err)
  1288. return NULL;
  1289. }
  1290. return d40d;
  1291. }
  1292. /* called from interrupt context */
  1293. static void dma_tc_handle(struct d40_chan *d40c)
  1294. {
  1295. struct d40_desc *d40d;
  1296. /* Get first active entry from list */
  1297. d40d = d40_first_active_get(d40c);
  1298. if (d40d == NULL)
  1299. return;
  1300. if (d40d->cyclic) {
  1301. /*
  1302. * If this was a paritially loaded list, we need to reloaded
  1303. * it, and only when the list is completed. We need to check
  1304. * for done because the interrupt will hit for every link, and
  1305. * not just the last one.
  1306. */
  1307. if (d40d->lli_current < d40d->lli_len
  1308. && !d40_tx_is_linked(d40c)
  1309. && !d40_residue(d40c)) {
  1310. d40_lcla_free_all(d40c, d40d);
  1311. d40_desc_load(d40c, d40d);
  1312. (void) d40_start(d40c);
  1313. if (d40d->lli_current == d40d->lli_len)
  1314. d40d->lli_current = 0;
  1315. }
  1316. } else {
  1317. d40_lcla_free_all(d40c, d40d);
  1318. if (d40d->lli_current < d40d->lli_len) {
  1319. d40_desc_load(d40c, d40d);
  1320. /* Start dma job */
  1321. (void) d40_start(d40c);
  1322. return;
  1323. }
  1324. if (d40_queue_start(d40c) == NULL) {
  1325. d40c->busy = false;
  1326. pm_runtime_mark_last_busy(d40c->base->dev);
  1327. pm_runtime_put_autosuspend(d40c->base->dev);
  1328. }
  1329. d40_desc_remove(d40d);
  1330. d40_desc_done(d40c, d40d);
  1331. }
  1332. d40c->pending_tx++;
  1333. tasklet_schedule(&d40c->tasklet);
  1334. }
  1335. static void dma_tasklet(struct tasklet_struct *t)
  1336. {
  1337. struct d40_chan *d40c = from_tasklet(d40c, t, tasklet);
  1338. struct d40_desc *d40d;
  1339. unsigned long flags;
  1340. bool callback_active;
  1341. struct dmaengine_desc_callback cb;
  1342. spin_lock_irqsave(&d40c->lock, flags);
  1343. /* Get first entry from the done list */
  1344. d40d = d40_first_done(d40c);
  1345. if (d40d == NULL) {
  1346. /* Check if we have reached here for cyclic job */
  1347. d40d = d40_first_active_get(d40c);
  1348. if (d40d == NULL || !d40d->cyclic)
  1349. goto check_pending_tx;
  1350. }
  1351. if (!d40d->cyclic)
  1352. dma_cookie_complete(&d40d->txd);
  1353. /*
  1354. * If terminating a channel pending_tx is set to zero.
  1355. * This prevents any finished active jobs to return to the client.
  1356. */
  1357. if (d40c->pending_tx == 0) {
  1358. spin_unlock_irqrestore(&d40c->lock, flags);
  1359. return;
  1360. }
  1361. /* Callback to client */
  1362. callback_active = !!(d40d->txd.flags & DMA_PREP_INTERRUPT);
  1363. dmaengine_desc_get_callback(&d40d->txd, &cb);
  1364. if (!d40d->cyclic) {
  1365. if (async_tx_test_ack(&d40d->txd)) {
  1366. d40_desc_remove(d40d);
  1367. d40_desc_free(d40c, d40d);
  1368. } else if (!d40d->is_in_client_list) {
  1369. d40_desc_remove(d40d);
  1370. d40_lcla_free_all(d40c, d40d);
  1371. list_add_tail(&d40d->node, &d40c->client);
  1372. d40d->is_in_client_list = true;
  1373. }
  1374. }
  1375. d40c->pending_tx--;
  1376. if (d40c->pending_tx)
  1377. tasklet_schedule(&d40c->tasklet);
  1378. spin_unlock_irqrestore(&d40c->lock, flags);
  1379. if (callback_active)
  1380. dmaengine_desc_callback_invoke(&cb, NULL);
  1381. return;
  1382. check_pending_tx:
  1383. /* Rescue manouver if receiving double interrupts */
  1384. if (d40c->pending_tx > 0)
  1385. d40c->pending_tx--;
  1386. spin_unlock_irqrestore(&d40c->lock, flags);
  1387. }
  1388. static irqreturn_t d40_handle_interrupt(int irq, void *data)
  1389. {
  1390. int i;
  1391. u32 idx;
  1392. u32 row;
  1393. long chan = -1;
  1394. struct d40_chan *d40c;
  1395. struct d40_base *base = data;
  1396. u32 *regs = base->regs_interrupt;
  1397. struct d40_interrupt_lookup *il = base->gen_dmac.il;
  1398. u32 il_size = base->gen_dmac.il_size;
  1399. spin_lock(&base->interrupt_lock);
  1400. /* Read interrupt status of both logical and physical channels */
  1401. for (i = 0; i < il_size; i++)
  1402. regs[i] = readl(base->virtbase + il[i].src);
  1403. for (;;) {
  1404. chan = find_next_bit((unsigned long *)regs,
  1405. BITS_PER_LONG * il_size, chan + 1);
  1406. /* No more set bits found? */
  1407. if (chan == BITS_PER_LONG * il_size)
  1408. break;
  1409. row = chan / BITS_PER_LONG;
  1410. idx = chan & (BITS_PER_LONG - 1);
  1411. if (il[row].offset == D40_PHY_CHAN)
  1412. d40c = base->lookup_phy_chans[idx];
  1413. else
  1414. d40c = base->lookup_log_chans[il[row].offset + idx];
  1415. if (!d40c) {
  1416. /*
  1417. * No error because this can happen if something else
  1418. * in the system is using the channel.
  1419. */
  1420. continue;
  1421. }
  1422. /* ACK interrupt */
  1423. writel(BIT(idx), base->virtbase + il[row].clr);
  1424. spin_lock(&d40c->lock);
  1425. if (!il[row].is_error)
  1426. dma_tc_handle(d40c);
  1427. else
  1428. d40_err(base->dev, "IRQ chan: %ld offset %d idx %d\n",
  1429. chan, il[row].offset, idx);
  1430. spin_unlock(&d40c->lock);
  1431. }
  1432. spin_unlock(&base->interrupt_lock);
  1433. return IRQ_HANDLED;
  1434. }
  1435. static int d40_validate_conf(struct d40_chan *d40c,
  1436. struct stedma40_chan_cfg *conf)
  1437. {
  1438. int res = 0;
  1439. bool is_log = conf->mode == STEDMA40_MODE_LOGICAL;
  1440. if (!conf->dir) {
  1441. chan_err(d40c, "Invalid direction.\n");
  1442. res = -EINVAL;
  1443. }
  1444. if ((is_log && conf->dev_type > d40c->base->num_log_chans) ||
  1445. (!is_log && conf->dev_type > d40c->base->num_phy_chans) ||
  1446. (conf->dev_type < 0)) {
  1447. chan_err(d40c, "Invalid device type (%d)\n", conf->dev_type);
  1448. res = -EINVAL;
  1449. }
  1450. if (conf->dir == DMA_DEV_TO_DEV) {
  1451. /*
  1452. * DMAC HW supports it. Will be added to this driver,
  1453. * in case any dma client requires it.
