imx-sdma.c 63 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382
  1. // SPDX-License-Identifier: GPL-2.0+
  2. //
  3. // drivers/dma/imx-sdma.c
  4. //
  5. // This file contains a driver for the Freescale Smart DMA engine
  6. //
  7. // Copyright 2010 Sascha Hauer, Pengutronix <[email protected]>
  8. //
  9. // Based on code from Freescale:
  10. //
  11. // Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
  12. #include <linux/init.h>
  13. #include <linux/iopoll.h>
  14. #include <linux/module.h>
  15. #include <linux/types.h>
  16. #include <linux/bitfield.h>
  17. #include <linux/bitops.h>
  18. #include <linux/mm.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/clk.h>
  21. #include <linux/delay.h>
  22. #include <linux/sched.h>
  23. #include <linux/semaphore.h>
  24. #include <linux/spinlock.h>
  25. #include <linux/device.h>
  26. #include <linux/dma-mapping.h>
  27. #include <linux/firmware.h>
  28. #include <linux/slab.h>
  29. #include <linux/platform_device.h>
  30. #include <linux/dmaengine.h>
  31. #include <linux/of.h>
  32. #include <linux/of_address.h>
  33. #include <linux/of_device.h>
  34. #include <linux/of_dma.h>
  35. #include <linux/workqueue.h>
  36. #include <asm/irq.h>
  37. #include <linux/dma/imx-dma.h>
  38. #include <linux/regmap.h>
  39. #include <linux/mfd/syscon.h>
  40. #include <linux/mfd/syscon/imx6q-iomuxc-gpr.h>
  41. #include "dmaengine.h"
  42. #include "virt-dma.h"
  43. /* SDMA registers */
  44. #define SDMA_H_C0PTR 0x000
  45. #define SDMA_H_INTR 0x004
  46. #define SDMA_H_STATSTOP 0x008
  47. #define SDMA_H_START 0x00c
  48. #define SDMA_H_EVTOVR 0x010
  49. #define SDMA_H_DSPOVR 0x014
  50. #define SDMA_H_HOSTOVR 0x018
  51. #define SDMA_H_EVTPEND 0x01c
  52. #define SDMA_H_DSPENBL 0x020
  53. #define SDMA_H_RESET 0x024
  54. #define SDMA_H_EVTERR 0x028
  55. #define SDMA_H_INTRMSK 0x02c
  56. #define SDMA_H_PSW 0x030
  57. #define SDMA_H_EVTERRDBG 0x034
  58. #define SDMA_H_CONFIG 0x038
  59. #define SDMA_ONCE_ENB 0x040
  60. #define SDMA_ONCE_DATA 0x044
  61. #define SDMA_ONCE_INSTR 0x048
  62. #define SDMA_ONCE_STAT 0x04c
  63. #define SDMA_ONCE_CMD 0x050
  64. #define SDMA_EVT_MIRROR 0x054
  65. #define SDMA_ILLINSTADDR 0x058
  66. #define SDMA_CHN0ADDR 0x05c
  67. #define SDMA_ONCE_RTB 0x060
  68. #define SDMA_XTRIG_CONF1 0x070
  69. #define SDMA_XTRIG_CONF2 0x074
  70. #define SDMA_CHNENBL0_IMX35 0x200
  71. #define SDMA_CHNENBL0_IMX31 0x080
  72. #define SDMA_CHNPRI_0 0x100
  73. #define SDMA_DONE0_CONFIG 0x1000
  74. /*
  75. * Buffer descriptor status values.
  76. */
  77. #define BD_DONE 0x01
  78. #define BD_WRAP 0x02
  79. #define BD_CONT 0x04
  80. #define BD_INTR 0x08
  81. #define BD_RROR 0x10
  82. #define BD_LAST 0x20
  83. #define BD_EXTD 0x80
  84. /*
  85. * Data Node descriptor status values.
  86. */
  87. #define DND_END_OF_FRAME 0x80
  88. #define DND_END_OF_XFER 0x40
  89. #define DND_DONE 0x20
  90. #define DND_UNUSED 0x01
  91. /*
  92. * IPCV2 descriptor status values.
  93. */
  94. #define BD_IPCV2_END_OF_FRAME 0x40
  95. #define IPCV2_MAX_NODES 50
  96. /*
  97. * Error bit set in the CCB status field by the SDMA,
  98. * in setbd routine, in case of a transfer error
  99. */
  100. #define DATA_ERROR 0x10000000
  101. /*
  102. * Buffer descriptor commands.
  103. */
  104. #define C0_ADDR 0x01
  105. #define C0_LOAD 0x02
  106. #define C0_DUMP 0x03
  107. #define C0_SETCTX 0x07
  108. #define C0_GETCTX 0x03
  109. #define C0_SETDM 0x01
  110. #define C0_SETPM 0x04
  111. #define C0_GETDM 0x02
  112. #define C0_GETPM 0x08
  113. /*
  114. * Change endianness indicator in the BD command field
  115. */
  116. #define CHANGE_ENDIANNESS 0x80
  117. /*
  118. * p_2_p watermark_level description
  119. * Bits Name Description
  120. * 0-7 Lower WML Lower watermark level
  121. * 8 PS 1: Pad Swallowing
  122. * 0: No Pad Swallowing
  123. * 9 PA 1: Pad Adding
  124. * 0: No Pad Adding
  125. * 10 SPDIF If this bit is set both source
  126. * and destination are on SPBA
  127. * 11 Source Bit(SP) 1: Source on SPBA
  128. * 0: Source on AIPS
  129. * 12 Destination Bit(DP) 1: Destination on SPBA
  130. * 0: Destination on AIPS
  131. * 13-15 --------- MUST BE 0
  132. * 16-23 Higher WML HWML
  133. * 24-27 N Total number of samples after
  134. * which Pad adding/Swallowing
  135. * must be done. It must be odd.
  136. * 28 Lower WML Event(LWE) SDMA events reg to check for
  137. * LWML event mask
  138. * 0: LWE in EVENTS register
  139. * 1: LWE in EVENTS2 register
  140. * 29 Higher WML Event(HWE) SDMA events reg to check for
  141. * HWML event mask
  142. * 0: HWE in EVENTS register
  143. * 1: HWE in EVENTS2 register
  144. * 30 --------- MUST BE 0
  145. * 31 CONT 1: Amount of samples to be
  146. * transferred is unknown and
  147. * script will keep on
  148. * transferring samples as long as
  149. * both events are detected and
  150. * script must be manually stopped
  151. * by the application
  152. * 0: The amount of samples to be
  153. * transferred is equal to the
  154. * count field of mode word
  155. */
  156. #define SDMA_WATERMARK_LEVEL_LWML 0xFF
  157. #define SDMA_WATERMARK_LEVEL_PS BIT(8)
  158. #define SDMA_WATERMARK_LEVEL_PA BIT(9)
  159. #define SDMA_WATERMARK_LEVEL_SPDIF BIT(10)
  160. #define SDMA_WATERMARK_LEVEL_SP BIT(11)
  161. #define SDMA_WATERMARK_LEVEL_DP BIT(12)
  162. #define SDMA_WATERMARK_LEVEL_HWML (0xFF << 16)
  163. #define SDMA_WATERMARK_LEVEL_LWE BIT(28)
  164. #define SDMA_WATERMARK_LEVEL_HWE BIT(29)
  165. #define SDMA_WATERMARK_LEVEL_CONT BIT(31)
  166. #define SDMA_DMA_BUSWIDTHS (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
  167. BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
  168. BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
  169. #define SDMA_DMA_DIRECTIONS (BIT(DMA_DEV_TO_MEM) | \
  170. BIT(DMA_MEM_TO_DEV) | \
  171. BIT(DMA_DEV_TO_DEV))
  172. #define SDMA_WATERMARK_LEVEL_N_FIFOS GENMASK(15, 12)
  173. #define SDMA_WATERMARK_LEVEL_OFF_FIFOS GENMASK(19, 16)
  174. #define SDMA_WATERMARK_LEVEL_WORDS_PER_FIFO GENMASK(31, 28)
  175. #define SDMA_WATERMARK_LEVEL_SW_DONE BIT(23)
  176. #define SDMA_DONE0_CONFIG_DONE_SEL BIT(7)
  177. #define SDMA_DONE0_CONFIG_DONE_DIS BIT(6)
  178. /*
  179. * struct sdma_script_start_addrs - SDMA script start pointers
  180. *
  181. * start addresses of the different functions in the physical
  182. * address space of the SDMA engine.
