timer-qcom.c 6.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. *
  4. * Copyright (C) 2007 Google, Inc.
  5. * Copyright (c) 2009-2012,2014, The Linux Foundation. All rights reserved.
  6. */
  7. #include <linux/clocksource.h>
  8. #include <linux/clockchips.h>
  9. #include <linux/cpu.h>
  10. #include <linux/init.h>
  11. #include <linux/interrupt.h>
  12. #include <linux/irq.h>
  13. #include <linux/io.h>
  14. #include <linux/of.h>
  15. #include <linux/of_address.h>
  16. #include <linux/of_irq.h>
  17. #include <linux/sched_clock.h>
  18. #include <asm/delay.h>
  19. #define TIMER_MATCH_VAL 0x0000
  20. #define TIMER_COUNT_VAL 0x0004
  21. #define TIMER_ENABLE 0x0008
  22. #define TIMER_ENABLE_CLR_ON_MATCH_EN BIT(1)
  23. #define TIMER_ENABLE_EN BIT(0)
  24. #define TIMER_CLEAR 0x000C
  25. #define DGT_CLK_CTL 0x10
  26. #define DGT_CLK_CTL_DIV_4 0x3
  27. #define TIMER_STS_GPT0_CLR_PEND BIT(10)
  28. #define GPT_HZ 32768
  29. static void __iomem *event_base;
  30. static void __iomem *sts_base;
  31. static irqreturn_t msm_timer_interrupt(int irq, void *dev_id)
  32. {
  33. struct clock_event_device *evt = dev_id;
  34. /* Stop the timer tick */
  35. if (clockevent_state_oneshot(evt)) {
  36. u32 ctrl = readl_relaxed(event_base + TIMER_ENABLE);
  37. ctrl &= ~TIMER_ENABLE_EN;
  38. writel_relaxed(ctrl, event_base + TIMER_ENABLE);
  39. }
  40. evt->event_handler(evt);
  41. return IRQ_HANDLED;
  42. }
  43. static int msm_timer_set_next_event(unsigned long cycles,
  44. struct clock_event_device *evt)
  45. {
  46. u32 ctrl = readl_relaxed(event_base + TIMER_ENABLE);
  47. ctrl &= ~TIMER_ENABLE_EN;
  48. writel_relaxed(ctrl, event_base + TIMER_ENABLE);
  49. writel_relaxed(ctrl, event_base + TIMER_CLEAR);
  50. writel_relaxed(cycles, event_base + TIMER_MATCH_VAL);
  51. if (sts_base)
  52. while (readl_relaxed(sts_base) & TIMER_STS_GPT0_CLR_PEND)
  53. cpu_relax();
  54. writel_relaxed(ctrl | TIMER_ENABLE_EN, event_base + TIMER_ENABLE);
  55. return 0;
  56. }
  57. static int msm_timer_shutdown(struct clock_event_device *evt)
  58. {
  59. u32 ctrl;
  60. ctrl = readl_relaxed(event_base + TIMER_ENABLE);
  61. ctrl &= ~(TIMER_ENABLE_EN | TIMER_ENABLE_CLR_ON_MATCH_EN);
  62. writel_relaxed(ctrl, event_base + TIMER_ENABLE);
  63. return 0;
  64. }
  65. static struct clock_event_device __percpu *msm_evt;
  66. static void __iomem *source_base;
  67. static notrace u64 msm_read_timer_count(struct clocksource *cs)
  68. {
  69. return readl_relaxed(source_base + TIMER_COUNT_VAL);
  70. }
  71. static struct clocksource msm_clocksource = {
  72. .name = "dg_timer",
  73. .rating = 300,
  74. .read = msm_read_timer_count,
  75. .mask = CLOCKSOURCE_MASK(32),
  76. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  77. };
  78. static int msm_timer_irq;
  79. static int msm_timer_has_ppi;
  80. static int msm_local_timer_starting_cpu(unsigned int cpu)
  81. {
  82. struct clock_event_device *evt = per_cpu_ptr(msm_evt, cpu);
  83. int err;
  84. evt->irq = msm_timer_irq;
  85. evt->name = "msm_timer";
  86. evt->features = CLOCK_EVT_FEAT_ONESHOT;
  87. evt->rating = 200;
  88. evt->set_state_shutdown = msm_timer_shutdown;
  89. evt->set_state_oneshot = msm_timer_shutdown;
  90. evt->tick_resume = msm_timer_shutdown;
  91. evt->set_next_event = msm_timer_set_next_event;
  92. evt->cpumask = cpumask_of(cpu);
  93. clockevents_config_and_register(evt, GPT_HZ, 4, 0xffffffff);
  94. if (msm_timer_has_ppi) {
  95. enable_percpu_irq(evt->irq, IRQ_TYPE_EDGE_RISING);
  96. } else {
  97. err = request_irq(evt->irq, msm_timer_interrupt,