  1454. */
  1455. chan_err(d40c, "periph to periph not supported\n");
  1456. res = -EINVAL;
  1457. }
  1458. if (d40_psize_2_burst_size(is_log, conf->src_info.psize) *
  1459. conf->src_info.data_width !=
  1460. d40_psize_2_burst_size(is_log, conf->dst_info.psize) *
  1461. conf->dst_info.data_width) {
  1462. /*
  1463. * The DMAC hardware only supports
  1464. * src (burst x width) == dst (burst x width)
  1465. */
  1466. chan_err(d40c, "src (burst x width) != dst (burst x width)\n");
  1467. res = -EINVAL;
  1468. }
  1469. return res;
  1470. }
  1471. static bool d40_alloc_mask_set(struct d40_phy_res *phy,
  1472. bool is_src, int log_event_line, bool is_log,
  1473. bool *first_user)
  1474. {
  1475. unsigned long flags;
  1476. spin_lock_irqsave(&phy->lock, flags);
  1477. *first_user = ((phy->allocated_src | phy->allocated_dst)
  1478. == D40_ALLOC_FREE);
  1479. if (!is_log) {
  1480. /* Physical interrupts are masked per physical full channel */
  1481. if (phy->allocated_src == D40_ALLOC_FREE &&
  1482. phy->allocated_dst == D40_ALLOC_FREE) {
  1483. phy->allocated_dst = D40_ALLOC_PHY;
  1484. phy->allocated_src = D40_ALLOC_PHY;
  1485. goto found_unlock;
  1486. } else
  1487. goto not_found_unlock;
  1488. }
  1489. /* Logical channel */
  1490. if (is_src) {
  1491. if (phy->allocated_src == D40_ALLOC_PHY)
  1492. goto not_found_unlock;
  1493. if (phy->allocated_src == D40_ALLOC_FREE)
  1494. phy->allocated_src = D40_ALLOC_LOG_FREE;
  1495. if (!(phy->allocated_src & BIT(log_event_line))) {
  1496. phy->allocated_src |= BIT(log_event_line);
  1497. goto found_unlock;
  1498. } else
  1499. goto not_found_unlock;
  1500. } else {
  1501. if (phy->allocated_dst == D40_ALLOC_PHY)
  1502. goto not_found_unlock;
  1503. if (phy->allocated_dst == D40_ALLOC_FREE)
  1504. phy->allocated_dst = D40_ALLOC_LOG_FREE;
  1505. if (!(phy->allocated_dst & BIT(log_event_line))) {
  1506. phy->allocated_dst |= BIT(log_event_line);
  1507. goto found_unlock;
  1508. }
  1509. }
  1510. not_found_unlock:
  1511. spin_unlock_irqrestore(&phy->lock, flags);
  1512. return false;
  1513. found_unlock:
  1514. spin_unlock_irqrestore(&phy->lock, flags);
  1515. return true;
  1516. }
  1517. static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
  1518. int log_event_line)
  1519. {
  1520. unsigned long flags;
  1521. bool is_free = false;
  1522. spin_lock_irqsave(&phy->lock, flags);
  1523. if (!log_event_line) {
  1524. phy->allocated_dst = D40_ALLOC_FREE;
  1525. phy->allocated_src = D40_ALLOC_FREE;
  1526. is_free = true;
  1527. goto unlock;
  1528. }
  1529. /* Logical channel */
  1530. if (is_src) {
  1531. phy->allocated_src &= ~BIT(log_event_line);
  1532. if (phy->allocated_src == D40_ALLOC_LOG_FREE)
  1533. phy->allocated_src = D40_ALLOC_FREE;
  1534. } else {
  1535. phy->allocated_dst &= ~BIT(log_event_line);
  1536. if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
  1537. phy->allocated_dst = D40_ALLOC_FREE;
  1538. }
  1539. is_free = ((phy->allocated_src | phy->allocated_dst) ==
  1540. D40_ALLOC_FREE);
  1541. unlock:
  1542. spin_unlock_irqrestore(&phy->lock, flags);
  1543. return is_free;
  1544. }
  1545. static int d40_allocate_channel(struct d40_chan *d40c, bool *first_phy_user)
  1546. {
  1547. int dev_type = d40c->dma_cfg.dev_type;
  1548. int event_group;
  1549. int event_line;
  1550. struct d40_phy_res *phys;
  1551. int i;
  1552. int j;
  1553. int log_num;
  1554. int num_phy_chans;
  1555. bool is_src;
  1556. bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL;
  1557. phys = d40c->base->phy_res;
  1558. num_phy_chans = d40c->base->num_phy_chans;
  1559. if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM) {
  1560. log_num = 2 * dev_type;
  1561. is_src = true;
  1562. } else if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
  1563. d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
  1564. /* dst event lines are used for logical memcpy */
  1565. log_num = 2 * dev_type + 1;
  1566. is_src = false;
  1567. } else
  1568. return -EINVAL;
  1569. event_group = D40_TYPE_TO_GROUP(dev_type);
  1570. event_line = D40_TYPE_TO_EVENT(dev_type);
  1571. if (!is_log) {
  1572. if (d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
  1573. /* Find physical half channel */
  1574. if (d40c->dma_cfg.use_fixed_channel) {
  1575. i = d40c->dma_cfg.phy_channel;
  1576. if (d40_alloc_mask_set(&phys[i], is_src,
  1577. 0, is_log,
  1578. first_phy_user))
  1579. goto found_phy;
  1580. } else {
  1581. for (i = 0; i < num_phy_chans; i++) {
  1582. if (d40_alloc_mask_set(&phys[i], is_src,
  1583. 0, is_log,
  1584. first_phy_user))
  1585. goto found_phy;
  1586. }
  1587. }
  1588. } else
  1589. for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
  1590. int phy_num = j + event_group * 2;
  1591. for (i = phy_num; i < phy_num + 2; i++) {
  1592. if (d40_alloc_mask_set(&phys[i],
  1593. is_src,
  1594. 0,
  1595. is_log,
  1596. first_phy_user))
  1597. goto found_phy;
  1598. }
  1599. }
  1600. return -EINVAL;
  1601. found_phy:
  1602. d40c->phy_chan = &phys[i];
  1603. d40c->log_num = D40_PHY_CHAN;
  1604. goto out;
  1605. }
  1606. if (dev_type == -1)
  1607. return -EINVAL;
  1608. /* Find logical channel */
  1609. for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
  1610. int phy_num = j + event_group * 2;
  1611. if (d40c->dma_cfg.use_fixed_channel) {
  1612. i = d40c->dma_cfg.phy_channel;
  1613. if ((i != phy_num) && (i != phy_num + 1)) {
  1614. dev_err(chan2dev(d40c),
  1615. "invalid fixed phy channel %d\n", i);
  1616. return -EINVAL;
  1617. }
  1618. if (d40_alloc_mask_set(&phys[i], is_src, event_line,
  1619. is_log, first_phy_user))
  1620. goto found_log;
  1621. dev_err(chan2dev(d40c),
  1622. "could not allocate fixed phy channel %d\n", i);
  1623. return -EINVAL;
  1624. }
  1625. /*
  1626. * Spread logical channels across all available physical rather
  1627. * than pack every logical channel at the first available phy
  1628. * channels.
  1629. */
  1630. if (is_src) {
  1631. for (i = phy_num; i < phy_num + 2; i++) {
  1632. if (d40_alloc_mask_set(&phys[i], is_src,
  1633. event_line, is_log,
  1634. first_phy_user))
  1635. goto found_log;
  1636. }
  1637. } else {
  1638. for (i = phy_num + 1; i >= phy_num; i--) {
  1639. if (d40_alloc_mask_set(&phys[i], is_src,
  1640. event_line, is_log,
  1641. first_phy_user))
  1642. goto found_log;
  1643. }
  1644. }
  1645. }
  1646. return -EINVAL;
  1647. found_log:
  1648. d40c->phy_chan = &phys[i];
  1649. d40c->log_num = log_num;
  1650. out:
  1651. if (is_log)
  1652. d40c->base->lookup_log_chans[d40c->log_num] = d40c;
  1653. else
  1654. d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;
  1655. return 0;
  1656. }
  1657. static int d40_config_memcpy(struct d40_chan *d40c)
  1658. {
  1659. dma_cap_mask_t cap = d40c->chan.device->cap_mask;
  1660. if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
  1661. d40c->dma_cfg = dma40_memcpy_conf_log;
  1662. d40c->dma_cfg.dev_type = dma40_memcpy_channels[d40c->chan.chan_id];
  1663. d40_log_cfg(&d40c->dma_cfg,
  1664. &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
  1665. } else if (dma_has_cap(DMA_MEMCPY, cap) &&
  1666. dma_has_cap(DMA_SLAVE, cap)) {
  1667. d40c->dma_cfg = dma40_memcpy_conf_phy;
  1668. /* Generate interrupt at end of transfer or relink. */
  1669. d40c->dst_def_cfg |= BIT(D40_SREG_CFG_TIM_POS);
  1670. /* Generate interrupt on error. */
  1671. d40c->src_def_cfg |= BIT(D40_SREG_CFG_EIM_POS);
  1672. d40c->dst_def_cfg |= BIT(D40_SREG_CFG_EIM_POS);
  1673. } else {
  1674. chan_err(d40c, "No memcpy\n");
  1675. return -EINVAL;
  1676. }
  1677. return 0;
  1678. }
  1679. static int d40_free_dma(struct d40_chan *d40c)
  1680. {
  1681. int res = 0;
  1682. u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
  1683. struct d40_phy_res *phy = d40c->phy_chan;
  1684. bool is_src;
  1685. /* Terminate all queued and active transfers */
  1686. d40_term_all(d40c);
  1687. if (phy == NULL) {
  1688. chan_err(d40c, "phy == null\n");
  1689. return -EINVAL;
  1690. }
  1691. if (phy->allocated_src == D40_ALLOC_FREE &&
  1692. phy->allocated_dst == D40_ALLOC_FREE) {
  1693. chan_err(d40c, "channel already free\n");
  1694. return -EINVAL;
  1695. }
  1696. if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
  1697. d40c->dma_cfg.dir == DMA_MEM_TO_MEM)
  1698. is_src = false;
  1699. else if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM)
  1700. is_src = true;
  1701. else {
  1702. chan_err(d40c, "Unknown direction\n");
  1703. return -EINVAL;
  1704. }
  1705. pm_runtime_get_sync(d40c->base->dev);
  1706. res = d40_channel_execute_command(d40c, D40_DMA_STOP);
  1707. if (res) {
  1708. chan_err(d40c, "stop failed\n");
  1709. goto mark_last_busy;
  1710. }