  183. */
  184. struct sdma_script_start_addrs {
  185. s32 ap_2_ap_addr;
  186. s32 ap_2_bp_addr;
  187. s32 ap_2_ap_fixed_addr;
  188. s32 bp_2_ap_addr;
  189. s32 loopback_on_dsp_side_addr;
  190. s32 mcu_interrupt_only_addr;
  191. s32 firi_2_per_addr;
  192. s32 firi_2_mcu_addr;
  193. s32 per_2_firi_addr;
  194. s32 mcu_2_firi_addr;
  195. s32 uart_2_per_addr;
  196. s32 uart_2_mcu_addr;
  197. s32 per_2_app_addr;
  198. s32 mcu_2_app_addr;
  199. s32 per_2_per_addr;
  200. s32 uartsh_2_per_addr;
  201. s32 uartsh_2_mcu_addr;
  202. s32 per_2_shp_addr;
  203. s32 mcu_2_shp_addr;
  204. s32 ata_2_mcu_addr;
  205. s32 mcu_2_ata_addr;
  206. s32 app_2_per_addr;
  207. s32 app_2_mcu_addr;
  208. s32 shp_2_per_addr;
  209. s32 shp_2_mcu_addr;
  210. s32 mshc_2_mcu_addr;
  211. s32 mcu_2_mshc_addr;
  212. s32 spdif_2_mcu_addr;
  213. s32 mcu_2_spdif_addr;
  214. s32 asrc_2_mcu_addr;
  215. s32 ext_mem_2_ipu_addr;
  216. s32 descrambler_addr;
  217. s32 dptc_dvfs_addr;
  218. s32 utra_addr;
  219. s32 ram_code_start_addr;
  220. /* End of v1 array */
  221. s32 mcu_2_ssish_addr;
  222. s32 ssish_2_mcu_addr;
  223. s32 hdmi_dma_addr;
  224. /* End of v2 array */
  225. s32 zcanfd_2_mcu_addr;
  226. s32 zqspi_2_mcu_addr;
  227. s32 mcu_2_ecspi_addr;
  228. s32 mcu_2_sai_addr;
  229. s32 sai_2_mcu_addr;
  230. s32 uart_2_mcu_rom_addr;
  231. s32 uartsh_2_mcu_rom_addr;
  232. /* End of v3 array */
  233. s32 mcu_2_zqspi_addr;
  234. /* End of v4 array */
  235. };
  236. /*
  237. * Mode/Count of data node descriptors - IPCv2
  238. */
  239. struct sdma_mode_count {
  240. #define SDMA_BD_MAX_CNT 0xffff
  241. u32 count : 16; /* size of the buffer pointed by this BD */
  242. u32 status : 8; /* E,R,I,C,W,D status bits stored here */
  243. u32 command : 8; /* command mostly used for channel 0 */
  244. };
  245. /*
  246. * Buffer descriptor
  247. */
  248. struct sdma_buffer_descriptor {
  249. struct sdma_mode_count mode;
  250. u32 buffer_addr; /* address of the buffer described */
  251. u32 ext_buffer_addr; /* extended buffer address */
  252. } __attribute__ ((packed));
  253. /**
  254. * struct sdma_channel_control - Channel control Block
  255. *
  256. * @current_bd_ptr: current buffer descriptor processed
  257. * @base_bd_ptr: first element of buffer descriptor array
  258. * @unused: padding. The SDMA engine expects an array of 128 byte
  259. * control blocks
  260. */
  261. struct sdma_channel_control {
  262. u32 current_bd_ptr;
  263. u32 base_bd_ptr;
  264. u32 unused[2];
  265. } __attribute__ ((packed));
  266. /**
  267. * struct sdma_state_registers - SDMA context for a channel
  268. *
  269. * @pc: program counter
  270. * @unused1: unused
  271. * @t: test bit: status of arithmetic & test instruction
  272. * @rpc: return program counter
  273. * @unused0: unused
  274. * @sf: source fault while loading data
  275. * @spc: loop start program counter
  276. * @unused2: unused
  277. * @df: destination fault while storing data
  278. * @epc: loop end program counter
  279. * @lm: loop mode
  280. */
  281. struct sdma_state_registers {
  282. u32 pc :14;
  283. u32 unused1: 1;
  284. u32 t : 1;
  285. u32 rpc :14;
  286. u32 unused0: 1;
  287. u32 sf : 1;
  288. u32 spc :14;
  289. u32 unused2: 1;
  290. u32 df : 1;
  291. u32 epc :14;
  292. u32 lm : 2;
  293. } __attribute__ ((packed));
  294. /**
  295. * struct sdma_context_data - sdma context specific to a channel
  296. *
  297. * @channel_state: channel state bits
  298. * @gReg: general registers
  299. * @mda: burst dma destination address register
  300. * @msa: burst dma source address register
  301. * @ms: burst dma status register
  302. * @md: burst dma data register
  303. * @pda: peripheral dma destination address register
  304. * @psa: peripheral dma source address register
  305. * @ps: peripheral dma status register
  306. * @pd: peripheral dma data register
  307. * @ca: CRC polynomial register
  308. * @cs: CRC accumulator register
  309. * @dda: dedicated core destination address register
  310. * @dsa: dedicated core source address register
  311. * @ds: dedicated core status register
  312. * @dd: dedicated core data register
  313. * @scratch0: 1st word of dedicated ram for context switch
  314. * @scratch1: 2nd word of dedicated ram for context switch
  315. * @scratch2: 3rd word of dedicated ram for context switch
  316. * @scratch3: 4th word of dedicated ram for context switch
  317. * @scratch4: 5th word of dedicated ram for context switch
  318. * @scratch5: 6th word of dedicated ram for context switch
  319. * @scratch6: 7th word of dedicated ram for context switch
  320. * @scratch7: 8th word of dedicated ram for context switch
  321. */
  322. struct sdma_context_data {
  323. struct sdma_state_registers channel_state;
  324. u32 gReg[8];
  325. u32 mda;
  326. u32 msa;
  327. u32 ms;
  328. u32 md;
  329. u32 pda;
  330. u32 psa;
  331. u32 ps;
  332. u32 pd;
  333. u32 ca;
  334. u32 cs;
  335. u32 dda;
  336. u32 dsa;
  337. u32 ds;
  338. u32 dd;
  339. u32 scratch0;
  340. u32 scratch1;
  341. u32 scratch2;
  342. u32 scratch3;
  343. u32 scratch4;
  344. u32 scratch5;
  345. u32 scratch6;
  346. u32 scratch7;
  347. } __attribute__ ((packed));
  348. struct sdma_engine;
  349. /**
  350. * struct sdma_desc - descriptor structor for one transfer
  351. * @vd: descriptor for virt dma
  352. * @num_bd: number of descriptors currently handling
  353. * @bd_phys: physical address of bd
  354. * @buf_tail: ID of the buffer that was processed
  355. * @buf_ptail: ID of the previous buffer that was processed
  356. * @period_len: period length, used in cyclic.
  357. * @chn_real_count: the real count updated from bd->mode.count
  358. * @chn_count: the transfer count set
  359. * @sdmac: sdma_channel pointer
  360. * @bd: pointer of allocate bd
  361. */
  362. struct sdma_desc {
  363. struct virt_dma_desc vd;
  364. unsigned int num_bd;
  365. dma_addr_t bd_phys;
  366. unsigned int buf_tail;
  367. unsigned int buf_ptail;
  368. unsigned int period_len;
  369. unsigned int chn_real_count;
  370. unsigned int chn_count;
  371. struct sdma_channel *sdmac;
  372. struct sdma_buffer_descriptor *bd;
  373. };
  374. /**
  375. * struct sdma_channel - housekeeping for a SDMA channel
  376. *
  377. * @vc: virt_dma base structure
  378. * @desc: sdma description including vd and other special member
  379. * @sdma: pointer to the SDMA engine for this channel
  380. * @channel: the channel number, matches dmaengine chan_id + 1
  381. * @direction: transfer type. Needed for setting SDMA script
  382. * @slave_config: Slave configuration
  383. * @peripheral_type: Peripheral type. Needed for setting SDMA script
  384. * @event_id0: aka dma request line
  385. * @event_id1: for channels that use 2 events
  386. * @word_size: peripheral access size
  387. * @pc_from_device: script address for those device_2_memory
  388. * @pc_to_device: script address for those memory_2_device
  389. * @device_to_device: script address for those device_2_device
  390. * @pc_to_pc: script address for those memory_2_memory
  391. * @flags: loop mode or not
  392. * @per_address: peripheral source or destination address in common case
  393. * destination address in p_2_p case
  394. * @per_address2: peripheral source address in p_2_p case
  395. * @event_mask: event mask used in p_2_p script
  396. * @watermark_level: value for gReg[7], some script will extend it from
  397. * basic watermark such as p_2_p
  398. * @shp_addr: value for gReg[6]
  399. * @per_addr: value for gReg[2]
  400. * @status: status of dma channel
  401. * @context_loaded: ensure context is only loaded once
  402. * @data: specific sdma interface structure
  403. * @bd_pool: dma_pool for bd
  404. * @terminate_worker: used to call back into terminate work function
  405. * @terminated: terminated list
  406. * @is_ram_script: flag for script in ram
  407. * @n_fifos_src: number of source device fifos
  408. * @n_fifos_dst: number of destination device fifos
  409. * @sw_done: software done flag
  410. * @stride_fifos_src: stride for source device FIFOs
  411. * @stride_fifos_dst: stride for destination device FIFOs
  412. * @words_per_fifo: copy number of words one time for one FIFO
  413. */
  414. struct sdma_channel {
  415. struct virt_dma_chan vc;
  416. struct sdma_desc *desc;
  417. struct sdma_engine *sdma;
  418. unsigned int channel;
  419. enum dma_transfer_direction direction;
  420. struct dma_slave_config slave_config;
  421. enum sdma_peripheral_type peripheral_type;
  422. unsigned int event_id0;
  423. unsigned int event_id1;
  424. enum dma_slave_buswidth word_size;
  425. unsigned int pc_from_device, pc_to_device;
  426. unsigned int device_to_device;
  427. unsigned int pc_to_pc;
  428. unsigned long flags;
  429. dma_addr_t per_address, per_address2;
  430. unsigned long event_mask[2];
  431. unsigned long watermark_level;
  432. u32 shp_addr, per_addr;
  433. enum dma_status status;
  434. struct imx_dma_data data;
  435. struct work_struct terminate_worker;
  436. struct list_head terminated;
  437. bool is_ram_script;
  438. unsigned int n_fifos_src;
  439. unsigned int n_fifos_dst;
  440. unsigned int stride_fifos_src;
  441. unsigned int stride_fifos_dst;
  442. unsigned int words_per_fifo;
  443. bool sw_done;
  444. };
  445. #define IMX_DMA_SG_LOOP BIT(0)
  446. #define MAX_DMA_CHANNELS 32
  447. #define MXC_SDMA_DEFAULT_PRIORITY 1
  448. #define MXC_SDMA_MIN_PRIORITY 1
  449. #define MXC_SDMA_MAX_PRIORITY 7
  450. #define SDMA_FIRMWARE_MAGIC 0x414d4453
  451. /**
  452. * struct sdma_firmware_header - Layout of the firmware image
  453. *
  454. * @magic: "SDMA"
  455. * @version_major: increased whenever layout of struct
  456. * sdma_script_start_addrs changes.
  457. * @version_minor: firmware minor version (for binary compatible changes)
  458. * @script_addrs_start: offset of struct sdma_script_start_addrs in this image
  459. * @num_script_addrs: Number of script addresses in this image
  460. * @ram_code_start: offset of SDMA ram image in this firmware image
  461. * @ram_code_size: size of SDMA ram image
  462. * @script_addrs: Stores the start address of the SDMA scripts
  463. * (in SDMA memory space)
  464. */
  465. struct sdma_firmware_header {
  466. u32 magic;
  467. u32 version_major;
  468. u32 version_minor;
  469. u32 script_addrs_start;
  470. u32 num_script_addrs;
  471. u32 ram_code_start;
  472. u32 ram_code_size;
  473. };
  474. struct sdma_driver_data {
  475. int chnenbl0;
  476. int num_events;
  477. struct sdma_script_start_addrs *script_addrs;
  478. bool check_ratio;
  479. /*
  480. * ecspi ERR009165 fixed should be done in sdma script
  481. * and it has been fixed in soc from i.mx6ul.
