clk-versaclock7.c 34 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * Common clock framework driver for the Versaclock7 family of timing devices.
  4. *
  5. * Copyright (c) 2022 Renesas Electronics Corporation
  6. */
  7. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  8. #include <linux/bitfield.h>
  9. #include <linux/clk.h>
  10. #include <linux/clk-provider.h>
  11. #include <linux/i2c.h>
  12. #include <linux/math64.h>
  13. #include <linux/module.h>
  14. #include <linux/of.h>
  15. #include <linux/of_platform.h>
  16. #include <linux/regmap.h>
  17. #include <linux/swab.h>
  18. /*
  19. * 16-bit register address: the lower 8 bits of the register address come
  20. * from the offset addr byte and the upper 8 bits come from the page register.
  21. */
  22. #define VC7_PAGE_ADDR 0xFD
  23. #define VC7_PAGE_WINDOW 256
  24. #define VC7_MAX_REG 0x364
  25. /* Maximum number of banks supported by VC7 */
  26. #define VC7_NUM_BANKS 7
  27. /* Maximum number of FODs supported by VC7 */
  28. #define VC7_NUM_FOD 3
  29. /* Maximum number of IODs supported by VC7 */
  30. #define VC7_NUM_IOD 4
  31. /* Maximum number of outputs supported by VC7 */
  32. #define VC7_NUM_OUT 12
  33. /* VCO valid range is 9.5 GHz to 10.7 GHz */
  34. #define VC7_APLL_VCO_MIN 9500000000UL
  35. #define VC7_APLL_VCO_MAX 10700000000UL
  36. /* APLL denominator is fixed at 2^27 */
  37. #define VC7_APLL_DENOMINATOR_BITS 27
  38. /* FOD 1st stage denominator is fixed 2^34 */
  39. #define VC7_FOD_DENOMINATOR_BITS 34
  40. /* IOD can operate between 1kHz and 650MHz */
  41. #define VC7_IOD_RATE_MIN 1000UL
  42. #define VC7_IOD_RATE_MAX 650000000UL
  43. #define VC7_IOD_MIN_DIVISOR 14
  44. #define VC7_IOD_MAX_DIVISOR 0x1ffffff /* 25-bit */
  45. #define VC7_FOD_RATE_MIN 1000UL
  46. #define VC7_FOD_RATE_MAX 650000000UL
  47. #define VC7_FOD_1ST_STAGE_RATE_MIN 33000000UL /* 33 MHz */
  48. #define VC7_FOD_1ST_STAGE_RATE_MAX 650000000UL /* 650 MHz */
  49. #define VC7_FOD_1ST_INT_MAX 324
  50. #define VC7_FOD_2ND_INT_MIN 2
  51. #define VC7_FOD_2ND_INT_MAX 0x1ffff /* 17-bit */
  52. /* VC7 Registers */
  53. #define VC7_REG_XO_CNFG 0x2C
  54. #define VC7_REG_XO_CNFG_COUNT 4
  55. #define VC7_REG_XO_IB_H_DIV_SHIFT 24
  56. #define VC7_REG_XO_IB_H_DIV_MASK GENMASK(28, VC7_REG_XO_IB_H_DIV_SHIFT)
  57. #define VC7_REG_APLL_FB_DIV_FRAC 0x120
  58. #define VC7_REG_APLL_FB_DIV_FRAC_COUNT 4
  59. #define VC7_REG_APLL_FB_DIV_FRAC_MASK GENMASK(26, 0)
  60. #define VC7_REG_APLL_FB_DIV_INT 0x124
  61. #define VC7_REG_APLL_FB_DIV_INT_COUNT 2
  62. #define VC7_REG_APLL_FB_DIV_INT_MASK GENMASK(9, 0)
  63. #define VC7_REG_APLL_CNFG 0x127
  64. #define VC7_REG_APLL_EN_DOUBLER BIT(0)
  65. #define VC7_REG_OUT_BANK_CNFG(idx) (0x280 + (0x4 * (idx)))
  66. #define VC7_REG_OUTPUT_BANK_SRC_MASK GENMASK(2, 0)
  67. #define VC7_REG_FOD_INT_CNFG(idx) (0x1E0 + (0x10 * (idx)))
  68. #define VC7_REG_FOD_INT_CNFG_COUNT 8
  69. #define VC7_REG_FOD_1ST_INT_MASK GENMASK(8, 0)
  70. #define VC7_REG_FOD_2ND_INT_SHIFT 9
  71. #define VC7_REG_FOD_2ND_INT_MASK GENMASK(25, VC7_REG_FOD_2ND_INT_SHIFT)
  72. #define VC7_REG_FOD_FRAC_SHIFT 26
  73. #define VC7_REG_FOD_FRAC_MASK GENMASK_ULL(59, VC7_REG_FOD_FRAC_SHIFT)
  74. #define VC7_REG_IOD_INT_CNFG(idx) (0x1C0 + (0x8 * (idx)))
  75. #define VC7_REG_IOD_INT_CNFG_COUNT 4
  76. #define VC7_REG_IOD_INT_MASK GENMASK(24, 0)
  77. #define VC7_REG_ODRV_EN(idx) (0x240 + (0x4 * (idx)))
  78. #define VC7_REG_OUT_DIS BIT(0)
  79. struct vc7_driver_data;
  80. static const struct regmap_config vc7_regmap_config;
  81. /* Supported Renesas VC7 models */
  82. enum vc7_model {
  83. VC7_RC21008A,
  84. };
  85. struct vc7_chip_info {
  86. const enum vc7_model model;
  87. const unsigned int banks[VC7_NUM_BANKS];
  88. const unsigned int num_banks;
  89. const unsigned int outputs[VC7_NUM_OUT];
  90. const unsigned int num_outputs;
  91. };
  92. /*
  93. * Changing the APLL frequency is currently not supported.
  94. * The APLL will consist of an opaque block between the XO and FOD/IODs and
  95. * its frequency will be computed based on the current state of the device.