  1711. d40_alloc_mask_free(phy, is_src, chan_is_logical(d40c) ? event : 0);
  1712. if (chan_is_logical(d40c))
  1713. d40c->base->lookup_log_chans[d40c->log_num] = NULL;
  1714. else
  1715. d40c->base->lookup_phy_chans[phy->num] = NULL;
  1716. if (d40c->busy) {
  1717. pm_runtime_mark_last_busy(d40c->base->dev);
  1718. pm_runtime_put_autosuspend(d40c->base->dev);
  1719. }
  1720. d40c->busy = false;
  1721. d40c->phy_chan = NULL;
  1722. d40c->configured = false;
  1723. mark_last_busy:
  1724. pm_runtime_mark_last_busy(d40c->base->dev);
  1725. pm_runtime_put_autosuspend(d40c->base->dev);
  1726. return res;
  1727. }
  1728. static bool d40_is_paused(struct d40_chan *d40c)
  1729. {
  1730. void __iomem *chanbase = chan_base(d40c);
  1731. bool is_paused = false;
  1732. unsigned long flags;
  1733. void __iomem *active_reg;
  1734. u32 status;
  1735. u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
  1736. spin_lock_irqsave(&d40c->lock, flags);
  1737. if (chan_is_physical(d40c)) {
  1738. if (d40c->phy_chan->num % 2 == 0)
  1739. active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
  1740. else
  1741. active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
  1742. status = (readl(active_reg) &
  1743. D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
  1744. D40_CHAN_POS(d40c->phy_chan->num);
  1745. if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
  1746. is_paused = true;
  1747. goto unlock;
  1748. }
  1749. if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
  1750. d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
  1751. status = readl(chanbase + D40_CHAN_REG_SDLNK);
  1752. } else if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM) {
  1753. status = readl(chanbase + D40_CHAN_REG_SSLNK);
  1754. } else {
  1755. chan_err(d40c, "Unknown direction\n");
  1756. goto unlock;
  1757. }
  1758. status = (status & D40_EVENTLINE_MASK(event)) >>
  1759. D40_EVENTLINE_POS(event);
  1760. if (status != D40_DMA_RUN)
  1761. is_paused = true;
  1762. unlock:
  1763. spin_unlock_irqrestore(&d40c->lock, flags);
  1764. return is_paused;
  1765. }
  1766. static u32 stedma40_residue(struct dma_chan *chan)
  1767. {
  1768. struct d40_chan *d40c =
  1769. container_of(chan, struct d40_chan, chan);
  1770. u32 bytes_left;
  1771. unsigned long flags;
  1772. spin_lock_irqsave(&d40c->lock, flags);
  1773. bytes_left = d40_residue(d40c);
  1774. spin_unlock_irqrestore(&d40c->lock, flags);
  1775. return bytes_left;
  1776. }
  1777. static int
  1778. d40_prep_sg_log(struct d40_chan *chan, struct d40_desc *desc,
  1779. struct scatterlist *sg_src, struct scatterlist *sg_dst,
  1780. unsigned int sg_len, dma_addr_t src_dev_addr,
  1781. dma_addr_t dst_dev_addr)
  1782. {
  1783. struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
  1784. struct stedma40_half_channel_info *src_info = &cfg->src_info;
  1785. struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
  1786. int ret;
  1787. ret = d40_log_sg_to_lli(sg_src, sg_len,
  1788. src_dev_addr,
  1789. desc->lli_log.src,
  1790. chan->log_def.lcsp1,
  1791. src_info->data_width,
  1792. dst_info->data_width);
  1793. ret = d40_log_sg_to_lli(sg_dst, sg_len,
  1794. dst_dev_addr,
  1795. desc->lli_log.dst,
  1796. chan->log_def.lcsp3,
  1797. dst_info->data_width,
  1798. src_info->data_width);
  1799. return ret < 0 ? ret : 0;
  1800. }
  1801. static int
  1802. d40_prep_sg_phy(struct d40_chan *chan, struct d40_desc *desc,
  1803. struct scatterlist *sg_src, struct scatterlist *sg_dst,
  1804. unsigned int sg_len, dma_addr_t src_dev_addr,
  1805. dma_addr_t dst_dev_addr)
  1806. {
  1807. struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
  1808. struct stedma40_half_channel_info *src_info = &cfg->src_info;
  1809. struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
  1810. unsigned long flags = 0;
  1811. int ret;
  1812. if (desc->cyclic)
  1813. flags |= LLI_CYCLIC | LLI_TERM_INT;
  1814. ret = d40_phy_sg_to_lli(sg_src, sg_len, src_dev_addr,
  1815. desc->lli_phy.src,
  1816. virt_to_phys(desc->lli_phy.src),
  1817. chan->src_def_cfg,
  1818. src_info, dst_info, flags);
  1819. ret = d40_phy_sg_to_lli(sg_dst, sg_len, dst_dev_addr,
  1820. desc->lli_phy.dst,
  1821. virt_to_phys(desc->lli_phy.dst),
  1822. chan->dst_def_cfg,
  1823. dst_info, src_info, flags);
  1824. dma_sync_single_for_device(chan->base->dev, desc->lli_pool.dma_addr,
  1825. desc->lli_pool.size, DMA_TO_DEVICE);
  1826. return ret < 0 ? ret : 0;
  1827. }
  1828. static struct d40_desc *
  1829. d40_prep_desc(struct d40_chan *chan, struct scatterlist *sg,
  1830. unsigned int sg_len, unsigned long dma_flags)
  1831. {
  1832. struct stedma40_chan_cfg *cfg;
  1833. struct d40_desc *desc;
  1834. int ret;
  1835. desc = d40_desc_get(chan);
  1836. if (!desc)
  1837. return NULL;
  1838. cfg = &chan->dma_cfg;
  1839. desc->lli_len = d40_sg_2_dmalen(sg, sg_len, cfg->src_info.data_width,
  1840. cfg->dst_info.data_width);
  1841. if (desc->lli_len < 0) {
  1842. chan_err(chan, "Unaligned size\n");
  1843. goto free_desc;
  1844. }
  1845. ret = d40_pool_lli_alloc(chan, desc, desc->lli_len);
  1846. if (ret < 0) {
  1847. chan_err(chan, "Could not allocate lli\n");
  1848. goto free_desc;
  1849. }
  1850. desc->lli_current = 0;
  1851. desc->txd.flags = dma_flags;
  1852. desc->txd.tx_submit = d40_tx_submit;
  1853. dma_async_tx_descriptor_init(&desc->txd, &chan->chan);
  1854. return desc;
  1855. free_desc:
  1856. d40_desc_free(chan, desc);
  1857. return NULL;
  1858. }
  1859. static struct dma_async_tx_descriptor *
  1860. d40_prep_sg(struct dma_chan *dchan, struct scatterlist *sg_src,
  1861. struct scatterlist *sg_dst, unsigned int sg_len,
  1862. enum dma_transfer_direction direction, unsigned long dma_flags)
  1863. {
  1864. struct d40_chan *chan = container_of(dchan, struct d40_chan, chan);
  1865. dma_addr_t src_dev_addr;
  1866. dma_addr_t dst_dev_addr;
  1867. struct d40_desc *desc;
  1868. unsigned long flags;
  1869. int ret;
  1870. if (!chan->phy_chan) {
  1871. chan_err(chan, "Cannot prepare unallocated channel\n");
  1872. return NULL;
  1873. }
  1874. d40_set_runtime_config_write(dchan, &chan->slave_config, direction);
  1875. spin_lock_irqsave(&chan->lock, flags);
  1876. desc = d40_prep_desc(chan, sg_src, sg_len, dma_flags);
  1877. if (desc == NULL)
  1878. goto unlock;
  1879. if (sg_next(&sg_src[sg_len - 1]) == sg_src)
  1880. desc->cyclic = true;
  1881. src_dev_addr = 0;
  1882. dst_dev_addr = 0;
  1883. if (direction == DMA_DEV_TO_MEM)
  1884. src_dev_addr = chan->runtime_addr;
  1885. else if (direction == DMA_MEM_TO_DEV)
  1886. dst_dev_addr = chan->runtime_addr;
  1887. if (chan_is_logical(chan))
  1888. ret = d40_prep_sg_log(chan, desc, sg_src, sg_dst,
  1889. sg_len, src_dev_addr, dst_dev_addr);
  1890. else
  1891. ret = d40_prep_sg_phy(chan, desc, sg_src, sg_dst,
  1892. sg_len, src_dev_addr, dst_dev_addr);
  1893. if (ret) {
  1894. chan_err(chan, "Failed to prepare %s sg job: %d\n",
  1895. chan_is_logical(chan) ? "log" : "phy", ret);
  1896. goto free_desc;
  1897. }
  1898. /*
  1899. * add descriptor to the prepare queue in order to be able
  1900. * to free them later in terminate_all
  1901. */
  1902. list_add_tail(&desc->node, &chan->prepare_queue);
  1903. spin_unlock_irqrestore(&chan->lock, flags);
  1904. return &desc->txd;
  1905. free_desc:
  1906. d40_desc_free(chan, desc);
  1907. unlock:
  1908. spin_unlock_irqrestore(&chan->lock, flags);
  1909. return NULL;
  1910. }
  1911. bool stedma40_filter(struct dma_chan *chan, void *data)
  1912. {
  1913. struct stedma40_chan_cfg *info = data;
  1914. struct d40_chan *d40c =
  1915. container_of(chan, struct d40_chan, chan);
  1916. int err;
  1917. if (data) {
  1918. err = d40_validate_conf(d40c, info);
  1919. if (!err)
  1920. d40c->dma_cfg = *info;
  1921. } else
  1922. err = d40_config_memcpy(d40c);
  1923. if (!err)
  1924. d40c->configured = true;
  1925. return err == 0;
  1926. }
  1927. EXPORT_SYMBOL(stedma40_filter);
  1928. static void __d40_set_prio_rt(struct d40_chan *d40c, int dev_type, bool src)
  1929. {
  1930. bool realtime = d40c->dma_cfg.realtime;
  1931. bool highprio = d40c->dma_cfg.high_priority;
  1932. u32 rtreg;
  1933. u32 event = D40_TYPE_TO_EVENT(dev_type);
  1934. u32 group = D40_TYPE_TO_GROUP(dev_type);
  1935. u32 bit = BIT(event);
  1936. u32 prioreg;
  1937. struct d40_gen_dmac *dmac = &d40c->base->gen_dmac;
  1938. rtreg = realtime ? dmac->realtime_en : dmac->realtime_clear;
  1939. /*
  1940. * Due to a hardware bug, in some cases a logical channel triggered by
  1941. * a high priority destination event line can generate extra packet
  1942. * transactions.
  1943. *
  1944. * The workaround is to not set the high priority level for the
  1945. * destination event lines that trigger logical channels.