  482. * please get more information from the below link:
  483. * https://www.nxp.com/docs/en/errata/IMX6DQCE.pdf
  484. */
  485. bool ecspi_fixed;
  486. };
  487. struct sdma_engine {
  488. struct device *dev;
  489. struct sdma_channel channel[MAX_DMA_CHANNELS];
  490. struct sdma_channel_control *channel_control;
  491. void __iomem *regs;
  492. struct sdma_context_data *context;
  493. dma_addr_t context_phys;
  494. struct dma_device dma_device;
  495. struct clk *clk_ipg;
  496. struct clk *clk_ahb;
  497. spinlock_t channel_0_lock;
  498. u32 script_number;
  499. struct sdma_script_start_addrs *script_addrs;
  500. const struct sdma_driver_data *drvdata;
  501. u32 spba_start_addr;
  502. u32 spba_end_addr;
  503. unsigned int irq;
  504. dma_addr_t bd0_phys;
  505. struct sdma_buffer_descriptor *bd0;
  506. /* clock ratio for AHB:SDMA core. 1:1 is 1, 2:1 is 0*/
  507. bool clk_ratio;
  508. bool fw_loaded;
  509. };
  510. static int sdma_config_write(struct dma_chan *chan,
  511. struct dma_slave_config *dmaengine_cfg,
  512. enum dma_transfer_direction direction);
  513. static struct sdma_driver_data sdma_imx31 = {
  514. .chnenbl0 = SDMA_CHNENBL0_IMX31,
  515. .num_events = 32,
  516. };
  517. static struct sdma_script_start_addrs sdma_script_imx25 = {
  518. .ap_2_ap_addr = 729,
  519. .uart_2_mcu_addr = 904,
  520. .per_2_app_addr = 1255,
  521. .mcu_2_app_addr = 834,
  522. .uartsh_2_mcu_addr = 1120,
  523. .per_2_shp_addr = 1329,
  524. .mcu_2_shp_addr = 1048,
  525. .ata_2_mcu_addr = 1560,
  526. .mcu_2_ata_addr = 1479,
  527. .app_2_per_addr = 1189,
  528. .app_2_mcu_addr = 770,
  529. .shp_2_per_addr = 1407,
  530. .shp_2_mcu_addr = 979,
  531. };
  532. static struct sdma_driver_data sdma_imx25 = {
  533. .chnenbl0 = SDMA_CHNENBL0_IMX35,
  534. .num_events = 48,
  535. .script_addrs = &sdma_script_imx25,
  536. };
  537. static struct sdma_driver_data sdma_imx35 = {
  538. .chnenbl0 = SDMA_CHNENBL0_IMX35,
  539. .num_events = 48,
  540. };
  541. static struct sdma_script_start_addrs sdma_script_imx51 = {
  542. .ap_2_ap_addr = 642,
  543. .uart_2_mcu_addr = 817,
  544. .mcu_2_app_addr = 747,
  545. .mcu_2_shp_addr = 961,
  546. .ata_2_mcu_addr = 1473,
  547. .mcu_2_ata_addr = 1392,
  548. .app_2_per_addr = 1033,
  549. .app_2_mcu_addr = 683,
  550. .shp_2_per_addr = 1251,
  551. .shp_2_mcu_addr = 892,
  552. };
  553. static struct sdma_driver_data sdma_imx51 = {
  554. .chnenbl0 = SDMA_CHNENBL0_IMX35,
  555. .num_events = 48,
  556. .script_addrs = &sdma_script_imx51,
  557. };
  558. static struct sdma_script_start_addrs sdma_script_imx53 = {
  559. .ap_2_ap_addr = 642,
  560. .app_2_mcu_addr = 683,
  561. .mcu_2_app_addr = 747,
  562. .uart_2_mcu_addr = 817,
  563. .shp_2_mcu_addr = 891,
  564. .mcu_2_shp_addr = 960,
  565. .uartsh_2_mcu_addr = 1032,
  566. .spdif_2_mcu_addr = 1100,
  567. .mcu_2_spdif_addr = 1134,
  568. .firi_2_mcu_addr = 1193,
  569. .mcu_2_firi_addr = 1290,
  570. };
  571. static struct sdma_driver_data sdma_imx53 = {
  572. .chnenbl0 = SDMA_CHNENBL0_IMX35,
  573. .num_events = 48,
  574. .script_addrs = &sdma_script_imx53,
  575. };
  576. static struct sdma_script_start_addrs sdma_script_imx6q = {
  577. .ap_2_ap_addr = 642,
  578. .uart_2_mcu_addr = 817,
  579. .mcu_2_app_addr = 747,
  580. .per_2_per_addr = 6331,
  581. .uartsh_2_mcu_addr = 1032,
  582. .mcu_2_shp_addr = 960,
  583. .app_2_mcu_addr = 683,
  584. .shp_2_mcu_addr = 891,
  585. .spdif_2_mcu_addr = 1100,
  586. .mcu_2_spdif_addr = 1134,
  587. };
  588. static struct sdma_driver_data sdma_imx6q = {
  589. .chnenbl0 = SDMA_CHNENBL0_IMX35,
  590. .num_events = 48,
  591. .script_addrs = &sdma_script_imx6q,
  592. };
  593. static struct sdma_driver_data sdma_imx6ul = {
  594. .chnenbl0 = SDMA_CHNENBL0_IMX35,
  595. .num_events = 48,
  596. .script_addrs = &sdma_script_imx6q,
  597. .ecspi_fixed = true,
  598. };
  599. static struct sdma_script_start_addrs sdma_script_imx7d = {
  600. .ap_2_ap_addr = 644,
  601. .uart_2_mcu_addr = 819,
  602. .mcu_2_app_addr = 749,
  603. .uartsh_2_mcu_addr = 1034,
  604. .mcu_2_shp_addr = 962,
  605. .app_2_mcu_addr = 685,
  606. .shp_2_mcu_addr = 893,
  607. .spdif_2_mcu_addr = 1102,
  608. .mcu_2_spdif_addr = 1136,
  609. };
  610. static struct sdma_driver_data sdma_imx7d = {
  611. .chnenbl0 = SDMA_CHNENBL0_IMX35,
  612. .num_events = 48,
  613. .script_addrs = &sdma_script_imx7d,
  614. };
  615. static struct sdma_driver_data sdma_imx8mq = {
  616. .chnenbl0 = SDMA_CHNENBL0_IMX35,
  617. .num_events = 48,
  618. .script_addrs = &sdma_script_imx7d,
  619. .check_ratio = 1,
  620. };
  621. static const struct of_device_id sdma_dt_ids[] = {
  622. { .compatible = "fsl,imx6q-sdma", .data = &sdma_imx6q, },
  623. { .compatible = "fsl,imx53-sdma", .data = &sdma_imx53, },
  624. { .compatible = "fsl,imx51-sdma", .data = &sdma_imx51, },
  625. { .compatible = "fsl,imx35-sdma", .data = &sdma_imx35, },
  626. { .compatible = "fsl,imx31-sdma", .data = &sdma_imx31, },
  627. { .compatible = "fsl,imx25-sdma", .data = &sdma_imx25, },
  628. { .compatible = "fsl,imx7d-sdma", .data = &sdma_imx7d, },
  629. { .compatible = "fsl,imx6ul-sdma", .data = &sdma_imx6ul, },
  630. { .compatible = "fsl,imx8mq-sdma", .data = &sdma_imx8mq, },
  631. { /* sentinel */ }
  632. };
  633. MODULE_DEVICE_TABLE(of, sdma_dt_ids);
  634. #define SDMA_H_CONFIG_DSPDMA BIT(12) /* indicates if the DSPDMA is used */
  635. #define SDMA_H_CONFIG_RTD_PINS BIT(11) /* indicates if Real-Time Debug pins are enabled */
  636. #define SDMA_H_CONFIG_ACR BIT(4) /* indicates if AHB freq /core freq = 2 or 1 */
  637. #define SDMA_H_CONFIG_CSM (3) /* indicates which context switch mode is selected*/
  638. static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event)
  639. {
  640. u32 chnenbl0 = sdma->drvdata->chnenbl0;
  641. return chnenbl0 + event * 4;
  642. }
  643. static int sdma_config_ownership(struct sdma_channel *sdmac,
  644. bool event_override, bool mcu_override, bool dsp_override)
  645. {
  646. struct sdma_engine *sdma = sdmac->sdma;
  647. int channel = sdmac->channel;
  648. unsigned long evt, mcu, dsp;
  649. if (event_override && mcu_override && dsp_override)
  650. return -EINVAL;
  651. evt = readl_relaxed(sdma->regs + SDMA_H_EVTOVR);
  652. mcu = readl_relaxed(sdma->regs + SDMA_H_HOSTOVR);
  653. dsp = readl_relaxed(sdma->regs + SDMA_H_DSPOVR);
  654. if (dsp_override)
  655. __clear_bit(channel, &dsp);
  656. else
  657. __set_bit(channel, &dsp);
  658. if (event_override)
  659. __clear_bit(channel, &evt);
  660. else
  661. __set_bit(channel, &evt);
  662. if (mcu_override)
  663. __clear_bit(channel, &mcu);
  664. else
  665. __set_bit(channel, &mcu);
  666. writel_relaxed(evt, sdma->regs + SDMA_H_EVTOVR);
  667. writel_relaxed(mcu, sdma->regs + SDMA_H_HOSTOVR);
  668. writel_relaxed(dsp, sdma->regs + SDMA_H_DSPOVR);
  669. return 0;
  670. }
  671. static int is_sdma_channel_enabled(struct sdma_engine *sdma, int channel)
  672. {
  673. return !!(readl(sdma->regs + SDMA_H_STATSTOP) & BIT(channel));
  674. }
  675. static void sdma_enable_channel(struct sdma_engine *sdma, int channel)
  676. {
  677. writel(BIT(channel), sdma->regs + SDMA_H_START);
  678. }
  679. /*
  680. * sdma_run_channel0 - run a channel and wait till it's done
  681. */
  682. static int sdma_run_channel0(struct sdma_engine *sdma)
  683. {
  684. int ret;
  685. u32 reg;
  686. sdma_enable_channel(sdma, 0);
  687. ret = readl_relaxed_poll_timeout_atomic(sdma->regs + SDMA_H_STATSTOP,
  688. reg, !(reg & 1), 1, 500);
  689. if (ret)
  690. dev_err(sdma->dev, "Timeout waiting for CH0 ready\n");
  691. /* Set bits of CONFIG register with dynamic context switching */
  692. reg = readl(sdma->regs + SDMA_H_CONFIG);
  693. if ((reg & SDMA_H_CONFIG_CSM) == 0) {
  694. reg |= SDMA_H_CONFIG_CSM;
  695. writel_relaxed(reg, sdma->regs + SDMA_H_CONFIG);
  696. }
  697. return ret;
  698. }
  699. static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
  700. u32 address)
  701. {
  702. struct sdma_buffer_descriptor *bd0 = sdma->bd0;
  703. void *buf_virt;
  704. dma_addr_t buf_phys;
  705. int ret;
  706. unsigned long flags;
  707. buf_virt = dma_alloc_coherent(sdma->dev, size, &buf_phys, GFP_KERNEL);
  708. if (!buf_virt)
  709. return -ENOMEM;
  710. spin_lock_irqsave(&sdma->channel_0_lock, flags);
  711. bd0->mode.command = C0_SETPM;
  712. bd0->mode.status = BD_DONE | BD_WRAP | BD_EXTD;
  713. bd0->mode.count = size / 2;
  714. bd0->buffer_addr = buf_phys;
  715. bd0->ext_buffer_addr = address;
  716. memcpy(buf_virt, buf, size);
  717. ret = sdma_run_channel0(sdma);
  718. spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
  719. dma_free_coherent(sdma->dev, size, buf_virt, buf_phys);
  720. return ret;
  721. }
  722. static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event)
  723. {
  724. struct sdma_engine *sdma = sdmac->sdma;
  725. int channel = sdmac->channel;
  726. unsigned long val;
  727. u32 chnenbl = chnenbl_ofs(sdma, event);
  728. val = readl_relaxed(sdma->regs + chnenbl);
  729. __set_bit(channel, &val);
  730. writel_relaxed(val, sdma->regs + chnenbl);
  731. /* Set SDMA_DONEx_CONFIG is sw_done enabled */
  732. if (sdmac->sw_done) {
  733. val = readl_relaxed(sdma->regs + SDMA_DONE0_CONFIG);
  734. val |= SDMA_DONE0_CONFIG_DONE_SEL;
  735. val &= ~SDMA_DONE0_CONFIG_DONE_DIS;
  736. writel_relaxed(val, sdma->regs + SDMA_DONE0_CONFIG);
  737. }
  738. }
  739. static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
  740. {
  741. struct sdma_engine *sdma = sdmac->sdma;
  742. int channel = sdmac->channel;
  743. u32 chnenbl = chnenbl_ofs(sdma, event);
  744. unsigned long val;
  745. val = readl_relaxed(sdma->regs + chnenbl);
  746. __clear_bit(channel, &val);
  747. writel_relaxed(val, sdma->regs + chnenbl);
  748. }
  749. static struct sdma_desc *to_sdma_desc(struct dma_async_tx_descriptor *t)
  750. {
  751. return container_of(t, struct sdma_desc, vd.tx);
  752. }
  753. static void sdma_start_desc(struct sdma_channel *sdmac)
  754. {
  755. struct virt_dma_desc *vd = vchan_next_desc(&sdmac->vc);
  756. struct sdma_desc *desc;
  757. struct sdma_engine *sdma = sdmac->sdma;
  758. int channel = sdmac->channel;
  759. if (!vd) {
  760. sdmac->desc = NULL;
  761. return;
  762. }
  763. sdmac->desc = desc = to_sdma_desc(&vd->tx);
  764. list_del(&vd->node);
  765. sdma->channel_control[channel].base_bd_ptr = desc->bd_phys;
  766. sdma->channel_control[channel].current_bd_ptr = desc->bd_phys;
  767. sdma_enable_channel(sdma, sdmac->channel);
  768. }
  769. static void sdma_update_channel_loop(struct sdma_channel *sdmac)
  770. {
  771. struct sdma_buffer_descriptor *bd;
  772. int error = 0;
  773. enum dma_status old_status = sdmac->status;
  774. /*
  775. * loop mode. Iterate over descriptors, re-setup them and
  776. * call callback function.