  96. */
  97. struct vc7_apll_data {
  98. struct clk *clk;
  99. struct vc7_driver_data *vc7;
  100. u8 xo_ib_h_div;
  101. u8 en_doubler;
  102. u16 apll_fb_div_int;
  103. u32 apll_fb_div_frac;
  104. };
  105. struct vc7_fod_data {
  106. struct clk_hw hw;
  107. struct vc7_driver_data *vc7;
  108. unsigned int num;
  109. u32 fod_1st_int;
  110. u32 fod_2nd_int;
  111. u64 fod_frac;
  112. };
  113. struct vc7_iod_data {
  114. struct clk_hw hw;
  115. struct vc7_driver_data *vc7;
  116. unsigned int num;
  117. u32 iod_int;
  118. };
  119. struct vc7_out_data {
  120. struct clk_hw hw;
  121. struct vc7_driver_data *vc7;
  122. unsigned int num;
  123. unsigned int out_dis;
  124. };
  125. struct vc7_driver_data {
  126. struct i2c_client *client;
  127. struct regmap *regmap;
  128. const struct vc7_chip_info *chip_info;
  129. struct clk *pin_xin;
  130. struct vc7_apll_data clk_apll;
  131. struct vc7_fod_data clk_fod[VC7_NUM_FOD];
  132. struct vc7_iod_data clk_iod[VC7_NUM_IOD];
  133. struct vc7_out_data clk_out[VC7_NUM_OUT];
  134. };
  135. struct vc7_bank_src_map {
  136. enum vc7_bank_src_type {
  137. VC7_FOD,
  138. VC7_IOD,
  139. } type;
  140. union _divider {
  141. struct vc7_iod_data *iod;
  142. struct vc7_fod_data *fod;
  143. } src;
  144. };
  145. static struct clk_hw *vc7_of_clk_get(struct of_phandle_args *clkspec,
  146. void *data)
  147. {
  148. struct vc7_driver_data *vc7 = data;
  149. unsigned int idx = clkspec->args[0];
  150. if (idx >= vc7->chip_info->num_outputs)
  151. return ERR_PTR(-EINVAL);
  152. return &vc7->clk_out[idx].hw;
  153. }
  154. static const unsigned int RC21008A_index_to_output_mapping[] = {
  155. 1, 2, 3, 6, 7, 8, 10, 11
  156. };
  157. static int vc7_map_index_to_output(const enum vc7_model model, const unsigned int i)
  158. {
  159. switch (model) {
  160. case VC7_RC21008A:
  161. return RC21008A_index_to_output_mapping[i];
  162. default:
  163. return i;
  164. }
  165. }
  166. /* bank to output mapping, same across all variants */
  167. static const unsigned int output_bank_mapping[] = {
  168. 0, /* Output 0 */
  169. 1, /* Output 1 */
  170. 2, /* Output 2 */
  171. 2, /* Output 3 */
  172. 3, /* Output 4 */
  173. 3, /* Output 5 */
  174. 3, /* Output 6 */
  175. 3, /* Output 7 */
  176. 4, /* Output 8 */
  177. 4, /* Output 9 */
  178. 5, /* Output 10 */
  179. 6 /* Output 11 */
  180. };
  181. /**
  182. * vc7_64_mul_64_to_128() - Multiply two u64 and return an unsigned 128-bit integer
  183. * as an upper and lower part.
  184. *
  185. * @left: The left argument.
  186. * @right: The right argument.
  187. * @hi: The upper 64-bits of the 128-bit product.
  188. * @lo: The lower 64-bits of the 128-bit product.
  189. *
  190. * From mul_64_64 in crypto/ecc.c:350 in the linux kernel, accessed in v5.17.2.
  191. */
  192. static void vc7_64_mul_64_to_128(u64 left, u64 right, u64 *hi, u64 *lo)
  193. {
  194. u64 a0 = left & 0xffffffffull;
  195. u64 a1 = left >> 32;
  196. u64 b0 = right & 0xffffffffull;
  197. u64 b1 = right >> 32;
  198. u64 m0 = a0 * b0;
  199. u64 m1 = a0 * b1;
  200. u64 m2 = a1 * b0;
  201. u64 m3 = a1 * b1;
  202. m2 += (m0 >> 32);
  203. m2 += m1;
  204. /* Overflow */
  205. if (m2 < m1)
  206. m3 += 0x100000000ull;
  207. *lo = (m0 & 0xffffffffull) | (m2 << 32);
  208. *hi = m3 + (m2 >> 32);
  209. }
  210. /**
  211. * vc7_128_div_64_to_64() - Divides a 128-bit uint by a 64-bit divisor, return a 64-bit quotient.
  212. *
  213. * @numhi: The uppper 64-bits of the dividend.
  214. * @numlo: The lower 64-bits of the dividend.
  215. * @den: The denominator (divisor).
  216. * @r: The remainder, pass NULL if the remainder is not needed.
  217. *
  218. * Originally from libdivide, modified to use kernel u64/u32 types.
  219. *
  220. * See https://github.com/ridiculousfish/libdivide/blob/master/libdivide.h#L471.
  221. *
  222. * Return: The 64-bit quotient of the division.
  223. *
  224. * In case of overflow of division by zero, max(u64) is returned.
  225. */
  226. static u64 vc7_128_div_64_to_64(u64 numhi, u64 numlo, u64 den, u64 *r)
  227. {
  228. /*
  229. * We work in base 2**32.
  230. * A uint32 holds a single digit. A uint64 holds two digits.
  231. * Our numerator is conceptually [num3, num2, num1, num0].
  232. * Our denominator is [den1, den0].
  233. */
  234. const u64 b = ((u64)1 << 32);
  235. /* The high and low digits of our computed quotient. */
  236. u32 q1, q0;
  237. /* The normalization shift factor */
  238. int shift;
  239. /*
  240. * The high and low digits of our denominator (after normalizing).
  241. * Also the low 2 digits of our numerator (after normalizing).
  242. */
  243. u32 den1, den0, num1, num0;
  244. /* A partial remainder; */
  245. u64 rem;
  246. /*
  247. * The estimated quotient, and its corresponding remainder (unrelated
  248. * to true remainder).