  1946. */
  1947. if (!src && chan_is_logical(d40c))
  1948. highprio = false;
  1949. prioreg = highprio ? dmac->high_prio_en : dmac->high_prio_clear;
  1950. /* Destination event lines are stored in the upper halfword */
  1951. if (!src)
  1952. bit <<= 16;
  1953. writel(bit, d40c->base->virtbase + prioreg + group * 4);
  1954. writel(bit, d40c->base->virtbase + rtreg + group * 4);
  1955. }
  1956. static void d40_set_prio_realtime(struct d40_chan *d40c)
  1957. {
  1958. if (d40c->base->rev < 3)
  1959. return;
  1960. if ((d40c->dma_cfg.dir == DMA_DEV_TO_MEM) ||
  1961. (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
  1962. __d40_set_prio_rt(d40c, d40c->dma_cfg.dev_type, true);
  1963. if ((d40c->dma_cfg.dir == DMA_MEM_TO_DEV) ||
  1964. (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
  1965. __d40_set_prio_rt(d40c, d40c->dma_cfg.dev_type, false);
  1966. }
  1967. #define D40_DT_FLAGS_MODE(flags) ((flags >> 0) & 0x1)
  1968. #define D40_DT_FLAGS_DIR(flags) ((flags >> 1) & 0x1)
  1969. #define D40_DT_FLAGS_BIG_ENDIAN(flags) ((flags >> 2) & 0x1)
  1970. #define D40_DT_FLAGS_FIXED_CHAN(flags) ((flags >> 3) & 0x1)
  1971. #define D40_DT_FLAGS_HIGH_PRIO(flags) ((flags >> 4) & 0x1)
  1972. static struct dma_chan *d40_xlate(struct of_phandle_args *dma_spec,
  1973. struct of_dma *ofdma)
  1974. {
  1975. struct stedma40_chan_cfg cfg;
  1976. dma_cap_mask_t cap;
  1977. u32 flags;
  1978. memset(&cfg, 0, sizeof(struct stedma40_chan_cfg));
  1979. dma_cap_zero(cap);
  1980. dma_cap_set(DMA_SLAVE, cap);
  1981. cfg.dev_type = dma_spec->args[0];
  1982. flags = dma_spec->args[2];
  1983. switch (D40_DT_FLAGS_MODE(flags)) {
  1984. case 0: cfg.mode = STEDMA40_MODE_LOGICAL; break;
  1985. case 1: cfg.mode = STEDMA40_MODE_PHYSICAL; break;
  1986. }
  1987. switch (D40_DT_FLAGS_DIR(flags)) {
  1988. case 0:
  1989. cfg.dir = DMA_MEM_TO_DEV;
  1990. cfg.dst_info.big_endian = D40_DT_FLAGS_BIG_ENDIAN(flags);
  1991. break;
  1992. case 1:
  1993. cfg.dir = DMA_DEV_TO_MEM;
  1994. cfg.src_info.big_endian = D40_DT_FLAGS_BIG_ENDIAN(flags);
  1995. break;
  1996. }
  1997. if (D40_DT_FLAGS_FIXED_CHAN(flags)) {
  1998. cfg.phy_channel = dma_spec->args[1];
  1999. cfg.use_fixed_channel = true;
  2000. }
  2001. if (D40_DT_FLAGS_HIGH_PRIO(flags))
  2002. cfg.high_priority = true;
  2003. return dma_request_channel(cap, stedma40_filter, &cfg);
  2004. }
  2005. /* DMA ENGINE functions */
  2006. static int d40_alloc_chan_resources(struct dma_chan *chan)
  2007. {
  2008. int err;
  2009. unsigned long flags;
  2010. struct d40_chan *d40c =
  2011. container_of(chan, struct d40_chan, chan);
  2012. bool is_free_phy;
  2013. spin_lock_irqsave(&d40c->lock, flags);
  2014. dma_cookie_init(chan);
  2015. /* If no dma configuration is set use default configuration (memcpy) */
  2016. if (!d40c->configured) {
  2017. err = d40_config_memcpy(d40c);
  2018. if (err) {
  2019. chan_err(d40c, "Failed to configure memcpy channel\n");
  2020. goto mark_last_busy;
  2021. }
  2022. }
  2023. err = d40_allocate_channel(d40c, &is_free_phy);
  2024. if (err) {
  2025. chan_err(d40c, "Failed to allocate channel\n");
  2026. d40c->configured = false;
  2027. goto mark_last_busy;
  2028. }
  2029. pm_runtime_get_sync(d40c->base->dev);
  2030. d40_set_prio_realtime(d40c);
  2031. if (chan_is_logical(d40c)) {
  2032. if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM)
  2033. d40c->lcpa = d40c->base->lcpa_base +
  2034. d40c->dma_cfg.dev_type * D40_LCPA_CHAN_SIZE;
  2035. else
  2036. d40c->lcpa = d40c->base->lcpa_base +
  2037. d40c->dma_cfg.dev_type *
  2038. D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
  2039. /* Unmask the Global Interrupt Mask. */
  2040. d40c->src_def_cfg |= BIT(D40_SREG_CFG_LOG_GIM_POS);
  2041. d40c->dst_def_cfg |= BIT(D40_SREG_CFG_LOG_GIM_POS);
  2042. }
  2043. dev_dbg(chan2dev(d40c), "allocated %s channel (phy %d%s)\n",
  2044. chan_is_logical(d40c) ? "logical" : "physical",
  2045. d40c->phy_chan->num,
  2046. d40c->dma_cfg.use_fixed_channel ? ", fixed" : "");
  2047. /*
  2048. * Only write channel configuration to the DMA if the physical
  2049. * resource is free. In case of multiple logical channels
  2050. * on the same physical resource, only the first write is necessary.
  2051. */
  2052. if (is_free_phy)
  2053. d40_config_write(d40c);
  2054. mark_last_busy:
  2055. pm_runtime_mark_last_busy(d40c->base->dev);
  2056. pm_runtime_put_autosuspend(d40c->base->dev);
  2057. spin_unlock_irqrestore(&d40c->lock, flags);
  2058. return err;
  2059. }
  2060. static void d40_free_chan_resources(struct dma_chan *chan)
  2061. {
  2062. struct d40_chan *d40c =
  2063. container_of(chan, struct d40_chan, chan);
  2064. int err;
  2065. unsigned long flags;
  2066. if (d40c->phy_chan == NULL) {
  2067. chan_err(d40c, "Cannot free unallocated channel\n");
  2068. return;
  2069. }
  2070. spin_lock_irqsave(&d40c->lock, flags);
  2071. err = d40_free_dma(d40c);
  2072. if (err)
  2073. chan_err(d40c, "Failed to free channel\n");
  2074. spin_unlock_irqrestore(&d40c->lock, flags);
  2075. }
  2076. static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
  2077. dma_addr_t dst,
  2078. dma_addr_t src,
  2079. size_t size,
  2080. unsigned long dma_flags)
  2081. {
  2082. struct scatterlist dst_sg;
  2083. struct scatterlist src_sg;
  2084. sg_init_table(&dst_sg, 1);
  2085. sg_init_table(&src_sg, 1);
  2086. sg_dma_address(&dst_sg) = dst;
  2087. sg_dma_address(&src_sg) = src;
  2088. sg_dma_len(&dst_sg) = size;
  2089. sg_dma_len(&src_sg) = size;
  2090. return d40_prep_sg(chan, &src_sg, &dst_sg, 1,
  2091. DMA_MEM_TO_MEM, dma_flags);
  2092. }
  2093. static struct dma_async_tx_descriptor *
  2094. d40_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
  2095. unsigned int sg_len, enum dma_transfer_direction direction,
  2096. unsigned long dma_flags, void *context)
  2097. {
  2098. if (!is_slave_direction(direction))
  2099. return NULL;
  2100. return d40_prep_sg(chan, sgl, sgl, sg_len, direction, dma_flags);
  2101. }
  2102. static struct dma_async_tx_descriptor *
  2103. dma40_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr,
  2104. size_t buf_len, size_t period_len,
  2105. enum dma_transfer_direction direction, unsigned long flags)
  2106. {
  2107. unsigned int periods = buf_len / period_len;
  2108. struct dma_async_tx_descriptor *txd;
  2109. struct scatterlist *sg;
  2110. int i;
  2111. sg = kcalloc(periods + 1, sizeof(struct scatterlist), GFP_NOWAIT);
  2112. if (!sg)
  2113. return NULL;
  2114. for (i = 0; i < periods; i++) {
  2115. sg_dma_address(&sg[i]) = dma_addr;
  2116. sg_dma_len(&sg[i]) = period_len;
  2117. dma_addr += period_len;
  2118. }
  2119. sg_chain(sg, periods + 1, sg);
  2120. txd = d40_prep_sg(chan, sg, sg, periods, direction,
  2121. DMA_PREP_INTERRUPT);
  2122. kfree(sg);
  2123. return txd;
  2124. }
  2125. static enum dma_status d40_tx_status(struct dma_chan *chan,
  2126. dma_cookie_t cookie,
  2127. struct dma_tx_state *txstate)
  2128. {
  2129. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  2130. enum dma_status ret;
  2131. if (d40c->phy_chan == NULL) {
  2132. chan_err(d40c, "Cannot read status of unallocated channel\n");
  2133. return -EINVAL;
  2134. }
  2135. ret = dma_cookie_status(chan, cookie, txstate);
  2136. if (ret != DMA_COMPLETE && txstate)
  2137. dma_set_residue(txstate, stedma40_residue(chan));
  2138. if (d40_is_paused(d40c))
  2139. ret = DMA_PAUSED;
  2140. return ret;
  2141. }
  2142. static void d40_issue_pending(struct dma_chan *chan)
  2143. {
  2144. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  2145. unsigned long flags;
  2146. if (d40c->phy_chan == NULL) {
  2147. chan_err(d40c, "Channel is not allocated!\n");
  2148. return;
  2149. }
  2150. spin_lock_irqsave(&d40c->lock, flags);
  2151. list_splice_tail_init(&d40c->pending_queue, &d40c->queue);
  2152. /* Busy means that queued jobs are already being processed */
  2153. if (!d40c->busy)
  2154. (void) d40_queue_start(d40c);
  2155. spin_unlock_irqrestore(&d40c->lock, flags);
  2156. }
  2157. static int d40_terminate_all(struct dma_chan *chan)
  2158. {
  2159. unsigned long flags;
  2160. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  2161. int ret;
  2162. if (d40c->phy_chan == NULL) {
  2163. chan_err(d40c, "Channel is not allocated!\n");
  2164. return -EINVAL;
  2165. }
  2166. spin_lock_irqsave(&d40c->lock, flags);
  2167. pm_runtime_get_sync(d40c->base->dev);
  2168. ret = d40_channel_execute_command(d40c, D40_DMA_STOP);
  2169. if (ret)
  2170. chan_err(d40c, "Failed to stop channel\n");
  2171. d40_term_all(d40c);