  777. */
  778. while (sdmac->desc) {
  779. struct sdma_desc *desc = sdmac->desc;
  780. bd = &desc->bd[desc->buf_tail];
  781. if (bd->mode.status & BD_DONE)
  782. break;
  783. if (bd->mode.status & BD_RROR) {
  784. bd->mode.status &= ~BD_RROR;
  785. sdmac->status = DMA_ERROR;
  786. error = -EIO;
  787. }
  788. /*
  789. * We use bd->mode.count to calculate the residue, since contains
  790. * the number of bytes present in the current buffer descriptor.
  791. */
  792. desc->chn_real_count = bd->mode.count;
  793. bd->mode.count = desc->period_len;
  794. desc->buf_ptail = desc->buf_tail;
  795. desc->buf_tail = (desc->buf_tail + 1) % desc->num_bd;
  796. /*
  797. * The callback is called from the interrupt context in order
  798. * to reduce latency and to avoid the risk of altering the
  799. * SDMA transaction status by the time the client tasklet is
  800. * executed.
  801. */
  802. spin_unlock(&sdmac->vc.lock);
  803. dmaengine_desc_get_callback_invoke(&desc->vd.tx, NULL);
  804. spin_lock(&sdmac->vc.lock);
  805. /* Assign buffer ownership to SDMA */
  806. bd->mode.status |= BD_DONE;
  807. if (error)
  808. sdmac->status = old_status;
  809. }
  810. /*
  811. * SDMA stops cyclic channel when DMA request triggers a channel and no SDMA
  812. * owned buffer is available (i.e. BD_DONE was set too late).
  813. */
  814. if (sdmac->desc && !is_sdma_channel_enabled(sdmac->sdma, sdmac->channel)) {
  815. dev_warn(sdmac->sdma->dev, "restart cyclic channel %d\n", sdmac->channel);
  816. sdma_enable_channel(sdmac->sdma, sdmac->channel);
  817. }
  818. }
  819. static void mxc_sdma_handle_channel_normal(struct sdma_channel *data)
  820. {
  821. struct sdma_channel *sdmac = (struct sdma_channel *) data;
  822. struct sdma_buffer_descriptor *bd;
  823. int i, error = 0;
  824. sdmac->desc->chn_real_count = 0;
  825. /*
  826. * non loop mode. Iterate over all descriptors, collect
  827. * errors and call callback function
  828. */
  829. for (i = 0; i < sdmac->desc->num_bd; i++) {
  830. bd = &sdmac->desc->bd[i];
  831. if (bd->mode.status & (BD_DONE | BD_RROR))
  832. error = -EIO;
  833. sdmac->desc->chn_real_count += bd->mode.count;
  834. }
  835. if (error)
  836. sdmac->status = DMA_ERROR;
  837. else
  838. sdmac->status = DMA_COMPLETE;
  839. }
  840. static irqreturn_t sdma_int_handler(int irq, void *dev_id)
  841. {
  842. struct sdma_engine *sdma = dev_id;
  843. unsigned long stat;
  844. stat = readl_relaxed(sdma->regs + SDMA_H_INTR);
  845. writel_relaxed(stat, sdma->regs + SDMA_H_INTR);
  846. /* channel 0 is special and not handled here, see run_channel0() */
  847. stat &= ~1;
  848. while (stat) {
  849. int channel = fls(stat) - 1;
  850. struct sdma_channel *sdmac = &sdma->channel[channel];
  851. struct sdma_desc *desc;
  852. spin_lock(&sdmac->vc.lock);
  853. desc = sdmac->desc;
  854. if (desc) {
  855. if (sdmac->flags & IMX_DMA_SG_LOOP) {
  856. sdma_update_channel_loop(sdmac);
  857. } else {
  858. mxc_sdma_handle_channel_normal(sdmac);
  859. vchan_cookie_complete(&desc->vd);
  860. sdma_start_desc(sdmac);
  861. }
  862. }
  863. spin_unlock(&sdmac->vc.lock);
  864. __clear_bit(channel, &stat);
  865. }
  866. return IRQ_HANDLED;
  867. }
  868. /*
  869. * sets the pc of SDMA script according to the peripheral type
  870. */
  871. static int sdma_get_pc(struct sdma_channel *sdmac,
  872. enum sdma_peripheral_type peripheral_type)
  873. {
  874. struct sdma_engine *sdma = sdmac->sdma;
  875. int per_2_emi = 0, emi_2_per = 0;
  876. /*
  877. * These are needed once we start to support transfers between
  878. * two peripherals or memory-to-memory transfers
  879. */
  880. int per_2_per = 0, emi_2_emi = 0;
  881. sdmac->pc_from_device = 0;
  882. sdmac->pc_to_device = 0;
  883. sdmac->device_to_device = 0;
  884. sdmac->pc_to_pc = 0;
  885. sdmac->is_ram_script = false;
  886. switch (peripheral_type) {
  887. case IMX_DMATYPE_MEMORY:
  888. emi_2_emi = sdma->script_addrs->ap_2_ap_addr;
  889. break;
  890. case IMX_DMATYPE_DSP:
  891. emi_2_per = sdma->script_addrs->bp_2_ap_addr;
  892. per_2_emi = sdma->script_addrs->ap_2_bp_addr;
  893. break;
  894. case IMX_DMATYPE_FIRI:
  895. per_2_emi = sdma->script_addrs->firi_2_mcu_addr;
  896. emi_2_per = sdma->script_addrs->mcu_2_firi_addr;
  897. break;
  898. case IMX_DMATYPE_UART:
  899. per_2_emi = sdma->script_addrs->uart_2_mcu_addr;
  900. emi_2_per = sdma->script_addrs->mcu_2_app_addr;
  901. break;
  902. case IMX_DMATYPE_UART_SP:
  903. per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr;
  904. emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
  905. break;
  906. case IMX_DMATYPE_ATA:
  907. per_2_emi = sdma->script_addrs->ata_2_mcu_addr;
  908. emi_2_per = sdma->script_addrs->mcu_2_ata_addr;
  909. break;
  910. case IMX_DMATYPE_CSPI:
  911. per_2_emi = sdma->script_addrs->app_2_mcu_addr;
  912. /* Use rom script mcu_2_app if ERR009165 fixed */
  913. if (sdmac->sdma->drvdata->ecspi_fixed) {
  914. emi_2_per = sdma->script_addrs->mcu_2_app_addr;
  915. } else {
  916. emi_2_per = sdma->script_addrs->mcu_2_ecspi_addr;
  917. sdmac->is_ram_script = true;
  918. }
  919. break;
  920. case IMX_DMATYPE_EXT:
  921. case IMX_DMATYPE_SSI:
  922. case IMX_DMATYPE_SAI:
  923. per_2_emi = sdma->script_addrs->app_2_mcu_addr;
  924. emi_2_per = sdma->script_addrs->mcu_2_app_addr;
  925. break;
  926. case IMX_DMATYPE_SSI_DUAL:
  927. per_2_emi = sdma->script_addrs->ssish_2_mcu_addr;
  928. emi_2_per = sdma->script_addrs->mcu_2_ssish_addr;
  929. sdmac->is_ram_script = true;
  930. break;
  931. case IMX_DMATYPE_SSI_SP:
  932. case IMX_DMATYPE_MMC:
  933. case IMX_DMATYPE_SDHC:
  934. case IMX_DMATYPE_CSPI_SP:
  935. case IMX_DMATYPE_ESAI:
  936. case IMX_DMATYPE_MSHC_SP:
  937. per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
  938. emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
  939. break;
  940. case IMX_DMATYPE_ASRC:
  941. per_2_emi = sdma->script_addrs->asrc_2_mcu_addr;
  942. emi_2_per = sdma->script_addrs->asrc_2_mcu_addr;
  943. per_2_per = sdma->script_addrs->per_2_per_addr;
  944. sdmac->is_ram_script = true;
  945. break;
  946. case IMX_DMATYPE_ASRC_SP:
  947. per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
  948. emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
  949. per_2_per = sdma->script_addrs->per_2_per_addr;
  950. break;
  951. case IMX_DMATYPE_MSHC:
  952. per_2_emi = sdma->script_addrs->mshc_2_mcu_addr;
  953. emi_2_per = sdma->script_addrs->mcu_2_mshc_addr;
  954. break;
  955. case IMX_DMATYPE_CCM:
  956. per_2_emi = sdma->script_addrs->dptc_dvfs_addr;
  957. break;
  958. case IMX_DMATYPE_SPDIF:
  959. per_2_emi = sdma->script_addrs->spdif_2_mcu_addr;
  960. emi_2_per = sdma->script_addrs->mcu_2_spdif_addr;
  961. break;
  962. case IMX_DMATYPE_IPU_MEMORY:
  963. emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr;
  964. break;
  965. case IMX_DMATYPE_MULTI_SAI:
  966. per_2_emi = sdma->script_addrs->sai_2_mcu_addr;
  967. emi_2_per = sdma->script_addrs->mcu_2_sai_addr;
  968. break;
  969. default:
  970. dev_err(sdma->dev, "Unsupported transfer type %d\n",
  971. peripheral_type);
  972. return -EINVAL;
  973. }
  974. sdmac->pc_from_device = per_2_emi;
  975. sdmac->pc_to_device = emi_2_per;
  976. sdmac->device_to_device = per_2_per;
  977. sdmac->pc_to_pc = emi_2_emi;
  978. return 0;
  979. }
  980. static int sdma_load_context(struct sdma_channel *sdmac)
  981. {
  982. struct sdma_engine *sdma = sdmac->sdma;
  983. int channel = sdmac->channel;
  984. int load_address;
  985. struct sdma_context_data *context = sdma->context;
  986. struct sdma_buffer_descriptor *bd0 = sdma->bd0;
  987. int ret;
  988. unsigned long flags;
  989. if (sdmac->direction == DMA_DEV_TO_MEM)
  990. load_address = sdmac->pc_from_device;
  991. else if (sdmac->direction == DMA_DEV_TO_DEV)
  992. load_address = sdmac->device_to_device;
  993. else if (sdmac->direction == DMA_MEM_TO_MEM)
  994. load_address = sdmac->pc_to_pc;
  995. else
  996. load_address = sdmac->pc_to_device;
  997. if (load_address < 0)
  998. return load_address;
  999. dev_dbg(sdma->dev, "load_address = %d\n", load_address);
  1000. dev_dbg(sdma->dev, "wml = 0x%08x\n", (u32)sdmac->watermark_level);
  1001. dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr);
  1002. dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr);
  1003. dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", (u32)sdmac->event_mask[0]);
  1004. dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", (u32)sdmac->event_mask[1]);
  1005. spin_lock_irqsave(&sdma->channel_0_lock, flags);
  1006. memset(context, 0, sizeof(*context));
  1007. context->channel_state.pc = load_address;
  1008. /* Send by context the event mask,base address for peripheral
  1009. * and watermark level
  1010. */
  1011. context->gReg[0] = sdmac->event_mask[1];
  1012. context->gReg[1] = sdmac->event_mask[0];
  1013. context->gReg[2] = sdmac->per_addr;
  1014. context->gReg[6] = sdmac->shp_addr;
  1015. context->gReg[7] = sdmac->watermark_level;
  1016. bd0->mode.command = C0_SETDM;
  1017. bd0->mode.status = BD_DONE | BD_WRAP | BD_EXTD;
  1018. bd0->mode.count = sizeof(*context) / 4;
  1019. bd0->buffer_addr = sdma->context_phys;
  1020. bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel;
  1021. ret = sdma_run_channel0(sdma);
  1022. spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
  1023. return ret;
  1024. }
  1025. static struct sdma_channel *to_sdma_chan(struct dma_chan *chan)
  1026. {
  1027. return container_of(chan, struct sdma_channel, vc.chan);
  1028. }
  1029. static int sdma_disable_channel(struct dma_chan *chan)
  1030. {
  1031. struct sdma_channel *sdmac = to_sdma_chan(chan);
  1032. struct sdma_engine *sdma = sdmac->sdma;
  1033. int channel = sdmac->channel;
  1034. writel_relaxed(BIT(channel), sdma->regs + SDMA_H_STATSTOP);
  1035. sdmac->status = DMA_ERROR;
  1036. return 0;
  1037. }
  1038. static void sdma_channel_terminate_work(struct work_struct *work)
  1039. {
  1040. struct sdma_channel *sdmac = container_of(work, struct sdma_channel,
  1041. terminate_worker);
  1042. /*
  1043. * According to NXP R&D team a delay of one BD SDMA cost time
  1044. * (maximum is 1ms) should be added after disable of the channel
  1045. * bit, to ensure SDMA core has really been stopped after SDMA
  1046. * clients call .device_terminate_all.