  249. */
  250. u64 qhat, rhat;
  251. /* Variables used to correct the estimated quotient. */
  252. u64 c1, c2;
  253. /* Check for overflow and divide by 0. */
  254. if (numhi >= den) {
  255. if (r)
  256. *r = ~0ull;
  257. return ~0ull;
  258. }
  259. /*
  260. * Determine the normalization factor. We multiply den by this, so that
  261. * its leading digit is at least half b. In binary this means just
  262. * shifting left by the number of leading zeros, so that there's a 1 in
  263. * the MSB.
  264. *
  265. * We also shift numer by the same amount. This cannot overflow because
  266. * numhi < den. The expression (-shift & 63) is the same as (64 -
  267. * shift), except it avoids the UB of shifting by 64. The funny bitwise
  268. * 'and' ensures that numlo does not get shifted into numhi if shift is
  269. * 0. clang 11 has an x86 codegen bug here: see LLVM bug 50118. The
  270. * sequence below avoids it.
  271. */
  272. shift = __builtin_clzll(den);
  273. den <<= shift;
  274. numhi <<= shift;
  275. numhi |= (numlo >> (-shift & 63)) & (-(s64)shift >> 63);
  276. numlo <<= shift;
  277. /*
  278. * Extract the low digits of the numerator and both digits of the
  279. * denominator.
  280. */
  281. num1 = (u32)(numlo >> 32);
  282. num0 = (u32)(numlo & 0xFFFFFFFFu);
  283. den1 = (u32)(den >> 32);
  284. den0 = (u32)(den & 0xFFFFFFFFu);
  285. /*
  286. * We wish to compute q1 = [n3 n2 n1] / [d1 d0].
  287. * Estimate q1 as [n3 n2] / [d1], and then correct it.
  288. * Note while qhat may be 2 digits, q1 is always 1 digit.
  289. */
  290. qhat = div64_u64_rem(numhi, den1, &rhat);
  291. c1 = qhat * den0;
  292. c2 = rhat * b + num1;
  293. if (c1 > c2)
  294. qhat -= (c1 - c2 > den) ? 2 : 1;
  295. q1 = (u32)qhat;
  296. /* Compute the true (partial) remainder. */
  297. rem = numhi * b + num1 - q1 * den;
  298. /*
  299. * We wish to compute q0 = [rem1 rem0 n0] / [d1 d0].
  300. * Estimate q0 as [rem1 rem0] / [d1] and correct it.
  301. */
  302. qhat = div64_u64_rem(rem, den1, &rhat);
  303. c1 = qhat * den0;
  304. c2 = rhat * b + num0;
  305. if (c1 > c2)
  306. qhat -= (c1 - c2 > den) ? 2 : 1;
  307. q0 = (u32)qhat;
  308. /* Return remainder if requested. */
  309. if (r)
  310. *r = (rem * b + num0 - q0 * den) >> shift;
  311. return ((u64)q1 << 32) | q0;
  312. }
  313. static int vc7_get_bank_clk(struct vc7_driver_data *vc7,
  314. unsigned int bank_idx,
  315. unsigned int output_bank_src,
  316. struct vc7_bank_src_map *map)
  317. {
  318. /* Mapping from Table 38 in datasheet */
  319. if (bank_idx == 0 || bank_idx == 1) {
  320. switch (output_bank_src) {
  321. case 0:
  322. map->type = VC7_IOD,
  323. map->src.iod = &vc7->clk_iod[0];
  324. return 0;
  325. case 1:
  326. map->type = VC7_IOD,
  327. map->src.iod = &vc7->clk_iod[1];
  328. return 0;
  329. case 4:
  330. map->type = VC7_FOD,
  331. map->src.fod = &vc7->clk_fod[0];
  332. return 0;
  333. case 5:
  334. map->type = VC7_FOD,
  335. map->src.fod = &vc7->clk_fod[1];
  336. return 0;
  337. default:
  338. break;
  339. }
  340. } else if (bank_idx == 2) {
  341. switch (output_bank_src) {
  342. case 1:
  343. map->type = VC7_IOD,
  344. map->src.iod = &vc7->clk_iod[1];
  345. return 0;
  346. case 4:
  347. map->type = VC7_FOD,
  348. map->src.fod = &vc7->clk_fod[0];
  349. return 0;
  350. case 5:
  351. map->type = VC7_FOD,
  352. map->src.fod = &vc7->clk_fod[1];
  353. return 0;
  354. default:
  355. break;
  356. }
  357. } else if (bank_idx == 3) {
  358. switch (output_bank_src) {
  359. case 4:
  360. map->type = VC7_FOD,
  361. map->src.fod = &vc7->clk_fod[0];
  362. return 0;
  363. case 5:
  364. map->type = VC7_FOD,
  365. map->src.fod = &vc7->clk_fod[1];
  366. return 0;
  367. case 6:
  368. map->type = VC7_FOD,
  369. map->src.fod = &vc7->clk_fod[2];
  370. return 0;
  371. default:
  372. break;
  373. }
  374. } else if (bank_idx == 4) {
  375. switch (output_bank_src) {
  376. case 0:
  377. /* CLKIN1 not supported in this driver */
  378. break;
  379. case 2:
  380. map->type = VC7_IOD,
  381. map->src.iod = &vc7->clk_iod[2];
  382. return 0;
  383. case 5:
  384. map->type = VC7_FOD,