  2172. pm_runtime_mark_last_busy(d40c->base->dev);
  2173. pm_runtime_put_autosuspend(d40c->base->dev);
  2174. if (d40c->busy) {
  2175. pm_runtime_mark_last_busy(d40c->base->dev);
  2176. pm_runtime_put_autosuspend(d40c->base->dev);
  2177. }
  2178. d40c->busy = false;
  2179. spin_unlock_irqrestore(&d40c->lock, flags);
  2180. return 0;
  2181. }
  2182. static int
  2183. dma40_config_to_halfchannel(struct d40_chan *d40c,
  2184. struct stedma40_half_channel_info *info,
  2185. u32 maxburst)
  2186. {
  2187. int psize;
  2188. if (chan_is_logical(d40c)) {
  2189. if (maxburst >= 16)
  2190. psize = STEDMA40_PSIZE_LOG_16;
  2191. else if (maxburst >= 8)
  2192. psize = STEDMA40_PSIZE_LOG_8;
  2193. else if (maxburst >= 4)
  2194. psize = STEDMA40_PSIZE_LOG_4;
  2195. else
  2196. psize = STEDMA40_PSIZE_LOG_1;
  2197. } else {
  2198. if (maxburst >= 16)
  2199. psize = STEDMA40_PSIZE_PHY_16;
  2200. else if (maxburst >= 8)
  2201. psize = STEDMA40_PSIZE_PHY_8;
  2202. else if (maxburst >= 4)
  2203. psize = STEDMA40_PSIZE_PHY_4;
  2204. else
  2205. psize = STEDMA40_PSIZE_PHY_1;
  2206. }
  2207. info->psize = psize;
  2208. info->flow_ctrl = STEDMA40_NO_FLOW_CTRL;
  2209. return 0;
  2210. }
  2211. static int d40_set_runtime_config(struct dma_chan *chan,
  2212. struct dma_slave_config *config)
  2213. {
  2214. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  2215. memcpy(&d40c->slave_config, config, sizeof(*config));
  2216. return 0;
  2217. }
  2218. /* Runtime reconfiguration extension */
  2219. static int d40_set_runtime_config_write(struct dma_chan *chan,
  2220. struct dma_slave_config *config,
  2221. enum dma_transfer_direction direction)
  2222. {
  2223. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  2224. struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
  2225. enum dma_slave_buswidth src_addr_width, dst_addr_width;
  2226. dma_addr_t config_addr;
  2227. u32 src_maxburst, dst_maxburst;
  2228. int ret;
  2229. if (d40c->phy_chan == NULL) {
  2230. chan_err(d40c, "Channel is not allocated!\n");
  2231. return -EINVAL;
  2232. }
  2233. src_addr_width = config->src_addr_width;
  2234. src_maxburst = config->src_maxburst;
  2235. dst_addr_width = config->dst_addr_width;
  2236. dst_maxburst = config->dst_maxburst;
  2237. if (direction == DMA_DEV_TO_MEM) {
  2238. config_addr = config->src_addr;
  2239. if (cfg->dir != DMA_DEV_TO_MEM)
  2240. dev_dbg(d40c->base->dev,
  2241. "channel was not configured for peripheral "
  2242. "to memory transfer (%d) overriding\n",
  2243. cfg->dir);
  2244. cfg->dir = DMA_DEV_TO_MEM;
  2245. /* Configure the memory side */
  2246. if (dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
  2247. dst_addr_width = src_addr_width;
  2248. if (dst_maxburst == 0)
  2249. dst_maxburst = src_maxburst;
  2250. } else if (direction == DMA_MEM_TO_DEV) {
  2251. config_addr = config->dst_addr;
  2252. if (cfg->dir != DMA_MEM_TO_DEV)
  2253. dev_dbg(d40c->base->dev,
  2254. "channel was not configured for memory "
  2255. "to peripheral transfer (%d) overriding\n",
  2256. cfg->dir);
  2257. cfg->dir = DMA_MEM_TO_DEV;
  2258. /* Configure the memory side */
  2259. if (src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
  2260. src_addr_width = dst_addr_width;
  2261. if (src_maxburst == 0)
  2262. src_maxburst = dst_maxburst;
  2263. } else {
  2264. dev_err(d40c->base->dev,
  2265. "unrecognized channel direction %d\n",
  2266. direction);
  2267. return -EINVAL;
  2268. }
  2269. if (config_addr <= 0) {
  2270. dev_err(d40c->base->dev, "no address supplied\n");
  2271. return -EINVAL;
  2272. }
  2273. if (src_maxburst * src_addr_width != dst_maxburst * dst_addr_width) {
  2274. dev_err(d40c->base->dev,
  2275. "src/dst width/maxburst mismatch: %d*%d != %d*%d\n",
  2276. src_maxburst,
  2277. src_addr_width,
  2278. dst_maxburst,
  2279. dst_addr_width);
  2280. return -EINVAL;
  2281. }
  2282. if (src_maxburst > 16) {
  2283. src_maxburst = 16;
  2284. dst_maxburst = src_maxburst * src_addr_width / dst_addr_width;
  2285. } else if (dst_maxburst > 16) {
  2286. dst_maxburst = 16;
  2287. src_maxburst = dst_maxburst * dst_addr_width / src_addr_width;
  2288. }
  2289. /* Only valid widths are; 1, 2, 4 and 8. */
  2290. if (src_addr_width <= DMA_SLAVE_BUSWIDTH_UNDEFINED ||
  2291. src_addr_width > DMA_SLAVE_BUSWIDTH_8_BYTES ||
  2292. dst_addr_width <= DMA_SLAVE_BUSWIDTH_UNDEFINED ||
  2293. dst_addr_width > DMA_SLAVE_BUSWIDTH_8_BYTES ||
  2294. !is_power_of_2(src_addr_width) ||
  2295. !is_power_of_2(dst_addr_width))
  2296. return -EINVAL;
  2297. cfg->src_info.data_width = src_addr_width;
  2298. cfg->dst_info.data_width = dst_addr_width;
  2299. ret = dma40_config_to_halfchannel(d40c, &cfg->src_info,
  2300. src_maxburst);
  2301. if (ret)
  2302. return ret;
  2303. ret = dma40_config_to_halfchannel(d40c, &cfg->dst_info,
  2304. dst_maxburst);
  2305. if (ret)
  2306. return ret;
  2307. /* Fill in register values */
  2308. if (chan_is_logical(d40c))
  2309. d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
  2310. else
  2311. d40_phy_cfg(cfg, &d40c->src_def_cfg, &d40c->dst_def_cfg);
  2312. /* These settings will take precedence later */
  2313. d40c->runtime_addr = config_addr;
  2314. d40c->runtime_direction = direction;
  2315. dev_dbg(d40c->base->dev,
  2316. "configured channel %s for %s, data width %d/%d, "
  2317. "maxburst %d/%d elements, LE, no flow control\n",
  2318. dma_chan_name(chan),
  2319. (direction == DMA_DEV_TO_MEM) ? "RX" : "TX",
  2320. src_addr_width, dst_addr_width,
  2321. src_maxburst, dst_maxburst);
  2322. return 0;
  2323. }
  2324. /* Initialization functions */
  2325. static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
  2326. struct d40_chan *chans, int offset,
  2327. int num_chans)
  2328. {
  2329. int i = 0;
  2330. struct d40_chan *d40c;
  2331. INIT_LIST_HEAD(&dma->channels);
  2332. for (i = offset; i < offset + num_chans; i++) {
  2333. d40c = &chans[i];
  2334. d40c->base = base;
  2335. d40c->chan.device = dma;
  2336. spin_lock_init(&d40c->lock);
  2337. d40c->log_num = D40_PHY_CHAN;
  2338. INIT_LIST_HEAD(&d40c->done);
  2339. INIT_LIST_HEAD(&d40c->active);
  2340. INIT_LIST_HEAD(&d40c->queue);
  2341. INIT_LIST_HEAD(&d40c->pending_queue);
  2342. INIT_LIST_HEAD(&d40c->client);
  2343. INIT_LIST_HEAD(&d40c->prepare_queue);
  2344. tasklet_setup(&d40c->tasklet, dma_tasklet);
  2345. list_add_tail(&d40c->chan.device_node,
  2346. &dma->channels);
  2347. }
  2348. }
  2349. static void d40_ops_init(struct d40_base *base, struct dma_device *dev)
  2350. {
  2351. if (dma_has_cap(DMA_SLAVE, dev->cap_mask)) {
  2352. dev->device_prep_slave_sg = d40_prep_slave_sg;
  2353. dev->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
  2354. }
  2355. if (dma_has_cap(DMA_MEMCPY, dev->cap_mask)) {
  2356. dev->device_prep_dma_memcpy = d40_prep_memcpy;
  2357. dev->directions = BIT(DMA_MEM_TO_MEM);
  2358. /*
  2359. * This controller can only access address at even
  2360. * 32bit boundaries, i.e. 2^2
  2361. */
  2362. dev->copy_align = DMAENGINE_ALIGN_4_BYTES;
  2363. }
  2364. if (dma_has_cap(DMA_CYCLIC, dev->cap_mask))
  2365. dev->device_prep_dma_cyclic = dma40_prep_dma_cyclic;
  2366. dev->device_alloc_chan_resources = d40_alloc_chan_resources;
  2367. dev->device_free_chan_resources = d40_free_chan_resources;
  2368. dev->device_issue_pending = d40_issue_pending;
  2369. dev->device_tx_status = d40_tx_status;
  2370. dev->device_config = d40_set_runtime_config;
  2371. dev->device_pause = d40_pause;
  2372. dev->device_resume = d40_resume;
  2373. dev->device_terminate_all = d40_terminate_all;
  2374. dev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
  2375. dev->dev = base->dev;
  2376. }
  2377. static int __init d40_dmaengine_init(struct d40_base *base,
  2378. int num_reserved_chans)
  2379. {
  2380. int err ;
  2381. d40_chan_init(base, &base->dma_slave, base->log_chans,
  2382. 0, base->num_log_chans);
  2383. dma_cap_zero(base->dma_slave.cap_mask);
  2384. dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
  2385. dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
  2386. d40_ops_init(base, &base->dma_slave);
  2387. err = dmaenginem_async_device_register(&base->dma_slave);
  2388. if (err) {
  2389. d40_err(base->dev, "Failed to register slave channels\n");
  2390. goto exit;
  2391. }
  2392. d40_chan_init(base, &base->dma_memcpy, base->log_chans,
  2393. base->num_log_chans, base->num_memcpy_chans);
  2394. dma_cap_zero(base->dma_memcpy.cap_mask);
  2395. dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
  2396. d40_ops_init(base, &base->dma_memcpy);