  1047. */
  1048. usleep_range(1000, 2000);
  1049. vchan_dma_desc_free_list(&sdmac->vc, &sdmac->terminated);
  1050. }
  1051. static int sdma_terminate_all(struct dma_chan *chan)
  1052. {
  1053. struct sdma_channel *sdmac = to_sdma_chan(chan);
  1054. unsigned long flags;
  1055. spin_lock_irqsave(&sdmac->vc.lock, flags);
  1056. sdma_disable_channel(chan);
  1057. if (sdmac->desc) {
  1058. vchan_terminate_vdesc(&sdmac->desc->vd);
  1059. /*
  1060. * move out current descriptor into terminated list so that
  1061. * it could be free in sdma_channel_terminate_work alone
  1062. * later without potential involving next descriptor raised
  1063. * up before the last descriptor terminated.
  1064. */
  1065. vchan_get_all_descriptors(&sdmac->vc, &sdmac->terminated);
  1066. sdmac->desc = NULL;
  1067. schedule_work(&sdmac->terminate_worker);
  1068. }
  1069. spin_unlock_irqrestore(&sdmac->vc.lock, flags);
  1070. return 0;
  1071. }
  1072. static void sdma_channel_synchronize(struct dma_chan *chan)
  1073. {
  1074. struct sdma_channel *sdmac = to_sdma_chan(chan);
  1075. vchan_synchronize(&sdmac->vc);
  1076. flush_work(&sdmac->terminate_worker);
  1077. }
  1078. static void sdma_set_watermarklevel_for_p2p(struct sdma_channel *sdmac)
  1079. {
  1080. struct sdma_engine *sdma = sdmac->sdma;
  1081. int lwml = sdmac->watermark_level & SDMA_WATERMARK_LEVEL_LWML;
  1082. int hwml = (sdmac->watermark_level & SDMA_WATERMARK_LEVEL_HWML) >> 16;
  1083. set_bit(sdmac->event_id0 % 32, &sdmac->event_mask[1]);
  1084. set_bit(sdmac->event_id1 % 32, &sdmac->event_mask[0]);
  1085. if (sdmac->event_id0 > 31)
  1086. sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_LWE;
  1087. if (sdmac->event_id1 > 31)
  1088. sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_HWE;
  1089. /*
  1090. * If LWML(src_maxburst) > HWML(dst_maxburst), we need
  1091. * swap LWML and HWML of INFO(A.3.2.5.1), also need swap
  1092. * r0(event_mask[1]) and r1(event_mask[0]).
  1093. */
  1094. if (lwml > hwml) {
  1095. sdmac->watermark_level &= ~(SDMA_WATERMARK_LEVEL_LWML |
  1096. SDMA_WATERMARK_LEVEL_HWML);
  1097. sdmac->watermark_level |= hwml;
  1098. sdmac->watermark_level |= lwml << 16;
  1099. swap(sdmac->event_mask[0], sdmac->event_mask[1]);
  1100. }
  1101. if (sdmac->per_address2 >= sdma->spba_start_addr &&
  1102. sdmac->per_address2 <= sdma->spba_end_addr)
  1103. sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_SP;
  1104. if (sdmac->per_address >= sdma->spba_start_addr &&
  1105. sdmac->per_address <= sdma->spba_end_addr)
  1106. sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_DP;
  1107. sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_CONT;
  1108. }
  1109. static void sdma_set_watermarklevel_for_sais(struct sdma_channel *sdmac)
  1110. {
  1111. unsigned int n_fifos;
  1112. unsigned int stride_fifos;
  1113. unsigned int words_per_fifo;
  1114. if (sdmac->sw_done)
  1115. sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_SW_DONE;
  1116. if (sdmac->direction == DMA_DEV_TO_MEM) {
  1117. n_fifos = sdmac->n_fifos_src;
  1118. stride_fifos = sdmac->stride_fifos_src;
  1119. } else {
  1120. n_fifos = sdmac->n_fifos_dst;
  1121. stride_fifos = sdmac->stride_fifos_dst;
  1122. }
  1123. words_per_fifo = sdmac->words_per_fifo;
  1124. sdmac->watermark_level |=
  1125. FIELD_PREP(SDMA_WATERMARK_LEVEL_N_FIFOS, n_fifos);
  1126. sdmac->watermark_level |=
  1127. FIELD_PREP(SDMA_WATERMARK_LEVEL_OFF_FIFOS, stride_fifos);
  1128. if (words_per_fifo)
  1129. sdmac->watermark_level |=
  1130. FIELD_PREP(SDMA_WATERMARK_LEVEL_WORDS_PER_FIFO, (words_per_fifo - 1));
  1131. }
  1132. static int sdma_config_channel(struct dma_chan *chan)
  1133. {
  1134. struct sdma_channel *sdmac = to_sdma_chan(chan);
  1135. int ret;
  1136. sdma_disable_channel(chan);
  1137. sdmac->event_mask[0] = 0;
  1138. sdmac->event_mask[1] = 0;
  1139. sdmac->shp_addr = 0;
  1140. sdmac->per_addr = 0;
  1141. switch (sdmac->peripheral_type) {
  1142. case IMX_DMATYPE_DSP:
  1143. sdma_config_ownership(sdmac, false, true, true);
  1144. break;
  1145. case IMX_DMATYPE_MEMORY:
  1146. sdma_config_ownership(sdmac, false, true, false);
  1147. break;
  1148. default:
  1149. sdma_config_ownership(sdmac, true, true, false);
  1150. break;
  1151. }
  1152. ret = sdma_get_pc(sdmac, sdmac->peripheral_type);
  1153. if (ret)
  1154. return ret;
  1155. if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) &&
  1156. (sdmac->peripheral_type != IMX_DMATYPE_DSP)) {
  1157. /* Handle multiple event channels differently */
  1158. if (sdmac->event_id1) {
  1159. if (sdmac->peripheral_type == IMX_DMATYPE_ASRC_SP ||
  1160. sdmac->peripheral_type == IMX_DMATYPE_ASRC)
  1161. sdma_set_watermarklevel_for_p2p(sdmac);
  1162. } else {
  1163. if (sdmac->peripheral_type ==
  1164. IMX_DMATYPE_MULTI_SAI)
  1165. sdma_set_watermarklevel_for_sais(sdmac);
  1166. __set_bit(sdmac->event_id0, sdmac->event_mask);
  1167. }
  1168. /* Address */
  1169. sdmac->shp_addr = sdmac->per_address;
  1170. sdmac->per_addr = sdmac->per_address2;
  1171. } else {
  1172. sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */
  1173. }
  1174. return 0;
  1175. }
  1176. static int sdma_set_channel_priority(struct sdma_channel *sdmac,
  1177. unsigned int priority)
  1178. {
  1179. struct sdma_engine *sdma = sdmac->sdma;
  1180. int channel = sdmac->channel;
  1181. if (priority < MXC_SDMA_MIN_PRIORITY
  1182. || priority > MXC_SDMA_MAX_PRIORITY) {
  1183. return -EINVAL;
  1184. }
  1185. writel_relaxed(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel);
  1186. return 0;
  1187. }
  1188. static int sdma_request_channel0(struct sdma_engine *sdma)
  1189. {
  1190. int ret = -EBUSY;
  1191. sdma->bd0 = dma_alloc_coherent(sdma->dev, PAGE_SIZE, &sdma->bd0_phys,
  1192. GFP_NOWAIT);
  1193. if (!sdma->bd0) {
  1194. ret = -ENOMEM;
  1195. goto out;
  1196. }
  1197. sdma->channel_control[0].base_bd_ptr = sdma->bd0_phys;
  1198. sdma->channel_control[0].current_bd_ptr = sdma->bd0_phys;
  1199. sdma_set_channel_priority(&sdma->channel[0], MXC_SDMA_DEFAULT_PRIORITY);
  1200. return 0;
  1201. out:
  1202. return ret;
  1203. }
  1204. static int sdma_alloc_bd(struct sdma_desc *desc)
  1205. {
  1206. u32 bd_size = desc->num_bd * sizeof(struct sdma_buffer_descriptor);
  1207. int ret = 0;
  1208. desc->bd = dma_alloc_coherent(desc->sdmac->sdma->dev, bd_size,
  1209. &desc->bd_phys, GFP_NOWAIT);
  1210. if (!desc->bd) {
  1211. ret = -ENOMEM;
  1212. goto out;
  1213. }
  1214. out:
  1215. return ret;
  1216. }
  1217. static void sdma_free_bd(struct sdma_desc *desc)
  1218. {
  1219. u32 bd_size = desc->num_bd * sizeof(struct sdma_buffer_descriptor);
  1220. dma_free_coherent(desc->sdmac->sdma->dev, bd_size, desc->bd,
  1221. desc->bd_phys);
  1222. }
  1223. static void sdma_desc_free(struct virt_dma_desc *vd)
  1224. {
  1225. struct sdma_desc *desc = container_of(vd, struct sdma_desc, vd);
  1226. sdma_free_bd(desc);
  1227. kfree(desc);
  1228. }
  1229. static int sdma_alloc_chan_resources(struct dma_chan *chan)
  1230. {
  1231. struct sdma_channel *sdmac = to_sdma_chan(chan);
  1232. struct imx_dma_data *data = chan->private;
  1233. struct imx_dma_data mem_data;
  1234. int prio, ret;
  1235. /*
  1236. * MEMCPY may never setup chan->private by filter function such as
  1237. * dmatest, thus create 'struct imx_dma_data mem_data' for this case.
  1238. * Please note in any other slave case, you have to setup chan->private
  1239. * with 'struct imx_dma_data' in your own filter function if you want to
  1240. * request dma channel by dma_request_channel() rather than
  1241. * dma_request_slave_channel(). Othwise, 'MEMCPY in case?' will appear
  1242. * to warn you to correct your filter function.