  385. map->src.fod = &vc7->clk_fod[1];
  386. return 0;
  387. case 6:
  388. map->type = VC7_FOD,
  389. map->src.fod = &vc7->clk_fod[2];
  390. return 0;
  391. case 7:
  392. /* CLKIN0 not supported in this driver */
  393. break;
  394. default:
  395. break;
  396. }
  397. } else if (bank_idx == 5) {
  398. switch (output_bank_src) {
  399. case 0:
  400. /* CLKIN1 not supported in this driver */
  401. break;
  402. case 1:
  403. /* XIN_REFIN not supported in this driver */
  404. break;
  405. case 2:
  406. map->type = VC7_IOD,
  407. map->src.iod = &vc7->clk_iod[2];
  408. return 0;
  409. case 3:
  410. map->type = VC7_IOD,
  411. map->src.iod = &vc7->clk_iod[3];
  412. return 0;
  413. case 5:
  414. map->type = VC7_FOD,
  415. map->src.fod = &vc7->clk_fod[1];
  416. return 0;
  417. case 6:
  418. map->type = VC7_FOD,
  419. map->src.fod = &vc7->clk_fod[2];
  420. return 0;
  421. case 7:
  422. /* CLKIN0 not supported in this driver */
  423. break;
  424. default:
  425. break;
  426. }
  427. } else if (bank_idx == 6) {
  428. switch (output_bank_src) {
  429. case 0:
  430. /* CLKIN1 not supported in this driver */
  431. break;
  432. case 2:
  433. map->type = VC7_IOD,
  434. map->src.iod = &vc7->clk_iod[2];
  435. return 0;
  436. case 3:
  437. map->type = VC7_IOD,
  438. map->src.iod = &vc7->clk_iod[3];
  439. return 0;
  440. case 5:
  441. map->type = VC7_FOD,
  442. map->src.fod = &vc7->clk_fod[1];
  443. return 0;
  444. case 6:
  445. map->type = VC7_FOD,
  446. map->src.fod = &vc7->clk_fod[2];
  447. return 0;
  448. case 7:
  449. /* CLKIN0 not supported in this driver */
  450. break;
  451. default:
  452. break;
  453. }
  454. }
  455. pr_warn("bank_src%d = %d is not supported\n", bank_idx, output_bank_src);
  456. return -1;
  457. }
  458. static int vc7_read_apll(struct vc7_driver_data *vc7)
  459. {
  460. int err;
  461. u32 val32;
  462. u16 val16;
  463. err = regmap_bulk_read(vc7->regmap,
  464. VC7_REG_XO_CNFG,
  465. (u32 *)&val32,
  466. VC7_REG_XO_CNFG_COUNT);
  467. if (err) {
  468. dev_err(&vc7->client->dev, "failed to read XO_CNFG\n");
  469. return err;
  470. }
  471. vc7->clk_apll.xo_ib_h_div = (val32 & VC7_REG_XO_IB_H_DIV_MASK)
  472. >> VC7_REG_XO_IB_H_DIV_SHIFT;
  473. err = regmap_read(vc7->regmap,
  474. VC7_REG_APLL_CNFG,
  475. &val32);
  476. if (err) {
  477. dev_err(&vc7->client->dev, "failed to read APLL_CNFG\n");
  478. return err;
  479. }
  480. vc7->clk_apll.en_doubler = val32 & VC7_REG_APLL_EN_DOUBLER;
  481. err = regmap_bulk_read(vc7->regmap,
  482. VC7_REG_APLL_FB_DIV_FRAC,
  483. (u32 *)&val32,
  484. VC7_REG_APLL_FB_DIV_FRAC_COUNT);
  485. if (err) {
  486. dev_err(&vc7->client->dev, "failed to read APLL_FB_DIV_FRAC\n");
  487. return err;
  488. }
  489. vc7->clk_apll.apll_fb_div_frac = val32 & VC7_REG_APLL_FB_DIV_FRAC_MASK;
  490. err = regmap_bulk_read(vc7->regmap,
  491. VC7_REG_APLL_FB_DIV_INT,
  492. (u16 *)&val16,
  493. VC7_REG_APLL_FB_DIV_INT_COUNT);
  494. if (err) {
  495. dev_err(&vc7->client->dev, "failed to read APLL_FB_DIV_INT\n");
  496. return err;
  497. }
  498. vc7->clk_apll.apll_fb_div_int = val16 & VC7_REG_APLL_FB_DIV_INT_MASK;
  499. return 0;
  500. }
  501. static int vc7_read_fod(struct vc7_driver_data *vc7, unsigned int idx)
  502. {
  503. int err;
  504. u64 val;
  505. err = regmap_bulk_read(vc7->regmap,
  506. VC7_REG_FOD_INT_CNFG(idx),
  507. (u64 *)&val,
  508. VC7_REG_FOD_INT_CNFG_COUNT);
  509. if (err) {
  510. dev_err(&vc7->client->dev, "failed to read FOD%d\n", idx);
  511. return err;
  512. }
  513. vc7->clk_fod[idx].fod_1st_int = (val & VC7_REG_FOD_1ST_INT_MASK);
  514. vc7->clk_fod[idx].fod_2nd_int =
  515. (val & VC7_REG_FOD_2ND_INT_MASK) >> VC7_REG_FOD_2ND_INT_SHIFT;
  516. vc7->clk_fod[idx].fod_frac = (val & VC7_REG_FOD_FRAC_MASK)
  517. >> VC7_REG_FOD_FRAC_SHIFT;
  518. return 0;
  519. }
  520. static int vc7_write_fod(struct vc7_driver_data *vc7, unsigned int idx)
  521. {
  522. int err;
  523. u64 val;
  524. /*
  525. * FOD dividers are part of an atomic group where fod_1st_int,
  526. * fod_2nd_int, and fod_frac must be written together. The new divider
  527. * is applied when the MSB of fod_frac is written.