  2397. err = dmaenginem_async_device_register(&base->dma_memcpy);
  2398. if (err) {
  2399. d40_err(base->dev,
  2400. "Failed to register memcpy only channels\n");
  2401. goto exit;
  2402. }
  2403. d40_chan_init(base, &base->dma_both, base->phy_chans,
  2404. 0, num_reserved_chans);
  2405. dma_cap_zero(base->dma_both.cap_mask);
  2406. dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
  2407. dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
  2408. dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
  2409. d40_ops_init(base, &base->dma_both);
  2410. err = dmaenginem_async_device_register(&base->dma_both);
  2411. if (err) {
  2412. d40_err(base->dev,
  2413. "Failed to register logical and physical capable channels\n");
  2414. goto exit;
  2415. }
  2416. return 0;
  2417. exit:
  2418. return err;
  2419. }
  2420. /* Suspend resume functionality */
  2421. #ifdef CONFIG_PM_SLEEP
  2422. static int dma40_suspend(struct device *dev)
  2423. {
  2424. struct d40_base *base = dev_get_drvdata(dev);
  2425. int ret;
  2426. ret = pm_runtime_force_suspend(dev);
  2427. if (ret)
  2428. return ret;
  2429. if (base->lcpa_regulator)
  2430. ret = regulator_disable(base->lcpa_regulator);
  2431. return ret;
  2432. }
  2433. static int dma40_resume(struct device *dev)
  2434. {
  2435. struct d40_base *base = dev_get_drvdata(dev);
  2436. int ret = 0;
  2437. if (base->lcpa_regulator) {
  2438. ret = regulator_enable(base->lcpa_regulator);
  2439. if (ret)
  2440. return ret;
  2441. }
  2442. return pm_runtime_force_resume(dev);
  2443. }
  2444. #endif
  2445. #ifdef CONFIG_PM
  2446. static void dma40_backup(void __iomem *baseaddr, u32 *backup,
  2447. u32 *regaddr, int num, bool save)
  2448. {
  2449. int i;
  2450. for (i = 0; i < num; i++) {
  2451. void __iomem *addr = baseaddr + regaddr[i];
  2452. if (save)
  2453. backup[i] = readl_relaxed(addr);
  2454. else
  2455. writel_relaxed(backup[i], addr);
  2456. }
  2457. }
  2458. static void d40_save_restore_registers(struct d40_base *base, bool save)
  2459. {
  2460. int i;
  2461. /* Save/Restore channel specific registers */
  2462. for (i = 0; i < base->num_phy_chans; i++) {
  2463. void __iomem *addr;
  2464. int idx;
  2465. if (base->phy_res[i].reserved)
  2466. continue;
  2467. addr = base->virtbase + D40_DREG_PCBASE + i * D40_DREG_PCDELTA;
  2468. idx = i * ARRAY_SIZE(d40_backup_regs_chan);
  2469. dma40_backup(addr, &base->reg_val_backup_chan[idx],
  2470. d40_backup_regs_chan,
  2471. ARRAY_SIZE(d40_backup_regs_chan),
  2472. save);
  2473. }
  2474. /* Save/Restore global registers */
  2475. dma40_backup(base->virtbase, base->reg_val_backup,
  2476. d40_backup_regs, ARRAY_SIZE(d40_backup_regs),
  2477. save);
  2478. /* Save/Restore registers only existing on dma40 v3 and later */
  2479. if (base->gen_dmac.backup)
  2480. dma40_backup(base->virtbase, base->reg_val_backup_v4,
  2481. base->gen_dmac.backup,
  2482. base->gen_dmac.backup_size,
  2483. save);
  2484. }
  2485. static int dma40_runtime_suspend(struct device *dev)
  2486. {
  2487. struct d40_base *base = dev_get_drvdata(dev);
  2488. d40_save_restore_registers(base, true);
  2489. /* Don't disable/enable clocks for v1 due to HW bugs */
  2490. if (base->rev != 1)
  2491. writel_relaxed(base->gcc_pwr_off_mask,
  2492. base->virtbase + D40_DREG_GCC);
  2493. return 0;
  2494. }
  2495. static int dma40_runtime_resume(struct device *dev)
  2496. {
  2497. struct d40_base *base = dev_get_drvdata(dev);
  2498. d40_save_restore_registers(base, false);
  2499. writel_relaxed(D40_DREG_GCC_ENABLE_ALL,
  2500. base->virtbase + D40_DREG_GCC);
  2501. return 0;
  2502. }
  2503. #endif
  2504. static const struct dev_pm_ops dma40_pm_ops = {
  2505. SET_LATE_SYSTEM_SLEEP_PM_OPS(dma40_suspend, dma40_resume)
  2506. SET_RUNTIME_PM_OPS(dma40_runtime_suspend,
  2507. dma40_runtime_resume,
  2508. NULL)
  2509. };
  2510. /* Initialization functions. */
  2511. static int __init d40_phy_res_init(struct d40_base *base)
  2512. {
  2513. int i;
  2514. int num_phy_chans_avail = 0;
  2515. u32 val[2];
  2516. int odd_even_bit = -2;
  2517. int gcc = D40_DREG_GCC_ENA;
  2518. val[0] = readl(base->virtbase + D40_DREG_PRSME);
  2519. val[1] = readl(base->virtbase + D40_DREG_PRSMO);
  2520. for (i = 0; i < base->num_phy_chans; i++) {
  2521. base->phy_res[i].num = i;
  2522. odd_even_bit += 2 * ((i % 2) == 0);
  2523. if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
  2524. /* Mark security only channels as occupied */
  2525. base->phy_res[i].allocated_src = D40_ALLOC_PHY;
  2526. base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
  2527. base->phy_res[i].reserved = true;
  2528. gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
  2529. D40_DREG_GCC_SRC);
  2530. gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
  2531. D40_DREG_GCC_DST);
  2532. } else {
  2533. base->phy_res[i].allocated_src = D40_ALLOC_FREE;
  2534. base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
  2535. base->phy_res[i].reserved = false;
  2536. num_phy_chans_avail++;
  2537. }
  2538. spin_lock_init(&base->phy_res[i].lock);
  2539. }
  2540. /* Mark disabled channels as occupied */
  2541. for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
  2542. int chan = base->plat_data->disabled_channels[i];
  2543. base->phy_res[chan].allocated_src = D40_ALLOC_PHY;
  2544. base->phy_res[chan].allocated_dst = D40_ALLOC_PHY;
  2545. base->phy_res[chan].reserved = true;
  2546. gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
  2547. D40_DREG_GCC_SRC);
  2548. gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
  2549. D40_DREG_GCC_DST);
  2550. num_phy_chans_avail--;
  2551. }
  2552. /* Mark soft_lli channels */
  2553. for (i = 0; i < base->plat_data->num_of_soft_lli_chans; i++) {
  2554. int chan = base->plat_data->soft_lli_chans[i];
  2555. base->phy_res[chan].use_soft_lli = true;
  2556. }
  2557. dev_info(base->dev, "%d of %d physical DMA channels available\n",
  2558. num_phy_chans_avail, base->num_phy_chans);
  2559. /* Verify settings extended vs standard */
  2560. val[0] = readl(base->virtbase + D40_DREG_PRTYP);
  2561. for (i = 0; i < base->num_phy_chans; i++) {
  2562. if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
  2563. (val[0] & 0x3) != 1)
  2564. dev_info(base->dev,
  2565. "[%s] INFO: channel %d is misconfigured (%d)\n",
  2566. __func__, i, val[0] & 0x3);
  2567. val[0] = val[0] >> 2;
  2568. }
  2569. /*
  2570. * To keep things simple, Enable all clocks initially.
  2571. * The clocks will get managed later post channel allocation.
  2572. * The clocks for the event lines on which reserved channels exists
  2573. * are not managed here.
  2574. */
  2575. writel(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC);
  2576. base->gcc_pwr_off_mask = gcc;
  2577. return num_phy_chans_avail;
  2578. }
  2579. static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
  2580. {
  2581. struct stedma40_platform_data *plat_data = dev_get_platdata(&pdev->dev);
  2582. struct clk *clk;
  2583. void __iomem *virtbase;
  2584. struct resource *res;
  2585. struct d40_base *base;
  2586. int num_log_chans;
  2587. int num_phy_chans;
  2588. int num_memcpy_chans;
  2589. int clk_ret = -EINVAL;
  2590. int i;
  2591. u32 pid;
  2592. u32 cid;
  2593. u8 rev;
  2594. clk = clk_get(&pdev->dev, NULL);
  2595. if (IS_ERR(clk)) {
  2596. d40_err(&pdev->dev, "No matching clock found\n");
  2597. goto check_prepare_enabled;
  2598. }
  2599. clk_ret = clk_prepare_enable(clk);
  2600. if (clk_ret) {
  2601. d40_err(&pdev->dev, "Failed to prepare/enable clock\n");
  2602. goto disable_unprepare;
  2603. }
  2604. /* Get IO for DMAC base address */
  2605. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
  2606. if (!res)
  2607. goto disable_unprepare;
  2608. if (request_mem_region(res->start, resource_size(res),
  2609. D40_NAME " I/O base") == NULL)
  2610. goto release_region;
  2611. virtbase = ioremap(res->start, resource_size(res));
  2612. if (!virtbase)
  2613. goto release_region;
  2614. /* This is just a regular AMBA PrimeCell ID actually */
  2615. for (pid = 0, i = 0; i < 4; i++)
  2616. pid |= (readl(virtbase + resource_size(res) - 0x20 + 4 * i)
  2617. & 255) << (i * 8);
  2618. for (cid = 0, i = 0; i < 4; i++)
  2619. cid |= (readl(virtbase + resource_size(res) - 0x10 + 4 * i)
  2620. & 255) << (i * 8);
  2621. if (cid != AMBA_CID) {
  2622. d40_err(&pdev->dev, "Unknown hardware! No PrimeCell ID\n");
  2623. goto unmap_io;
  2624. }
  2625. if (AMBA_MANF_BITS(pid) != AMBA_VENDOR_ST) {
  2626. d40_err(&pdev->dev, "Unknown designer! Got %x wanted %x\n",