  1243. */
  1244. if (!data) {
  1245. dev_dbg(sdmac->sdma->dev, "MEMCPY in case?\n");
  1246. mem_data.priority = 2;
  1247. mem_data.peripheral_type = IMX_DMATYPE_MEMORY;
  1248. mem_data.dma_request = 0;
  1249. mem_data.dma_request2 = 0;
  1250. data = &mem_data;
  1251. ret = sdma_get_pc(sdmac, IMX_DMATYPE_MEMORY);
  1252. if (ret)
  1253. return ret;
  1254. }
  1255. switch (data->priority) {
  1256. case DMA_PRIO_HIGH:
  1257. prio = 3;
  1258. break;
  1259. case DMA_PRIO_MEDIUM:
  1260. prio = 2;
  1261. break;
  1262. case DMA_PRIO_LOW:
  1263. default:
  1264. prio = 1;
  1265. break;
  1266. }
  1267. sdmac->peripheral_type = data->peripheral_type;
  1268. sdmac->event_id0 = data->dma_request;
  1269. sdmac->event_id1 = data->dma_request2;
  1270. ret = clk_enable(sdmac->sdma->clk_ipg);
  1271. if (ret)
  1272. return ret;
  1273. ret = clk_enable(sdmac->sdma->clk_ahb);
  1274. if (ret)
  1275. goto disable_clk_ipg;
  1276. ret = sdma_set_channel_priority(sdmac, prio);
  1277. if (ret)
  1278. goto disable_clk_ahb;
  1279. return 0;
  1280. disable_clk_ahb:
  1281. clk_disable(sdmac->sdma->clk_ahb);
  1282. disable_clk_ipg:
  1283. clk_disable(sdmac->sdma->clk_ipg);
  1284. return ret;
  1285. }
  1286. static void sdma_free_chan_resources(struct dma_chan *chan)
  1287. {
  1288. struct sdma_channel *sdmac = to_sdma_chan(chan);
  1289. struct sdma_engine *sdma = sdmac->sdma;
  1290. sdma_terminate_all(chan);
  1291. sdma_channel_synchronize(chan);
  1292. sdma_event_disable(sdmac, sdmac->event_id0);
  1293. if (sdmac->event_id1)
  1294. sdma_event_disable(sdmac, sdmac->event_id1);
  1295. sdmac->event_id0 = 0;
  1296. sdmac->event_id1 = 0;
  1297. sdma_set_channel_priority(sdmac, 0);
  1298. clk_disable(sdma->clk_ipg);
  1299. clk_disable(sdma->clk_ahb);
  1300. }
  1301. static struct sdma_desc *sdma_transfer_init(struct sdma_channel *sdmac,
  1302. enum dma_transfer_direction direction, u32 bds)
  1303. {
  1304. struct sdma_desc *desc;
  1305. if (!sdmac->sdma->fw_loaded && sdmac->is_ram_script) {
  1306. dev_warn_once(sdmac->sdma->dev, "sdma firmware not ready!\n");
  1307. goto err_out;
  1308. }
  1309. desc = kzalloc((sizeof(*desc)), GFP_NOWAIT);
  1310. if (!desc)
  1311. goto err_out;
  1312. sdmac->status = DMA_IN_PROGRESS;
  1313. sdmac->direction = direction;
  1314. sdmac->flags = 0;
  1315. desc->chn_count = 0;
  1316. desc->chn_real_count = 0;
  1317. desc->buf_tail = 0;
  1318. desc->buf_ptail = 0;
  1319. desc->sdmac = sdmac;
  1320. desc->num_bd = bds;
  1321. if (sdma_alloc_bd(desc))
  1322. goto err_desc_out;
  1323. /* No slave_config called in MEMCPY case, so do here */
  1324. if (direction == DMA_MEM_TO_MEM)
  1325. sdma_config_ownership(sdmac, false, true, false);
  1326. if (sdma_load_context(sdmac))
  1327. goto err_bd_out;
  1328. return desc;
  1329. err_bd_out:
  1330. sdma_free_bd(desc);
  1331. err_desc_out:
  1332. kfree(desc);
  1333. err_out:
  1334. return NULL;
  1335. }
  1336. static struct dma_async_tx_descriptor *sdma_prep_memcpy(
  1337. struct dma_chan *chan, dma_addr_t dma_dst,
  1338. dma_addr_t dma_src, size_t len, unsigned long flags)
  1339. {
  1340. struct sdma_channel *sdmac = to_sdma_chan(chan);
  1341. struct sdma_engine *sdma = sdmac->sdma;
  1342. int channel = sdmac->channel;
  1343. size_t count;
  1344. int i = 0, param;
  1345. struct sdma_buffer_descriptor *bd;
  1346. struct sdma_desc *desc;
  1347. if (!chan || !len)
  1348. return NULL;
  1349. dev_dbg(sdma->dev, "memcpy: %pad->%pad, len=%zu, channel=%d.\n",
  1350. &dma_src, &dma_dst, len, channel);
  1351. desc = sdma_transfer_init(sdmac, DMA_MEM_TO_MEM,
  1352. len / SDMA_BD_MAX_CNT + 1);
  1353. if (!desc)
  1354. return NULL;
  1355. do {
  1356. count = min_t(size_t, len, SDMA_BD_MAX_CNT);
  1357. bd = &desc->bd[i];
  1358. bd->buffer_addr = dma_src;
  1359. bd->ext_buffer_addr = dma_dst;
  1360. bd->mode.count = count;
  1361. desc->chn_count += count;
  1362. bd->mode.command = 0;
  1363. dma_src += count;
  1364. dma_dst += count;
  1365. len -= count;
  1366. i++;
  1367. param = BD_DONE | BD_EXTD | BD_CONT;
  1368. /* last bd */
  1369. if (!len) {
  1370. param |= BD_INTR;
  1371. param |= BD_LAST;
  1372. param &= ~BD_CONT;
  1373. }
  1374. dev_dbg(sdma->dev, "entry %d: count: %zd dma: 0x%x %s%s\n",
  1375. i, count, bd->buffer_addr,
  1376. param & BD_WRAP ? "wrap" : "",
  1377. param & BD_INTR ? " intr" : "");
  1378. bd->mode.status = param;
  1379. } while (len);
  1380. return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
  1381. }
  1382. static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
  1383. struct dma_chan *chan, struct scatterlist *sgl,
  1384. unsigned int sg_len, enum dma_transfer_direction direction,
  1385. unsigned long flags, void *context)
  1386. {
  1387. struct sdma_channel *sdmac = to_sdma_chan(chan);
  1388. struct sdma_engine *sdma = sdmac->sdma;
  1389. int i, count;
  1390. int channel = sdmac->channel;
  1391. struct scatterlist *sg;
  1392. struct sdma_desc *desc;
  1393. sdma_config_write(chan, &sdmac->slave_config, direction);
  1394. desc = sdma_transfer_init(sdmac, direction, sg_len);
  1395. if (!desc)
  1396. goto err_out;
  1397. dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n",
  1398. sg_len, channel);
  1399. for_each_sg(sgl, sg, sg_len, i) {
  1400. struct sdma_buffer_descriptor *bd = &desc->bd[i];
  1401. int param;
  1402. bd->buffer_addr = sg->dma_address;
  1403. count = sg_dma_len(sg);
  1404. if (count > SDMA_BD_MAX_CNT) {
  1405. dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
  1406. channel, count, SDMA_BD_MAX_CNT);
  1407. goto err_bd_out;
  1408. }
  1409. bd->mode.count = count;
  1410. desc->chn_count += count;
  1411. if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
  1412. goto err_bd_out;
  1413. switch (sdmac->word_size) {
  1414. case DMA_SLAVE_BUSWIDTH_4_BYTES:
  1415. bd->mode.command = 0;
  1416. if (count & 3 || sg->dma_address & 3)
  1417. goto err_bd_out;
  1418. break;
  1419. case DMA_SLAVE_BUSWIDTH_2_BYTES:
  1420. bd->mode.command = 2;
  1421. if (count & 1 || sg->dma_address & 1)
  1422. goto err_bd_out;
  1423. break;
  1424. case DMA_SLAVE_BUSWIDTH_1_BYTE:
  1425. bd->mode.command = 1;
  1426. break;
  1427. default:
  1428. goto err_bd_out;
  1429. }
  1430. param = BD_DONE | BD_EXTD | BD_CONT;
  1431. if (i + 1 == sg_len) {
  1432. param |= BD_INTR;
  1433. param |= BD_LAST;
  1434. param &= ~BD_CONT;
  1435. }
  1436. dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n",
  1437. i, count, (u64)sg->dma_address,
  1438. param & BD_WRAP ? "wrap" : "",
  1439. param & BD_INTR ? " intr" : "");
  1440. bd->mode.status = param;
  1441. }
  1442. return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
  1443. err_bd_out:
  1444. sdma_free_bd(desc);
  1445. kfree(desc);
  1446. err_out:
  1447. sdmac->status = DMA_ERROR;
  1448. return NULL;
  1449. }
  1450. static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
  1451. struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
  1452. size_t period_len, enum dma_transfer_direction direction,
  1453. unsigned long flags)
  1454. {
  1455. struct sdma_channel *sdmac = to_sdma_chan(chan);
  1456. struct sdma_engine *sdma = sdmac->sdma;
  1457. int num_periods = buf_len / period_len;
  1458. int channel = sdmac->channel;
  1459. int i = 0, buf = 0;
  1460. struct sdma_desc *desc;
  1461. dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);
  1462. sdma_config_write(chan, &sdmac->slave_config, direction);
  1463. desc = sdma_transfer_init(sdmac, direction, num_periods);
  1464. if (!desc)
  1465. goto err_out;
  1466. desc->period_len = period_len;
  1467. sdmac->flags |= IMX_DMA_SG_LOOP;
  1468. if (period_len > SDMA_BD_MAX_CNT) {
  1469. dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %zu > %d\n",
  1470. channel, period_len, SDMA_BD_MAX_CNT);
  1471. goto err_bd_out;
  1472. }
  1473. while (buf < buf_len) {
  1474. struct sdma_buffer_descriptor *bd = &desc->bd[i];
  1475. int param;
  1476. bd->buffer_addr = dma_addr;
  1477. bd->mode.count = period_len;
  1478. if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
  1479. goto err_bd_out;
  1480. if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
  1481. bd->mode.command = 0;
  1482. else
  1483. bd->mode.command = sdmac->word_size;
  1484. param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR;
  1485. if (i + 1 == num_periods)
  1486. param |= BD_WRAP;
  1487. dev_dbg(sdma->dev, "entry %d: count: %zu dma: %#llx %s%s\n",
  1488. i, period_len, (u64)dma_addr,
  1489. param & BD_WRAP ? "wrap" : "",
  1490. param & BD_INTR ? " intr" : "");
  1491. bd->mode.status = param;
  1492. dma_addr += period_len;
  1493. buf += period_len;
  1494. i++;
  1495. }
  1496. return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
  1497. err_bd_out:
  1498. sdma_free_bd(desc);
  1499. kfree(desc);
  1500. err_out:
  1501. sdmac->status = DMA_ERROR;
  1502. return NULL;
  1503. }
  1504. static int sdma_config_write(struct dma_chan *chan,
  1505. struct dma_slave_config *dmaengine_cfg,
  1506. enum dma_transfer_direction direction)
  1507. {
  1508. struct sdma_channel *sdmac = to_sdma_chan(chan);
  1509. if (direction == DMA_DEV_TO_MEM) {
  1510. sdmac->per_address = dmaengine_cfg->src_addr;
  1511. sdmac->watermark_level = dmaengine_cfg->src_maxburst *
  1512. dmaengine_cfg->src_addr_width;
  1513. sdmac->word_size = dmaengine_cfg->src_addr_width;
  1514. } else if (direction == DMA_DEV_TO_DEV) {
  1515. sdmac->per_address2 = dmaengine_cfg->src_addr;
  1516. sdmac->per_address = dmaengine_cfg->dst_addr;
  1517. sdmac->watermark_level = dmaengine_cfg->src_maxburst &
  1518. SDMA_WATERMARK_LEVEL_LWML;
  1519. sdmac->watermark_level |= (dmaengine_cfg->dst_maxburst << 16) &
  1520. SDMA_WATERMARK_LEVEL_HWML;
  1521. sdmac->word_size = dmaengine_cfg->dst_addr_width;
  1522. } else {
  1523. sdmac->per_address = dmaengine_cfg->dst_addr;
  1524. sdmac->watermark_level = dmaengine_cfg->dst_maxburst *
  1525. dmaengine_cfg->dst_addr_width;
  1526. sdmac->word_size = dmaengine_cfg->dst_addr_width;
  1527. }
  1528. sdmac->direction = direction;
  1529. return sdma_config_channel(chan);
  1530. }
  1531. static int sdma_config(struct dma_chan *chan,
  1532. struct dma_slave_config *dmaengine_cfg)
  1533. {
  1534. struct sdma_channel *sdmac = to_sdma_chan(chan);
  1535. struct sdma_engine *sdma = sdmac->sdma;
  1536. memcpy(&sdmac->slave_config, dmaengine_cfg, sizeof(*dmaengine_cfg));
  1537. if (dmaengine_cfg->peripheral_config) {
  1538. struct sdma_peripheral_config *sdmacfg = dmaengine_cfg->peripheral_config;
  1539. if (dmaengine_cfg->peripheral_size != sizeof(struct sdma_peripheral_config)) {
  1540. dev_err(sdma->dev, "Invalid peripheral size %zu, expected %zu\n",
  1541. dmaengine_cfg->peripheral_size,
  1542. sizeof(struct sdma_peripheral_config));
  1543. return -EINVAL;
  1544. }
  1545. sdmac->n_fifos_src = sdmacfg->n_fifos_src;
  1546. sdmac->n_fifos_dst = sdmacfg->n_fifos_dst;
  1547. sdmac->stride_fifos_src = sdmacfg->stride_fifos_src;
  1548. sdmac->stride_fifos_dst = sdmacfg->stride_fifos_dst;