  528. */
  529. err = regmap_bulk_read(vc7->regmap,
  530. VC7_REG_FOD_INT_CNFG(idx),
  531. (u64 *)&val,
  532. VC7_REG_FOD_INT_CNFG_COUNT);
  533. if (err) {
  534. dev_err(&vc7->client->dev, "failed to read FOD%d\n", idx);
  535. return err;
  536. }
  537. val = u64_replace_bits(val,
  538. vc7->clk_fod[idx].fod_1st_int,
  539. VC7_REG_FOD_1ST_INT_MASK);
  540. val = u64_replace_bits(val,
  541. vc7->clk_fod[idx].fod_2nd_int,
  542. VC7_REG_FOD_2ND_INT_MASK);
  543. val = u64_replace_bits(val,
  544. vc7->clk_fod[idx].fod_frac,
  545. VC7_REG_FOD_FRAC_MASK);
  546. err = regmap_bulk_write(vc7->regmap,
  547. VC7_REG_FOD_INT_CNFG(idx),
  548. (u64 *)&val,
  549. sizeof(u64));
  550. if (err) {
  551. dev_err(&vc7->client->dev, "failed to write FOD%d\n", idx);
  552. return err;
  553. }
  554. return 0;
  555. }
  556. static int vc7_read_iod(struct vc7_driver_data *vc7, unsigned int idx)
  557. {
  558. int err;
  559. u32 val;
  560. err = regmap_bulk_read(vc7->regmap,
  561. VC7_REG_IOD_INT_CNFG(idx),
  562. (u32 *)&val,
  563. VC7_REG_IOD_INT_CNFG_COUNT);
  564. if (err) {
  565. dev_err(&vc7->client->dev, "failed to read IOD%d\n", idx);
  566. return err;
  567. }
  568. vc7->clk_iod[idx].iod_int = (val & VC7_REG_IOD_INT_MASK);
  569. return 0;
  570. }
  571. static int vc7_write_iod(struct vc7_driver_data *vc7, unsigned int idx)
  572. {
  573. int err;
  574. u32 val;
  575. /*
  576. * IOD divider field is atomic and all bits must be written.
  577. * The new divider is applied when the MSB of iod_int is written.
  578. */
  579. err = regmap_bulk_read(vc7->regmap,
  580. VC7_REG_IOD_INT_CNFG(idx),
  581. (u32 *)&val,
  582. VC7_REG_IOD_INT_CNFG_COUNT);
  583. if (err) {
  584. dev_err(&vc7->client->dev, "failed to read IOD%d\n", idx);
  585. return err;
  586. }
  587. val = u32_replace_bits(val,
  588. vc7->clk_iod[idx].iod_int,
  589. VC7_REG_IOD_INT_MASK);
  590. err = regmap_bulk_write(vc7->regmap,
  591. VC7_REG_IOD_INT_CNFG(idx),
  592. (u32 *)&val,
  593. sizeof(u32));
  594. if (err) {
  595. dev_err(&vc7->client->dev, "failed to write IOD%d\n", idx);
  596. return err;
  597. }
  598. return 0;
  599. }
  600. static int vc7_read_output(struct vc7_driver_data *vc7, unsigned int idx)
  601. {
  602. int err;
  603. unsigned int val, out_num;
  604. out_num = vc7_map_index_to_output(vc7->chip_info->model, idx);
  605. err = regmap_read(vc7->regmap,
  606. VC7_REG_ODRV_EN(out_num),
  607. &val);
  608. if (err) {
  609. dev_err(&vc7->client->dev, "failed to read ODRV_EN[%d]\n", idx);
  610. return err;
  611. }
  612. vc7->clk_out[idx].out_dis = val & VC7_REG_OUT_DIS;
  613. return 0;
  614. }
  615. static int vc7_write_output(struct vc7_driver_data *vc7, unsigned int idx)
  616. {
  617. int err;
  618. unsigned int out_num;
  619. out_num = vc7_map_index_to_output(vc7->chip_info->model, idx);
  620. err = regmap_write_bits(vc7->regmap,
  621. VC7_REG_ODRV_EN(out_num),
  622. VC7_REG_OUT_DIS,
  623. vc7->clk_out[idx].out_dis);
  624. if (err) {
  625. dev_err(&vc7->client->dev, "failed to write ODRV_EN[%d]\n", idx);
  626. return err;
  627. }
  628. return 0;
  629. }
  630. static unsigned long vc7_get_apll_rate(struct vc7_driver_data *vc7)
  631. {
  632. int err;
  633. unsigned long xtal_rate;
  634. u64 refin_div, apll_rate;
  635. xtal_rate = clk_get_rate(vc7->pin_xin);
  636. err = vc7_read_apll(vc7);
  637. if (err) {
  638. dev_err(&vc7->client->dev, "unable to read apll\n");
  639. return err;
  640. }
  641. /* 0 is bypassed, 1 is reserved */
  642. if (vc7->clk_apll.xo_ib_h_div < 2)
  643. refin_div = xtal_rate;
  644. else
  645. refin_div = div64_u64(xtal_rate, vc7->clk_apll.xo_ib_h_div);
  646. if (vc7->clk_apll.en_doubler)
  647. refin_div *= 2;
  648. /* divider = int + (frac / 2^27) */
  649. apll_rate = (refin_div * vc7->clk_apll.apll_fb_div_int) +
  650. ((refin_div * vc7->clk_apll.apll_fb_div_frac) >> VC7_APLL_DENOMINATOR_BITS);
  651. pr_debug("%s - xo_ib_h_div: %u, apll_fb_div_int: %u, apll_fb_div_frac: %u\n",
  652. __func__, vc7->clk_apll.xo_ib_h_div, vc7->clk_apll.apll_fb_div_int,
  653. vc7->clk_apll.apll_fb_div_frac);
  654. pr_debug("%s - refin_div: %llu, apll rate: %llu\n",
  655. __func__, refin_div, apll_rate);
  656. return apll_rate;
  657. }
  658. static void vc7_calc_iod_divider(unsigned long rate, unsigned long parent_rate,
  659. u32 *divider)
  660. {
  661. *divider = DIV_ROUND_UP(parent_rate, rate);
  662. if (*divider < VC7_IOD_MIN_DIVISOR)
  663. *divider = VC7_IOD_MIN_DIVISOR;
  664. if (*divider > VC7_IOD_MAX_DIVISOR)
  665. *divider = VC7_IOD_MAX_DIVISOR;
  666. }
  667. static void vc7_calc_fod_1st_stage(unsigned long rate, unsigned long parent_rate,
  668. u32 *div_int, u64 *div_frac)
  669. {
  670. u64 rem;
  671. *div_int = (u32)div64_u64_rem(parent_rate, rate, &rem);
  672. *div_frac = div64_u64(rem << VC7_FOD_DENOMINATOR_BITS, rate);
  673. }
  674. static unsigned long vc7_calc_fod_1st_stage_rate(unsigned long parent_rate,
  675. u32 fod_1st_int, u64 fod_frac)
  676. {
  677. u64 numer, denom, hi, lo, divisor;
  678. numer = fod_frac;
  679. denom = BIT_ULL(VC7_FOD_DENOMINATOR_BITS);
  680. if (fod_frac) {
  681. vc7_64_mul_64_to_128(parent_rate, denom, &hi, &lo);
  682. divisor = ((u64)fod_1st_int * denom) + numer;
  683. return vc7_128_div_64_to_64(hi, lo, divisor, NULL);
  684. }
  685. return div64_u64(parent_rate, fod_1st_int);
  686. }
  687. static unsigned long vc7_calc_fod_2nd_stage_rate(unsigned long parent_rate,
  688. u32 fod_1st_int, u32 fod_2nd_int, u64 fod_frac)
  689. {
  690. unsigned long fod_1st_stage_rate;
  691. fod_1st_stage_rate = vc7_calc_fod_1st_stage_rate(parent_rate, fod_1st_int, fod_frac);
  692. if (fod_2nd_int < 2)
  693. return fod_1st_stage_rate;
  694. /*
  695. * There is a div-by-2 preceding the 2nd stage integer divider
  696. * (not shown on block diagram) so the actual 2nd stage integer
  697. * divisor is 2 * N.