  2627. AMBA_MANF_BITS(pid),
  2628. AMBA_VENDOR_ST);
  2629. goto unmap_io;
  2630. }
  2631. /*
  2632. * HW revision:
  2633. * DB8500ed has revision 0
  2634. * ? has revision 1
  2635. * DB8500v1 has revision 2
  2636. * DB8500v2 has revision 3
  2637. * AP9540v1 has revision 4
  2638. * DB8540v1 has revision 4
  2639. */
  2640. rev = AMBA_REV_BITS(pid);
  2641. if (rev < 2) {
  2642. d40_err(&pdev->dev, "hardware revision: %d is not supported", rev);
  2643. goto unmap_io;
  2644. }
  2645. /* The number of physical channels on this HW */
  2646. if (plat_data->num_of_phy_chans)
  2647. num_phy_chans = plat_data->num_of_phy_chans;
  2648. else
  2649. num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
  2650. /* The number of channels used for memcpy */
  2651. if (plat_data->num_of_memcpy_chans)
  2652. num_memcpy_chans = plat_data->num_of_memcpy_chans;
  2653. else
  2654. num_memcpy_chans = ARRAY_SIZE(dma40_memcpy_channels);
  2655. num_log_chans = num_phy_chans * D40_MAX_LOG_CHAN_PER_PHY;
  2656. dev_info(&pdev->dev,
  2657. "hardware rev: %d @ %pa with %d physical and %d logical channels\n",
  2658. rev, &res->start, num_phy_chans, num_log_chans);
  2659. base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
  2660. (num_phy_chans + num_log_chans + num_memcpy_chans) *
  2661. sizeof(struct d40_chan), GFP_KERNEL);
  2662. if (base == NULL)
  2663. goto unmap_io;
  2664. base->rev = rev;
  2665. base->clk = clk;
  2666. base->num_memcpy_chans = num_memcpy_chans;
  2667. base->num_phy_chans = num_phy_chans;
  2668. base->num_log_chans = num_log_chans;
  2669. base->phy_start = res->start;
  2670. base->phy_size = resource_size(res);
  2671. base->virtbase = virtbase;
  2672. base->plat_data = plat_data;
  2673. base->dev = &pdev->dev;
  2674. base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
  2675. base->log_chans = &base->phy_chans[num_phy_chans];
  2676. if (base->plat_data->num_of_phy_chans == 14) {
  2677. base->gen_dmac.backup = d40_backup_regs_v4b;
  2678. base->gen_dmac.backup_size = BACKUP_REGS_SZ_V4B;
  2679. base->gen_dmac.interrupt_en = D40_DREG_CPCMIS;
  2680. base->gen_dmac.interrupt_clear = D40_DREG_CPCICR;
  2681. base->gen_dmac.realtime_en = D40_DREG_CRSEG1;
  2682. base->gen_dmac.realtime_clear = D40_DREG_CRCEG1;
  2683. base->gen_dmac.high_prio_en = D40_DREG_CPSEG1;
  2684. base->gen_dmac.high_prio_clear = D40_DREG_CPCEG1;
  2685. base->gen_dmac.il = il_v4b;
  2686. base->gen_dmac.il_size = ARRAY_SIZE(il_v4b);
  2687. base->gen_dmac.init_reg = dma_init_reg_v4b;
  2688. base->gen_dmac.init_reg_size = ARRAY_SIZE(dma_init_reg_v4b);
  2689. } else {
  2690. if (base->rev >= 3) {
  2691. base->gen_dmac.backup = d40_backup_regs_v4a;
  2692. base->gen_dmac.backup_size = BACKUP_REGS_SZ_V4A;
  2693. }
  2694. base->gen_dmac.interrupt_en = D40_DREG_PCMIS;
  2695. base->gen_dmac.interrupt_clear = D40_DREG_PCICR;
  2696. base->gen_dmac.realtime_en = D40_DREG_RSEG1;
  2697. base->gen_dmac.realtime_clear = D40_DREG_RCEG1;
  2698. base->gen_dmac.high_prio_en = D40_DREG_PSEG1;
  2699. base->gen_dmac.high_prio_clear = D40_DREG_PCEG1;
  2700. base->gen_dmac.il = il_v4a;
  2701. base->gen_dmac.il_size = ARRAY_SIZE(il_v4a);
  2702. base->gen_dmac.init_reg = dma_init_reg_v4a;
  2703. base->gen_dmac.init_reg_size = ARRAY_SIZE(dma_init_reg_v4a);
  2704. }
  2705. base->phy_res = kcalloc(num_phy_chans,
  2706. sizeof(*base->phy_res),
  2707. GFP_KERNEL);
  2708. if (!base->phy_res)
  2709. goto free_base;
  2710. base->lookup_phy_chans = kcalloc(num_phy_chans,
  2711. sizeof(*base->lookup_phy_chans),
  2712. GFP_KERNEL);
  2713. if (!base->lookup_phy_chans)
  2714. goto free_phy_res;
  2715. base->lookup_log_chans = kcalloc(num_log_chans,
  2716. sizeof(*base->lookup_log_chans),
  2717. GFP_KERNEL);
  2718. if (!base->lookup_log_chans)
  2719. goto free_phy_chans;
  2720. base->reg_val_backup_chan = kmalloc_array(base->num_phy_chans,
  2721. sizeof(d40_backup_regs_chan),
  2722. GFP_KERNEL);
  2723. if (!base->reg_val_backup_chan)
  2724. goto free_log_chans;
  2725. base->lcla_pool.alloc_map = kcalloc(num_phy_chans
  2726. * D40_LCLA_LINK_PER_EVENT_GRP,
  2727. sizeof(*base->lcla_pool.alloc_map),
  2728. GFP_KERNEL);
  2729. if (!base->lcla_pool.alloc_map)
  2730. goto free_backup_chan;
  2731. base->regs_interrupt = kmalloc_array(base->gen_dmac.il_size,
  2732. sizeof(*base->regs_interrupt),
  2733. GFP_KERNEL);
  2734. if (!base->regs_interrupt)
  2735. goto free_map;
  2736. base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
  2737. 0, SLAB_HWCACHE_ALIGN,
  2738. NULL);
  2739. if (base->desc_slab == NULL)
  2740. goto free_regs;
  2741. return base;
  2742. free_regs:
  2743. kfree(base->regs_interrupt);
  2744. free_map:
  2745. kfree(base->lcla_pool.alloc_map);
  2746. free_backup_chan:
  2747. kfree(base->reg_val_backup_chan);
  2748. free_log_chans:
  2749. kfree(base->lookup_log_chans);
  2750. free_phy_chans:
  2751. kfree(base->lookup_phy_chans);
  2752. free_phy_res:
  2753. kfree(base->phy_res);
  2754. free_base:
  2755. kfree(base);
  2756. unmap_io:
  2757. iounmap(virtbase);
  2758. release_region:
  2759. release_mem_region(res->start, resource_size(res));
  2760. check_prepare_enabled:
  2761. if (!clk_ret)
  2762. disable_unprepare:
  2763. clk_disable_unprepare(clk);
  2764. if (!IS_ERR(clk))
  2765. clk_put(clk);
  2766. return NULL;
  2767. }
  2768. static void __init d40_hw_init(struct d40_base *base)
  2769. {
  2770. int i;
  2771. u32 prmseo[2] = {0, 0};
  2772. u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
  2773. u32 pcmis = 0;
  2774. u32 pcicr = 0;
  2775. struct d40_reg_val *dma_init_reg = base->gen_dmac.init_reg;
  2776. u32 reg_size = base->gen_dmac.init_reg_size;
  2777. for (i = 0; i < reg_size; i++)
  2778. writel(dma_init_reg[i].val,
  2779. base->virtbase + dma_init_reg[i].reg);
  2780. /* Configure all our dma channels to default settings */
  2781. for (i = 0; i < base->num_phy_chans; i++) {
  2782. activeo[i % 2] = activeo[i % 2] << 2;
  2783. if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
  2784. == D40_ALLOC_PHY) {
  2785. activeo[i % 2] |= 3;
  2786. continue;
  2787. }
  2788. /* Enable interrupt # */
  2789. pcmis = (pcmis << 1) | 1;
  2790. /* Clear interrupt # */
  2791. pcicr = (pcicr << 1) | 1;
  2792. /* Set channel to physical mode */
  2793. prmseo[i % 2] = prmseo[i % 2] << 2;
  2794. prmseo[i % 2] |= 1;
  2795. }
  2796. writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
  2797. writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
  2798. writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
  2799. writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);
  2800. /* Write which interrupt to enable */
  2801. writel(pcmis, base->virtbase + base->gen_dmac.interrupt_en);
  2802. /* Write which interrupt to clear */
  2803. writel(pcicr, base->virtbase + base->gen_dmac.interrupt_clear);
  2804. /* These are __initdata and cannot be accessed after init */
  2805. base->gen_dmac.init_reg = NULL;
  2806. base->gen_dmac.init_reg_size = 0;
  2807. }
  2808. static int __init d40_lcla_allocate(struct d40_base *base)
  2809. {
  2810. struct d40_lcla_pool *pool = &base->lcla_pool;
  2811. unsigned long *page_list;
  2812. int i, j;
  2813. int ret;
  2814. /*
  2815. * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
  2816. * To full fill this hardware requirement without wasting 256 kb
  2817. * we allocate pages until we get an aligned one.
  2818. */
  2819. page_list = kmalloc_array(MAX_LCLA_ALLOC_ATTEMPTS,
  2820. sizeof(*page_list),
  2821. GFP_KERNEL);
  2822. if (!page_list)
  2823. return -ENOMEM;
  2824. /* Calculating how many pages that are required */
  2825. base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;
  2826. for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
  2827. page_list[i] = __get_free_pages(GFP_KERNEL,
  2828. base->lcla_pool.pages);
  2829. if (!page_list[i]) {
  2830. d40_err(base->dev, "Failed to allocate %d pages.\n",
  2831. base->lcla_pool.pages);
  2832. ret = -ENOMEM;
  2833. for (j = 0; j < i; j++)
  2834. free_pages(page_list[j], base->lcla_pool.pages);
  2835. goto free_page_list;
  2836. }
  2837. if ((virt_to_phys((void *)page_list[i]) &
  2838. (LCLA_ALIGNMENT - 1)) == 0)
  2839. break;
  2840. }
  2841. for (j = 0; j < i; j++)
  2842. free_pages(page_list[j], base->lcla_pool.pages);
  2843. if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
  2844. base->lcla_pool.base = (void *)page_list[i];
  2845. } else {
  2846. /*
  2847. * After many attempts and no succees with finding the correct
  2848. * alignment, try with allocating a big buffer.