  1549. sdmac->words_per_fifo = sdmacfg->words_per_fifo;
  1550. sdmac->sw_done = sdmacfg->sw_done;
  1551. }
  1552. /* Set ENBLn earlier to make sure dma request triggered after that */
  1553. if (sdmac->event_id0 >= sdmac->sdma->drvdata->num_events)
  1554. return -EINVAL;
  1555. sdma_event_enable(sdmac, sdmac->event_id0);
  1556. if (sdmac->event_id1) {
  1557. if (sdmac->event_id1 >= sdmac->sdma->drvdata->num_events)
  1558. return -EINVAL;
  1559. sdma_event_enable(sdmac, sdmac->event_id1);
  1560. }
  1561. return 0;
  1562. }
  1563. static enum dma_status sdma_tx_status(struct dma_chan *chan,
  1564. dma_cookie_t cookie,
  1565. struct dma_tx_state *txstate)
  1566. {
  1567. struct sdma_channel *sdmac = to_sdma_chan(chan);
  1568. struct sdma_desc *desc = NULL;
  1569. u32 residue;
  1570. struct virt_dma_desc *vd;
  1571. enum dma_status ret;
  1572. unsigned long flags;
  1573. ret = dma_cookie_status(chan, cookie, txstate);
  1574. if (ret == DMA_COMPLETE || !txstate)
  1575. return ret;
  1576. spin_lock_irqsave(&sdmac->vc.lock, flags);
  1577. vd = vchan_find_desc(&sdmac->vc, cookie);
  1578. if (vd)
  1579. desc = to_sdma_desc(&vd->tx);
  1580. else if (sdmac->desc && sdmac->desc->vd.tx.cookie == cookie)
  1581. desc = sdmac->desc;
  1582. if (desc) {
  1583. if (sdmac->flags & IMX_DMA_SG_LOOP)
  1584. residue = (desc->num_bd - desc->buf_ptail) *
  1585. desc->period_len - desc->chn_real_count;
  1586. else
  1587. residue = desc->chn_count - desc->chn_real_count;
  1588. } else {
  1589. residue = 0;
  1590. }
  1591. spin_unlock_irqrestore(&sdmac->vc.lock, flags);
  1592. dma_set_tx_state(txstate, chan->completed_cookie, chan->cookie,
  1593. residue);
  1594. return sdmac->status;
  1595. }
  1596. static void sdma_issue_pending(struct dma_chan *chan)
  1597. {
  1598. struct sdma_channel *sdmac = to_sdma_chan(chan);
  1599. unsigned long flags;
  1600. spin_lock_irqsave(&sdmac->vc.lock, flags);
  1601. if (vchan_issue_pending(&sdmac->vc) && !sdmac->desc)
  1602. sdma_start_desc(sdmac);
  1603. spin_unlock_irqrestore(&sdmac->vc.lock, flags);
  1604. }
  1605. #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1 34
  1606. #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2 38
  1607. #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3 45
  1608. #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4 46
  1609. static void sdma_add_scripts(struct sdma_engine *sdma,
  1610. const struct sdma_script_start_addrs *addr)
  1611. {
  1612. s32 *addr_arr = (u32 *)addr;
  1613. s32 *saddr_arr = (u32 *)sdma->script_addrs;
  1614. int i;
  1615. /* use the default firmware in ROM if missing external firmware */
  1616. if (!sdma->script_number)
  1617. sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
  1618. if (sdma->script_number > sizeof(struct sdma_script_start_addrs)
  1619. / sizeof(s32)) {
  1620. dev_err(sdma->dev,
  1621. "SDMA script number %d not match with firmware.\n",
  1622. sdma->script_number);
  1623. return;
  1624. }
  1625. for (i = 0; i < sdma->script_number; i++)
  1626. if (addr_arr[i] > 0)
  1627. saddr_arr[i] = addr_arr[i];
  1628. /*
  1629. * For compatibility with NXP internal legacy kernel before 4.19 which
  1630. * is based on uart ram script and mainline kernel based on uart rom
  1631. * script, both uart ram/rom scripts are present in newer sdma
  1632. * firmware. Use the rom versions if they are present (V3 or newer).
  1633. */
  1634. if (sdma->script_number >= SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3) {
  1635. if (addr->uart_2_mcu_rom_addr)
  1636. sdma->script_addrs->uart_2_mcu_addr = addr->uart_2_mcu_rom_addr;
  1637. if (addr->uartsh_2_mcu_rom_addr)
  1638. sdma->script_addrs->uartsh_2_mcu_addr = addr->uartsh_2_mcu_rom_addr;
  1639. }
  1640. }
  1641. static void sdma_load_firmware(const struct firmware *fw, void *context)
  1642. {
  1643. struct sdma_engine *sdma = context;
  1644. const struct sdma_firmware_header *header;
  1645. const struct sdma_script_start_addrs *addr;
  1646. unsigned short *ram_code;
  1647. if (!fw) {
  1648. dev_info(sdma->dev, "external firmware not found, using ROM firmware\n");
  1649. /* In this case we just use the ROM firmware. */
  1650. return;
  1651. }
  1652. if (fw->size < sizeof(*header))
  1653. goto err_firmware;
  1654. header = (struct sdma_firmware_header *)fw->data;
  1655. if (header->magic != SDMA_FIRMWARE_MAGIC)
  1656. goto err_firmware;
  1657. if (header->ram_code_start + header->ram_code_size > fw->size)
  1658. goto err_firmware;
  1659. switch (header->version_major) {
  1660. case 1:
  1661. sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
  1662. break;
  1663. case 2:
  1664. sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2;
  1665. break;
  1666. case 3:
  1667. sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3;
  1668. break;
  1669. case 4:
  1670. sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4;
  1671. break;
  1672. default:
  1673. dev_err(sdma->dev, "unknown firmware version\n");
  1674. goto err_firmware;
  1675. }
  1676. addr = (void *)header + header->script_addrs_start;
  1677. ram_code = (void *)header + header->ram_code_start;
  1678. clk_enable(sdma->clk_ipg);
  1679. clk_enable(sdma->clk_ahb);
  1680. /* download the RAM image for SDMA */
  1681. sdma_load_script(sdma, ram_code,
  1682. header->ram_code_size,
  1683. addr->ram_code_start_addr);
  1684. clk_disable(sdma->clk_ipg);
  1685. clk_disable(sdma->clk_ahb);
  1686. sdma_add_scripts(sdma, addr);
  1687. sdma->fw_loaded = true;
  1688. dev_info(sdma->dev, "loaded firmware %d.%d\n",
  1689. header->version_major,
  1690. header->version_minor);
  1691. err_firmware:
  1692. release_firmware(fw);
  1693. }
  1694. #define EVENT_REMAP_CELLS 3
  1695. static int sdma_event_remap(struct sdma_engine *sdma)
  1696. {
  1697. struct device_node *np = sdma->dev->of_node;
  1698. struct device_node *gpr_np = of_parse_phandle(np, "gpr", 0);
  1699. struct property *event_remap;
  1700. struct regmap *gpr;
  1701. char propname[] = "fsl,sdma-event-remap";
  1702. u32 reg, val, shift, num_map, i;
  1703. int ret = 0;
  1704. if (IS_ERR(np) || !gpr_np)
  1705. goto out;
  1706. event_remap = of_find_property(np, propname, NULL);
  1707. num_map = event_remap ? (event_remap->length / sizeof(u32)) : 0;
  1708. if (!num_map) {
  1709. dev_dbg(sdma->dev, "no event needs to be remapped\n");
  1710. goto out;
  1711. } else if (num_map % EVENT_REMAP_CELLS) {
  1712. dev_err(sdma->dev, "the property %s must modulo %d\n",
  1713. propname, EVENT_REMAP_CELLS);
  1714. ret = -EINVAL;
  1715. goto out;
  1716. }
  1717. gpr = syscon_node_to_regmap(gpr_np);
  1718. if (IS_ERR(gpr)) {
  1719. dev_err(sdma->dev, "failed to get gpr regmap\n");
  1720. ret = PTR_ERR(gpr);
  1721. goto out;
  1722. }
  1723. for (i = 0; i < num_map; i += EVENT_REMAP_CELLS) {
  1724. ret = of_property_read_u32_index(np, propname, i, &reg);
  1725. if (ret) {
  1726. dev_err(sdma->dev, "failed to read property %s index %d\n",
  1727. propname, i);
  1728. goto out;
  1729. }
  1730. ret = of_property_read_u32_index(np, propname, i + 1, &shift);
  1731. if (ret) {
  1732. dev_err(sdma->dev, "failed to read property %s index %d\n",
  1733. propname, i + 1);
  1734. goto out;
  1735. }
  1736. ret = of_property_read_u32_index(np, propname, i + 2, &val);
  1737. if (ret) {
  1738. dev_err(sdma->dev, "failed to read property %s index %d\n",
  1739. propname, i + 2);
  1740. goto out;
  1741. }
  1742. regmap_update_bits(gpr, reg, BIT(shift), val << shift);
  1743. }
  1744. out:
  1745. if (gpr_np)
  1746. of_node_put(gpr_np);
  1747. return ret;
  1748. }
  1749. static int sdma_get_firmware(struct sdma_engine *sdma,
  1750. const char *fw_name)
  1751. {
  1752. int ret;
  1753. ret = request_firmware_nowait(THIS_MODULE,
  1754. FW_ACTION_UEVENT, fw_name, sdma->dev,
  1755. GFP_KERNEL, sdma, sdma_load_firmware);
  1756. return ret;
  1757. }
  1758. static int sdma_init(struct sdma_engine *sdma)
  1759. {
  1760. int i, ret;
  1761. dma_addr_t ccb_phys;
  1762. ret = clk_enable(sdma->clk_ipg);
  1763. if (ret)
  1764. return ret;
  1765. ret = clk_enable(sdma->clk_ahb);
  1766. if (ret)
  1767. goto disable_clk_ipg;
  1768. if (sdma->drvdata->check_ratio &&
  1769. (clk_get_rate(sdma->clk_ahb) == clk_get_rate(sdma->clk_ipg)))
  1770. sdma->clk_ratio = 1;
  1771. /* Be sure SDMA has not started yet */
  1772. writel_relaxed(0, sdma->regs + SDMA_H_C0PTR);
  1773. sdma->channel_control = dma_alloc_coherent(sdma->dev,
  1774. MAX_DMA_CHANNELS * sizeof(struct sdma_channel_control) +
  1775. sizeof(struct sdma_context_data),
  1776. &ccb_phys, GFP_KERNEL);
  1777. if (!sdma->channel_control) {
  1778. ret = -ENOMEM;
  1779. goto err_dma_alloc;
  1780. }
  1781. sdma->context = (void *)sdma->channel_control +
  1782. MAX_DMA_CHANNELS * sizeof(struct sdma_channel_control);
  1783. sdma->context_phys = ccb_phys +
  1784. MAX_DMA_CHANNELS * sizeof(struct sdma_channel_control);
  1785. /* disable all channels */
  1786. for (i = 0; i < sdma->drvdata->num_events; i++)
  1787. writel_relaxed(0, sdma->regs + chnenbl_ofs(sdma, i));
  1788. /* All channels have priority 0 */
  1789. for (i = 0; i < MAX_DMA_CHANNELS; i++)
  1790. writel_relaxed(0, sdma->regs + SDMA_CHNPRI_0 + i * 4);
  1791. ret = sdma_request_channel0(sdma);
  1792. if (ret)
  1793. goto err_dma_alloc;
  1794. sdma_config_ownership(&sdma->channel[0], false, true, false);
  1795. /* Set Command Channel (Channel Zero) */
  1796. writel_relaxed(0x4050, sdma->regs + SDMA_CHN0ADDR);
  1797. /* Set bits of CONFIG register but with static context switching */
  1798. if (sdma->clk_ratio)
  1799. writel_relaxed(SDMA_H_CONFIG_ACR, sdma->regs + SDMA_H_CONFIG);
  1800. else
  1801. writel_relaxed(0, sdma->regs + SDMA_H_CONFIG);
  1802. writel_relaxed(ccb_phys, sdma->regs + SDMA_H_C0PTR);
  1803. /* Initializes channel's priorities */
  1804. sdma_set_channel_priority(&sdma->channel[0], 7);
  1805. clk_disable(sdma->clk_ipg);
  1806. clk_disable(sdma->clk_ahb);
  1807. return 0;
  1808. err_dma_alloc:
  1809. clk_disable(sdma->clk_ahb);
  1810. disable_clk_ipg:
  1811. clk_disable(sdma->clk_ipg);
  1812. dev_err(sdma->dev, "initialisation failed with %d\n", ret);
  1813. return ret;
  1814. }
  1815. static bool sdma_filter_fn(struct dma_chan *chan, void *fn_param)
  1816. {
  1817. struct sdma_channel *sdmac = to_sdma_chan(chan);
  1818. struct imx_dma_data *data = fn_param;
  1819. if (!imx_dma_is_general_purpose(chan))
  1820. return false;
  1821. sdmac->data = *data;
  1822. chan->private = &sdmac->data;
  1823. return true;
  1824. }
  1825. static struct dma_chan *sdma_xlate(struct of_phandle_args *dma_spec,
  1826. struct of_dma *ofdma)
  1827. {
  1828. struct sdma_engine *sdma = ofdma->of_dma_data;
  1829. dma_cap_mask_t mask = sdma->dma_device.cap_mask;
  1830. struct imx_dma_data data;
  1831. if (dma_spec->args_count != 3)
  1832. return NULL;
  1833. data.dma_request = dma_spec->args[0];
  1834. data.peripheral_type = dma_spec->args[1];
  1835. data.priority = dma_spec->args[2];
  1836. /*
  1837. * init dma_request2 to zero, which is not used by the dts.