  98. IRQF_TIMER | IRQF_NOBALANCING |
  99. IRQF_TRIGGER_RISING, "gp_timer", evt);
  100. if (err)
  101. pr_err("request_irq failed\n");
  102. }
  103. return 0;
  104. }
  105. static int msm_local_timer_dying_cpu(unsigned int cpu)
  106. {
  107. struct clock_event_device *evt = per_cpu_ptr(msm_evt, cpu);
  108. evt->set_state_shutdown(evt);
  109. disable_percpu_irq(evt->irq);
  110. return 0;
  111. }
  112. static u64 notrace msm_sched_clock_read(void)
  113. {
  114. return msm_clocksource.read(&msm_clocksource);
  115. }
  116. static unsigned long msm_read_current_timer(void)
  117. {
  118. return msm_clocksource.read(&msm_clocksource);
  119. }
  120. static struct delay_timer msm_delay_timer = {
  121. .read_current_timer = msm_read_current_timer,
  122. };
  123. static int __init msm_timer_init(u32 dgt_hz, int sched_bits, int irq,
  124. bool percpu)
  125. {
  126. struct clocksource *cs = &msm_clocksource;
  127. int res = 0;
  128. msm_timer_irq = irq;
  129. msm_timer_has_ppi = percpu;
  130. msm_evt = alloc_percpu(struct clock_event_device);
  131. if (!msm_evt) {
  132. pr_err("memory allocation failed for clockevents\n");
  133. goto err;
  134. }
  135. if (percpu)
  136. res = request_percpu_irq(irq, msm_timer_interrupt,
  137. "gp_timer", msm_evt);
  138. if (res) {
  139. pr_err("request_percpu_irq failed\n");
  140. } else {
  141. /* Install and invoke hotplug callbacks */
  142. res = cpuhp_setup_state(CPUHP_AP_QCOM_TIMER_STARTING,
  143. "clockevents/qcom/timer:starting",
  144. msm_local_timer_starting_cpu,
  145. msm_local_timer_dying_cpu);
  146. if (res) {
  147. free_percpu_irq(irq, msm_evt);
  148. goto err;
  149. }
  150. }
  151. err:
  152. writel_relaxed(TIMER_ENABLE_EN, source_base + TIMER_ENABLE);
  153. res = clocksource_register_hz(cs, dgt_hz);
  154. if (res)
  155. pr_err("clocksource_register failed\n");
  156. sched_clock_register(msm_sched_clock_read, sched_bits, dgt_hz);
  157. msm_delay_timer.freq = dgt_hz;
  158. register_current_timer_delay(&msm_delay_timer);
  159. return res;
  160. }
  161. static int __init msm_dt_timer_init(struct device_node *np)
  162. {
  163. u32 freq;
  164. int irq, ret;
  165. struct resource res;
  166. u32 percpu_offset;
  167. void __iomem *base;
  168. void __iomem *cpu0_base;
  169. base = of_iomap(np, 0);
  170. if (!base) {
  171. pr_err("Failed to map event base\n");
  172. return -ENXIO;
  173. }
  174. /* We use GPT0 for the clockevent */
  175. irq = irq_of_parse_and_map(np, 1);
  176. if (irq <= 0) {
  177. pr_err("Can't get irq\n");
  178. return -EINVAL;
  179. }
  180. /* We use CPU0's DGT for the clocksource */
  181. if (of_property_read_u32(np, "cpu-offset", &percpu_offset))
  182. percpu_offset = 0;
  183. ret = of_address_to_resource(np, 0, &res);
  184. if (ret) {
  185. pr_err("Failed to parse DGT resource\n");
  186. return ret;
  187. }
  188. cpu0_base = ioremap(res.start + percpu_offset, resource_size(&res));
  189. if (!cpu0_base) {
  190. pr_err("Failed to map source base\n");
  191. return -EINVAL;
  192. }
  193. if (of_property_read_u32(np, "clock-frequency", &freq)) {
  194. pr_err("Unknown frequency\n");
  195. return -EINVAL;
  196. }
  197. event_base = base + 0x4;
  198. sts_base = base + 0x88;
  199. source_base = cpu0_base + 0x24;
  200. freq /= 4;
  201. writel_relaxed(DGT_CLK_CTL_DIV_4, source_base + DGT_CLK_CTL);
  202. return msm_timer_init(freq, 32, irq, !!percpu_offset);
  203. }
  204. TIMER_OF_DECLARE(kpss_timer, "qcom,kpss-timer", msm_dt_timer_init);
  205. TIMER_OF_DECLARE(scss_timer, "qcom,scss-timer", msm_dt_timer_init);