  698. */
  699. return div64_u64(fod_1st_stage_rate >> 1, fod_2nd_int);
  700. }
  701. static void vc7_calc_fod_divider(unsigned long rate, unsigned long parent_rate,
  702. u32 *fod_1st_int, u32 *fod_2nd_int, u64 *fod_frac)
  703. {
  704. unsigned int allow_frac, i, best_frac_i;
  705. unsigned long first_stage_rate;
  706. vc7_calc_fod_1st_stage(rate, parent_rate, fod_1st_int, fod_frac);
  707. first_stage_rate = vc7_calc_fod_1st_stage_rate(parent_rate, *fod_1st_int, *fod_frac);
  708. *fod_2nd_int = 0;
  709. /* Do we need the second stage integer divider? */
  710. if (first_stage_rate < VC7_FOD_1ST_STAGE_RATE_MIN) {
  711. allow_frac = 0;
  712. best_frac_i = VC7_FOD_2ND_INT_MIN;
  713. for (i = VC7_FOD_2ND_INT_MIN; i <= VC7_FOD_2ND_INT_MAX; i++) {
  714. /*
  715. * 1) There is a div-by-2 preceding the 2nd stage integer divider
  716. * (not shown on block diagram) so the actual 2nd stage integer
  717. * divisor is 2 * N.
  718. * 2) Attempt to find an integer solution first. This means stepping
  719. * through each 2nd stage integer and recalculating the 1st stage
  720. * until the 1st stage frequency is out of bounds. If no integer
  721. * solution is found, use the best fractional solution.
  722. */
  723. vc7_calc_fod_1st_stage(parent_rate, rate * 2 * i, fod_1st_int, fod_frac);
  724. first_stage_rate = vc7_calc_fod_1st_stage_rate(parent_rate,
  725. *fod_1st_int,
  726. *fod_frac);
  727. /* Remember the first viable fractional solution */
  728. if (best_frac_i == VC7_FOD_2ND_INT_MIN &&
  729. first_stage_rate > VC7_FOD_1ST_STAGE_RATE_MIN) {
  730. best_frac_i = i;
  731. }
  732. /* Is the divider viable? Prefer integer solutions over fractional. */
  733. if (*fod_1st_int < VC7_FOD_1ST_INT_MAX &&
  734. first_stage_rate >= VC7_FOD_1ST_STAGE_RATE_MIN &&
  735. (allow_frac || *fod_frac == 0)) {
  736. *fod_2nd_int = i;
  737. break;
  738. }
  739. /* Ran out of divisors or the 1st stage frequency is out of range */
  740. if (i >= VC7_FOD_2ND_INT_MAX ||
  741. first_stage_rate > VC7_FOD_1ST_STAGE_RATE_MAX) {
  742. allow_frac = 1;
  743. i = best_frac_i;
  744. /* Restore the best frac and rerun the loop for the last time */
  745. if (best_frac_i != VC7_FOD_2ND_INT_MIN)
  746. i--;
  747. continue;
  748. }
  749. }
  750. }
  751. }
  752. static unsigned long vc7_fod_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
  753. {
  754. struct vc7_fod_data *fod = container_of(hw, struct vc7_fod_data, hw);
  755. struct vc7_driver_data *vc7 = fod->vc7;
  756. int err;
  757. unsigned long fod_rate;
  758. err = vc7_read_fod(vc7, fod->num);
  759. if (err) {
  760. dev_err(&vc7->client->dev, "error reading registers for %s\n",
  761. clk_hw_get_name(hw));
  762. return err;
  763. }
  764. pr_debug("%s - %s: parent_rate: %lu\n", __func__, clk_hw_get_name(hw), parent_rate);
  765. fod_rate = vc7_calc_fod_2nd_stage_rate(parent_rate, fod->fod_1st_int,
  766. fod->fod_2nd_int, fod->fod_frac);
  767. pr_debug("%s - %s: fod_1st_int: %u, fod_2nd_int: %u, fod_frac: %llu\n",
  768. __func__, clk_hw_get_name(hw),
  769. fod->fod_1st_int, fod->fod_2nd_int, fod->fod_frac);
  770. pr_debug("%s - %s rate: %lu\n", __func__, clk_hw_get_name(hw), fod_rate);
  771. return fod_rate;
  772. }
  773. static long vc7_fod_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *parent_rate)
  774. {
  775. struct vc7_fod_data *fod = container_of(hw, struct vc7_fod_data, hw);
  776. unsigned long fod_rate;
  777. pr_debug("%s - %s: requested rate: %lu, parent_rate: %lu\n",
  778. __func__, clk_hw_get_name(hw), rate, *parent_rate);
  779. vc7_calc_fod_divider(rate, *parent_rate,
  780. &fod->fod_1st_int, &fod->fod_2nd_int, &fod->fod_frac);
  781. fod_rate = vc7_calc_fod_2nd_stage_rate(*parent_rate, fod->fod_1st_int,
  782. fod->fod_2nd_int, fod->fod_frac);
  783. pr_debug("%s - %s: fod_1st_int: %u, fod_2nd_int: %u, fod_frac: %llu\n",
  784. __func__, clk_hw_get_name(hw),
  785. fod->fod_1st_int, fod->fod_2nd_int, fod->fod_frac);
  786. pr_debug("%s - %s rate: %lu\n", __func__, clk_hw_get_name(hw), fod_rate);
  787. return fod_rate;
  788. }
  789. static int vc7_fod_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate)
  790. {
  791. struct vc7_fod_data *fod = container_of(hw, struct vc7_fod_data, hw);
  792. struct vc7_driver_data *vc7 = fod->vc7;