  1838. * For P2P, dma_request2 is init from dma_request_channel(),
  1839. * chan->private will point to the imx_dma_data, and in
  1840. * device_alloc_chan_resources(), imx_dma_data.dma_request2 will
  1841. * be set to sdmac->event_id1.
  1842. */
  1843. data.dma_request2 = 0;
  1844. return __dma_request_channel(&mask, sdma_filter_fn, &data,
  1845. ofdma->of_node);
  1846. }
  1847. static int sdma_probe(struct platform_device *pdev)
  1848. {
  1849. struct device_node *np = pdev->dev.of_node;
  1850. struct device_node *spba_bus;
  1851. const char *fw_name;
  1852. int ret;
  1853. int irq;
  1854. struct resource *iores;
  1855. struct resource spba_res;
  1856. int i;
  1857. struct sdma_engine *sdma;
  1858. s32 *saddr_arr;
  1859. ret = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
  1860. if (ret)
  1861. return ret;
  1862. sdma = devm_kzalloc(&pdev->dev, sizeof(*sdma), GFP_KERNEL);
  1863. if (!sdma)
  1864. return -ENOMEM;
  1865. spin_lock_init(&sdma->channel_0_lock);
  1866. sdma->dev = &pdev->dev;
  1867. sdma->drvdata = of_device_get_match_data(sdma->dev);
  1868. irq = platform_get_irq(pdev, 0);
  1869. if (irq < 0)
  1870. return irq;
  1871. iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1872. sdma->regs = devm_ioremap_resource(&pdev->dev, iores);
  1873. if (IS_ERR(sdma->regs))
  1874. return PTR_ERR(sdma->regs);
  1875. sdma->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
  1876. if (IS_ERR(sdma->clk_ipg))
  1877. return PTR_ERR(sdma->clk_ipg);
  1878. sdma->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
  1879. if (IS_ERR(sdma->clk_ahb))
  1880. return PTR_ERR(sdma->clk_ahb);
  1881. ret = clk_prepare(sdma->clk_ipg);
  1882. if (ret)
  1883. return ret;
  1884. ret = clk_prepare(sdma->clk_ahb);
  1885. if (ret)
  1886. goto err_clk;
  1887. ret = devm_request_irq(&pdev->dev, irq, sdma_int_handler, 0,
  1888. dev_name(&pdev->dev), sdma);
  1889. if (ret)
  1890. goto err_irq;
  1891. sdma->irq = irq;
  1892. sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL);
  1893. if (!sdma->script_addrs) {
  1894. ret = -ENOMEM;
  1895. goto err_irq;
  1896. }
  1897. /* initially no scripts available */
  1898. saddr_arr = (s32 *)sdma->script_addrs;
  1899. for (i = 0; i < sizeof(*sdma->script_addrs) / sizeof(s32); i++)
  1900. saddr_arr[i] = -EINVAL;
  1901. dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask);
  1902. dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask);
  1903. dma_cap_set(DMA_MEMCPY, sdma->dma_device.cap_mask);
  1904. INIT_LIST_HEAD(&sdma->dma_device.channels);
  1905. /* Initialize channel parameters */
  1906. for (i = 0; i < MAX_DMA_CHANNELS; i++) {
  1907. struct sdma_channel *sdmac = &sdma->channel[i];
  1908. sdmac->sdma = sdma;
  1909. sdmac->channel = i;
  1910. sdmac->vc.desc_free = sdma_desc_free;
  1911. INIT_LIST_HEAD(&sdmac->terminated);
  1912. INIT_WORK(&sdmac->terminate_worker,
  1913. sdma_channel_terminate_work);
  1914. /*
  1915. * Add the channel to the DMAC list. Do not add channel 0 though
  1916. * because we need it internally in the SDMA driver. This also means
  1917. * that channel 0 in dmaengine counting matches sdma channel 1.
  1918. */
  1919. if (i)
  1920. vchan_init(&sdmac->vc, &sdma->dma_device);
  1921. }
  1922. ret = sdma_init(sdma);
  1923. if (ret)
  1924. goto err_init;
  1925. ret = sdma_event_remap(sdma);
  1926. if (ret)
  1927. goto err_init;
  1928. if (sdma->drvdata->script_addrs)
  1929. sdma_add_scripts(sdma, sdma->drvdata->script_addrs);
  1930. sdma->dma_device.dev = &pdev->dev;
  1931. sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources;
  1932. sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources;
  1933. sdma->dma_device.device_tx_status = sdma_tx_status;
  1934. sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg;
  1935. sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic;
  1936. sdma->dma_device.device_config = sdma_config;
  1937. sdma->dma_device.device_terminate_all = sdma_terminate_all;
  1938. sdma->dma_device.device_synchronize = sdma_channel_synchronize;
  1939. sdma->dma_device.src_addr_widths = SDMA_DMA_BUSWIDTHS;
  1940. sdma->dma_device.dst_addr_widths = SDMA_DMA_BUSWIDTHS;
  1941. sdma->dma_device.directions = SDMA_DMA_DIRECTIONS;
  1942. sdma->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
  1943. sdma->dma_device.device_prep_dma_memcpy = sdma_prep_memcpy;
  1944. sdma->dma_device.device_issue_pending = sdma_issue_pending;
  1945. sdma->dma_device.copy_align = 2;
  1946. dma_set_max_seg_size(sdma->dma_device.dev, SDMA_BD_MAX_CNT);
  1947. platform_set_drvdata(pdev, sdma);
  1948. ret = dma_async_device_register(&sdma->dma_device);
  1949. if (ret) {
  1950. dev_err(&pdev->dev, "unable to register\n");
  1951. goto err_init;
  1952. }
  1953. if (np) {
  1954. ret = of_dma_controller_register(np, sdma_xlate, sdma);
  1955. if (ret) {
  1956. dev_err(&pdev->dev, "failed to register controller\n");
  1957. goto err_register;
  1958. }
  1959. spba_bus = of_find_compatible_node(NULL, NULL, "fsl,spba-bus");
  1960. ret = of_address_to_resource(spba_bus, 0, &spba_res);
  1961. if (!ret) {
  1962. sdma->spba_start_addr = spba_res.start;
  1963. sdma->spba_end_addr = spba_res.end;
  1964. }
  1965. of_node_put(spba_bus);
  1966. }
  1967. /*
  1968. * Because that device tree does not encode ROM script address,
  1969. * the RAM script in firmware is mandatory for device tree
  1970. * probe, otherwise it fails.
  1971. */
  1972. ret = of_property_read_string(np, "fsl,sdma-ram-script-name",
  1973. &fw_name);
  1974. if (ret) {
  1975. dev_warn(&pdev->dev, "failed to get firmware name\n");
  1976. } else {
  1977. ret = sdma_get_firmware(sdma, fw_name);
  1978. if (ret)
  1979. dev_warn(&pdev->dev, "failed to get firmware from device tree\n");
  1980. }
  1981. return 0;
  1982. err_register:
  1983. dma_async_device_unregister(&sdma->dma_device);
  1984. err_init:
  1985. kfree(sdma->script_addrs);
  1986. err_irq:
  1987. clk_unprepare(sdma->clk_ahb);
  1988. err_clk:
  1989. clk_unprepare(sdma->clk_ipg);
  1990. return ret;
  1991. }
  1992. static int sdma_remove(struct platform_device *pdev)
  1993. {
  1994. struct sdma_engine *sdma = platform_get_drvdata(pdev);
  1995. int i;
  1996. devm_free_irq(&pdev->dev, sdma->irq, sdma);
  1997. dma_async_device_unregister(&sdma->dma_device);
  1998. kfree(sdma->script_addrs);
  1999. clk_unprepare(sdma->clk_ahb);
  2000. clk_unprepare(sdma->clk_ipg);
  2001. /* Kill the tasklet */
  2002. for (i = 0; i < MAX_DMA_CHANNELS; i++) {
  2003. struct sdma_channel *sdmac = &sdma->channel[i];
  2004. tasklet_kill(&sdmac->vc.task);
  2005. sdma_free_chan_resources(&sdmac->vc.chan);
  2006. }
  2007. platform_set_drvdata(pdev, NULL);
  2008. return 0;
  2009. }
  2010. static struct platform_driver sdma_driver = {
  2011. .driver = {
  2012. .name = "imx-sdma",
  2013. .of_match_table = sdma_dt_ids,
  2014. },
  2015. .remove = sdma_remove,
  2016. .probe = sdma_probe,
  2017. };
  2018. module_platform_driver(sdma_driver);
  2019. MODULE_AUTHOR("Sascha Hauer, Pengutronix <[email protected]>");
  2020. MODULE_DESCRIPTION("i.MX SDMA driver");
  2021. #if IS_ENABLED(CONFIG_SOC_IMX6Q)
  2022. MODULE_FIRMWARE("imx/sdma/sdma-imx6q.bin");
  2023. #endif
  2024. #if IS_ENABLED(CONFIG_SOC_IMX7D) || IS_ENABLED(CONFIG_SOC_IMX8M)
  2025. MODULE_FIRMWARE("imx/sdma/sdma-imx7d.bin");
  2026. #endif
  2027. MODULE_LICENSE("GPL");