  2849. */
  2850. dev_warn(base->dev,
  2851. "[%s] Failed to get %d pages @ 18 bit align.\n",
  2852. __func__, base->lcla_pool.pages);
  2853. base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
  2854. base->num_phy_chans +
  2855. LCLA_ALIGNMENT,
  2856. GFP_KERNEL);
  2857. if (!base->lcla_pool.base_unaligned) {
  2858. ret = -ENOMEM;
  2859. goto free_page_list;
  2860. }
  2861. base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
  2862. LCLA_ALIGNMENT);
  2863. }
  2864. pool->dma_addr = dma_map_single(base->dev, pool->base,
  2865. SZ_1K * base->num_phy_chans,
  2866. DMA_TO_DEVICE);
  2867. if (dma_mapping_error(base->dev, pool->dma_addr)) {
  2868. pool->dma_addr = 0;
  2869. ret = -ENOMEM;
  2870. goto free_page_list;
  2871. }
  2872. writel(virt_to_phys(base->lcla_pool.base),
  2873. base->virtbase + D40_DREG_LCLA);
  2874. ret = 0;
  2875. free_page_list:
  2876. kfree(page_list);
  2877. return ret;
  2878. }
  2879. static int __init d40_of_probe(struct platform_device *pdev,
  2880. struct device_node *np)
  2881. {
  2882. struct stedma40_platform_data *pdata;
  2883. int num_phy = 0, num_memcpy = 0, num_disabled = 0;
  2884. const __be32 *list;
  2885. pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
  2886. if (!pdata)
  2887. return -ENOMEM;
  2888. /* If absent this value will be obtained from h/w. */
  2889. of_property_read_u32(np, "dma-channels", &num_phy);
  2890. if (num_phy > 0)
  2891. pdata->num_of_phy_chans = num_phy;
  2892. list = of_get_property(np, "memcpy-channels", &num_memcpy);
  2893. num_memcpy /= sizeof(*list);
  2894. if (num_memcpy > D40_MEMCPY_MAX_CHANS || num_memcpy <= 0) {
  2895. d40_err(&pdev->dev,
  2896. "Invalid number of memcpy channels specified (%d)\n",
  2897. num_memcpy);
  2898. return -EINVAL;
  2899. }
  2900. pdata->num_of_memcpy_chans = num_memcpy;
  2901. of_property_read_u32_array(np, "memcpy-channels",
  2902. dma40_memcpy_channels,
  2903. num_memcpy);
  2904. list = of_get_property(np, "disabled-channels", &num_disabled);
  2905. num_disabled /= sizeof(*list);
  2906. if (num_disabled >= STEDMA40_MAX_PHYS || num_disabled < 0) {
  2907. d40_err(&pdev->dev,
  2908. "Invalid number of disabled channels specified (%d)\n",
  2909. num_disabled);
  2910. return -EINVAL;
  2911. }
  2912. of_property_read_u32_array(np, "disabled-channels",
  2913. pdata->disabled_channels,
  2914. num_disabled);
  2915. pdata->disabled_channels[num_disabled] = -1;
  2916. pdev->dev.platform_data = pdata;
  2917. return 0;
  2918. }
  2919. static int __init d40_probe(struct platform_device *pdev)
  2920. {
  2921. struct stedma40_platform_data *plat_data = dev_get_platdata(&pdev->dev);
  2922. struct device_node *np = pdev->dev.of_node;
  2923. int ret = -ENOENT;
  2924. struct d40_base *base;
  2925. struct resource *res;
  2926. int num_reserved_chans;
  2927. u32 val;
  2928. if (!plat_data) {
  2929. if (np) {
  2930. if (d40_of_probe(pdev, np)) {
  2931. ret = -ENOMEM;
  2932. goto report_failure;
  2933. }
  2934. } else {
  2935. d40_err(&pdev->dev, "No pdata or Device Tree provided\n");
  2936. goto report_failure;
  2937. }
  2938. }
  2939. base = d40_hw_detect_init(pdev);
  2940. if (!base)
  2941. goto report_failure;
  2942. num_reserved_chans = d40_phy_res_init(base);
  2943. platform_set_drvdata(pdev, base);
  2944. spin_lock_init(&base->interrupt_lock);
  2945. spin_lock_init(&base->execmd_lock);
  2946. /* Get IO for logical channel parameter address */
  2947. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
  2948. if (!res) {
  2949. ret = -ENOENT;
  2950. d40_err(&pdev->dev, "No \"lcpa\" memory resource\n");
  2951. goto destroy_cache;
  2952. }
  2953. base->lcpa_size = resource_size(res);
  2954. base->phy_lcpa = res->start;
  2955. if (request_mem_region(res->start, resource_size(res),
  2956. D40_NAME " I/O lcpa") == NULL) {
  2957. ret = -EBUSY;
  2958. d40_err(&pdev->dev, "Failed to request LCPA region %pR\n", res);
  2959. goto destroy_cache;
  2960. }
  2961. /* We make use of ESRAM memory for this. */
  2962. val = readl(base->virtbase + D40_DREG_LCPA);
  2963. if (res->start != val && val != 0) {
  2964. dev_warn(&pdev->dev,
  2965. "[%s] Mismatch LCPA dma 0x%x, def %pa\n",
  2966. __func__, val, &res->start);
  2967. } else
  2968. writel(res->start, base->virtbase + D40_DREG_LCPA);
  2969. base->lcpa_base = ioremap(res->start, resource_size(res));
  2970. if (!base->lcpa_base) {
  2971. ret = -ENOMEM;
  2972. d40_err(&pdev->dev, "Failed to ioremap LCPA region\n");
  2973. goto destroy_cache;
  2974. }
  2975. /* If lcla has to be located in ESRAM we don't need to allocate */
  2976. if (base->plat_data->use_esram_lcla) {
  2977. res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
  2978. "lcla_esram");
  2979. if (!res) {
  2980. ret = -ENOENT;
  2981. d40_err(&pdev->dev,
  2982. "No \"lcla_esram\" memory resource\n");
  2983. goto destroy_cache;
  2984. }
  2985. base->lcla_pool.base = ioremap(res->start,
  2986. resource_size(res));
  2987. if (!base->lcla_pool.base) {
  2988. ret = -ENOMEM;
  2989. d40_err(&pdev->dev, "Failed to ioremap LCLA region\n");
  2990. goto destroy_cache;
  2991. }
  2992. writel(res->start, base->virtbase + D40_DREG_LCLA);
  2993. } else {
  2994. ret = d40_lcla_allocate(base);
  2995. if (ret) {
  2996. d40_err(&pdev->dev, "Failed to allocate LCLA area\n");
  2997. goto destroy_cache;
  2998. }
  2999. }
  3000. spin_lock_init(&base->lcla_pool.lock);
  3001. base->irq = platform_get_irq(pdev, 0);
  3002. if (base->irq < 0) {
  3003. ret = base->irq;
  3004. goto destroy_cache;
  3005. }
  3006. ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
  3007. if (ret) {
  3008. d40_err(&pdev->dev, "No IRQ defined\n");
  3009. goto destroy_cache;
  3010. }
  3011. if (base->plat_data->use_esram_lcla) {
  3012. base->lcpa_regulator = regulator_get(base->dev, "lcla_esram");
  3013. if (IS_ERR(base->lcpa_regulator)) {
  3014. d40_err(&pdev->dev, "Failed to get lcpa_regulator\n");
  3015. ret = PTR_ERR(base->lcpa_regulator);
  3016. base->lcpa_regulator = NULL;
  3017. goto destroy_cache;
  3018. }
  3019. ret = regulator_enable(base->lcpa_regulator);
  3020. if (ret) {
  3021. d40_err(&pdev->dev,
  3022. "Failed to enable lcpa_regulator\n");
  3023. regulator_put(base->lcpa_regulator);
  3024. base->lcpa_regulator = NULL;
  3025. goto destroy_cache;
  3026. }
  3027. }
  3028. writel_relaxed(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC);
  3029. pm_runtime_irq_safe(base->dev);
  3030. pm_runtime_set_autosuspend_delay(base->dev, DMA40_AUTOSUSPEND_DELAY);
  3031. pm_runtime_use_autosuspend(base->dev);
  3032. pm_runtime_mark_last_busy(base->dev);
  3033. pm_runtime_set_active(base->dev);
  3034. pm_runtime_enable(base->dev);
  3035. ret = d40_dmaengine_init(base, num_reserved_chans);
  3036. if (ret)
  3037. goto destroy_cache;
  3038. ret = dma_set_max_seg_size(base->dev, STEDMA40_MAX_SEG_SIZE);
  3039. if (ret) {
  3040. d40_err(&pdev->dev, "Failed to set dma max seg size\n");
  3041. goto destroy_cache;
  3042. }
  3043. d40_hw_init(base);
  3044. if (np) {
  3045. ret = of_dma_controller_register(np, d40_xlate, NULL);
  3046. if (ret)
  3047. dev_err(&pdev->dev,
  3048. "could not register of_dma_controller\n");
  3049. }
  3050. dev_info(base->dev, "initialized\n");
  3051. return 0;
  3052. destroy_cache:
  3053. kmem_cache_destroy(base->desc_slab);
  3054. if (base->virtbase)
  3055. iounmap(base->virtbase);
  3056. if (base->lcla_pool.base && base->plat_data->use_esram_lcla) {
  3057. iounmap(base->lcla_pool.base);
  3058. base->lcla_pool.base = NULL;
  3059. }
  3060. if (base->lcla_pool.dma_addr)
  3061. dma_unmap_single(base->dev, base->lcla_pool.dma_addr,
  3062. SZ_1K * base->num_phy_chans,
  3063. DMA_TO_DEVICE);
  3064. if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
  3065. free_pages((unsigned long)base->lcla_pool.base,
  3066. base->lcla_pool.pages);
  3067. kfree(base->lcla_pool.base_unaligned);
  3068. if (base->lcpa_base)
  3069. iounmap(base->lcpa_base);
  3070. if (base->phy_lcpa)
  3071. release_mem_region(base->phy_lcpa,
  3072. base->lcpa_size);
  3073. if (base->phy_start)
  3074. release_mem_region(base->phy_start,
  3075. base->phy_size);
  3076. if (base->clk) {
  3077. clk_disable_unprepare(base->clk);
  3078. clk_put(base->clk);
  3079. }
  3080. if (base->lcpa_regulator) {
  3081. regulator_disable(base->lcpa_regulator);
  3082. regulator_put(base->lcpa_regulator);
  3083. }
  3084. pm_runtime_disable(base->dev);
  3085. kfree(base->lcla_pool.alloc_map);
  3086. kfree(base->lookup_log_chans);
  3087. kfree(base->lookup_phy_chans);
  3088. kfree(base->phy_res);
  3089. kfree(base);
  3090. report_failure:
  3091. d40_err(&pdev->dev, "probe failed\n");
  3092. return ret;
  3093. }
  3094. static const struct of_device_id d40_match[] = {
  3095. { .compatible = "stericsson,dma40", },
  3096. {}
  3097. };
  3098. static struct platform_driver d40_driver = {
  3099. .driver = {
  3100. .name = D40_NAME,
  3101. .pm = &dma40_pm_ops,
  3102. .of_match_table = d40_match,
  3103. },
  3104. };
  3105. static int __init stedma40_init(void)
  3106. {
  3107. return platform_driver_probe(&d40_driver, d40_probe);
  3108. }
  3109. subsys_initcall(stedma40_init);