  793. unsigned long fod_rate;
  794. pr_debug("%s - %s: rate: %lu, parent_rate: %lu\n",
  795. __func__, clk_hw_get_name(hw), rate, parent_rate);
  796. if (rate < VC7_FOD_RATE_MIN || rate > VC7_FOD_RATE_MAX) {
  797. dev_err(&vc7->client->dev,
  798. "requested frequency %lu Hz for %s is out of range\n",
  799. rate, clk_hw_get_name(hw));
  800. return -EINVAL;
  801. }
  802. vc7_write_fod(vc7, fod->num);
  803. fod_rate = vc7_calc_fod_2nd_stage_rate(parent_rate, fod->fod_1st_int,
  804. fod->fod_2nd_int, fod->fod_frac);
  805. pr_debug("%s - %s: fod_1st_int: %u, fod_2nd_int: %u, fod_frac: %llu\n",
  806. __func__, clk_hw_get_name(hw),
  807. fod->fod_1st_int, fod->fod_2nd_int, fod->fod_frac);
  808. pr_debug("%s - %s rate: %lu\n", __func__, clk_hw_get_name(hw), fod_rate);
  809. return 0;
  810. }
  811. static const struct clk_ops vc7_fod_ops = {
  812. .recalc_rate = vc7_fod_recalc_rate,
  813. .round_rate = vc7_fod_round_rate,
  814. .set_rate = vc7_fod_set_rate,
  815. };
  816. static unsigned long vc7_iod_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
  817. {
  818. struct vc7_iod_data *iod = container_of(hw, struct vc7_iod_data, hw);
  819. struct vc7_driver_data *vc7 = iod->vc7;
  820. int err;
  821. unsigned long iod_rate;
  822. err = vc7_read_iod(vc7, iod->num);
  823. if (err) {
  824. dev_err(&vc7->client->dev, "error reading registers for %s\n",
  825. clk_hw_get_name(hw));
  826. return err;
  827. }
  828. iod_rate = div64_u64(parent_rate, iod->iod_int);
  829. pr_debug("%s - %s: iod_int: %u\n", __func__, clk_hw_get_name(hw), iod->iod_int);
  830. pr_debug("%s - %s rate: %lu\n", __func__, clk_hw_get_name(hw), iod_rate);
  831. return iod_rate;
  832. }
  833. static long vc7_iod_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *parent_rate)
  834. {
  835. struct vc7_iod_data *iod = container_of(hw, struct vc7_iod_data, hw);
  836. unsigned long iod_rate;
  837. pr_debug("%s - %s: requested rate: %lu, parent_rate: %lu\n",
  838. __func__, clk_hw_get_name(hw), rate, *parent_rate);
  839. vc7_calc_iod_divider(rate, *parent_rate, &iod->iod_int);
  840. iod_rate = div64_u64(*parent_rate, iod->iod_int);
  841. pr_debug("%s - %s: iod_int: %u\n", __func__, clk_hw_get_name(hw), iod->iod_int);
  842. pr_debug("%s - %s rate: %ld\n", __func__, clk_hw_get_name(hw), iod_rate);
  843. return iod_rate;
  844. }
  845. static int vc7_iod_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate)
  846. {
  847. struct vc7_iod_data *iod = container_of(hw, struct vc7_iod_data, hw);
  848. struct vc7_driver_data *vc7 = iod->vc7;
  849. unsigned long iod_rate;
  850. pr_debug("%s - %s: rate: %lu, parent_rate: %lu\n",
  851. __func__, clk_hw_get_name(hw), rate, parent_rate);
  852. if (rate < VC7_IOD_RATE_MIN || rate > VC7_IOD_RATE_MAX) {
  853. dev_err(&vc7->client->dev,
  854. "requested frequency %lu Hz for %s is out of range\n",
  855. rate, clk_hw_get_name(hw));
  856. return -EINVAL;
  857. }
  858. vc7_write_iod(vc7, iod->num);
  859. iod_rate = div64_u64(parent_rate, iod->iod_int);
  860. pr_debug("%s - %s: iod_int: %u\n", __func__, clk_hw_get_name(hw), iod->iod_int);
  861. pr_debug("%s - %s rate: %ld\n", __func__, clk_hw_get_name(hw), iod_rate);
  862. return 0;
  863. }
  864. static const struct clk_ops vc7_iod_ops = {
  865. .recalc_rate = vc7_iod_recalc_rate,
  866. .round_rate = vc7_iod_round_rate,
  867. .set_rate = vc7_iod_set_rate,
  868. };
  869. static int vc7_clk_out_prepare(struct clk_hw *hw)
  870. {
  871. struct vc7_out_data *out = container_of(hw, struct vc7_out_data, hw);
  872. struct vc7_driver_data *vc7 = out->vc7;
  873. int err;
  874. out->out_dis = 0;
  875. err = vc7_write_output(vc7, out->num);
  876. if (err) {
  877. dev_err(&vc7->client->dev, "error writing registers for %s\n",
  878. clk_hw_get_name(hw));
  879. return err;
  880. }
  881. pr_debug("%s - %s: clk prepared\n", __func__, clk_hw_get_name(hw));
  882. return 0;
  883. }
  884. static void vc7_clk_out_unprepare(struct clk_hw *hw)
  885. {
  886. struct vc7_out_data *out = container_of(hw, struct vc7_out_data, hw);
  887. struct vc7_driver_data *vc7 = out->vc7;
  888. int err;
  889. out->out_dis = 1;
  890. err = vc7_write_output(vc7, out->num);
  891. if (err) {
  892. dev_err(&vc7->client->dev, "error writing registers for %s\n",
  893. clk_hw_get_name(hw));
  894. return;
  895. }
  896. pr_debug("%s - %s: clk unprepared\n", __func__, clk_hw_get_name(hw));
  897. }
  898. static int vc7_clk_out_is_enabled(struct clk_hw *hw)
  899. {
  900. struct vc7_out_data *out = container_of(hw, struct vc7_out_data, hw);
  901. struct vc7_driver_data *vc7 = out->vc7;
  902. int err, is_enabled;
  903. err = vc7_read_output(vc7, out->num);
  904. if (err) {
  905. dev_err(&vc7->client->dev, "error reading registers for %s\n",
  906. clk_hw_get_name(hw));
  907. return err;
  908. }
  909. is_enabled = !out->out_dis;
  910. pr_debug("%s - %s: is_enabled=%d\n", __func__, clk_hw_get_name(hw), is_enabled);
  911. return is_enabled;
  912. }
  913. static const struct clk_ops vc7_clk_out_ops = {
  914. .prepare = vc7_clk_out_prepare,
  915. .unprepare = vc7_clk_out_unprepare,
  916. .is_enabled = vc7_clk_out_is_enabled,
  917. };
  918. static int vc7_probe(struct i2c_client *client)
  919. {
  920. struct vc7_driver_data *vc7;
  921. struct clk_init_data clk_init;
  922. struct vc7_bank_src_map bank_src_map;
  923. const char *node_name, *apll_name;
  924. const char *parent_names[1];
  925. unsigned int i, val, bank_idx, out_num;
  926. unsigned long apll_rate;
  927. int ret;
  928. vc7 = devm_kzalloc(&client->dev, sizeof(*vc7), GFP_KERNEL);
  929. if (!vc7)
  930. return -ENOMEM;
  931. i2c_set_clientdata(client, vc7);
  932. vc7->client = client;
  933. vc7->chip_info = of_device_get_match_data(&client->dev);
  934. vc7->pin_xin = devm_clk_get(&client->dev, "xin");
  935. if (PTR_ERR(vc7->pin_xin) == -EPROBE_DEFER) {
  936. return dev_err_probe(&client->dev, -EPROBE_DEFER,
  937. "xin not specified\n");
  938. }
  939. vc7->regmap = devm_regmap_init_i2c(client, &vc7_regmap_config);
  940. if (IS_ERR(vc7->regmap)) {
  941. return dev_err_probe(&client->dev, PTR_ERR(vc7->regmap),
  942. "failed to allocate register map\n");
  943. }
  944. if (of_property_read_string(client->dev.of_node, "clock-output-names",
  945. &node_name))
  946. node_name = client->dev.of_node->name;
  947. /* Register APLL */
  948. apll_rate = vc7_get_apll_rate(vc7);
  949. apll_name = kasprintf(GFP_KERNEL, "%s_apll", node_name);
  950. vc7->clk_apll.clk = clk_register_fixed_rate(&client->dev, apll_name,
  951. __clk_get_name(vc7->pin_xin),
  952. 0, apll_rate);
  953. kfree(apll_name); /* ccf made a copy of the name */
  954. if (IS_ERR(vc7->clk_apll.clk)) {
  955. return dev_err_probe(&client->dev, PTR_ERR(vc7->clk_apll.clk),
  956. "failed to register apll\n");
  957. }
  958. /* Register FODs */
  959. for (i = 0; i < VC7_NUM_FOD; i++) {
  960. memset(&clk_init, 0, sizeof(clk_init));
  961. clk_init.name = kasprintf(GFP_KERNEL, "%s_fod%d", node_name, i);
  962. clk_init.ops = &vc7_fod_ops;
  963. clk_init.parent_names = parent_names;
  964. parent_names[0] = __clk_get_name(vc7->clk_apll.clk);
  965. clk_init.num_parents = 1;
  966. vc7->clk_fod[i].num = i;
  967. vc7->clk_fod[i].vc7 = vc7;
  968. vc7->clk_fod[i].hw.init = &clk_init;
  969. ret = devm_clk_hw_register(&client->dev, &vc7->clk_fod[i].hw);
  970. if (ret)
  971. goto err_clk_register;
  972. kfree(clk_init.name); /* ccf made a copy of the name */
  973. }
  974. /* Register IODs */
  975. for (i = 0; i < VC7_NUM_IOD; i++) {
  976. memset(&clk_init, 0, sizeof(clk_init));
  977. clk_init.name = kasprintf(GFP_KERNEL, "%s_iod%d", node_name, i);
  978. clk_init.ops = &vc7_iod_ops;
  979. clk_init.parent_names = parent_names;
  980. parent_names[0] = __clk_get_name(vc7->clk_apll.clk);
  981. clk_init.num_parents = 1;
  982. vc7->clk_iod[i].num = i;
  983. vc7->clk_iod[i].vc7 = vc7;
  984. vc7->clk_iod[i].hw.init = &clk_init;
  985. ret = devm_clk_hw_register(&client->dev, &vc7->clk_iod[i].hw);
  986. if (ret)
  987. goto err_clk_register;
  988. kfree(clk_init.name); /* ccf made a copy of the name */
  989. }
  990. /* Register outputs */
  991. for (i = 0; i < vc7->chip_info->num_outputs; i++) {
  992. out_num = vc7_map_index_to_output(vc7->chip_info->model, i);
  993. /*
  994. * This driver does not support remapping FOD/IOD to banks.
  995. * The device state is read and the driver is setup to match
  996. * the device's existing mapping.
  997. */
  998. bank_idx = output_bank_mapping[out_num];
  999. regmap_read(vc7->regmap, VC7_REG_OUT_BANK_CNFG(bank_idx), &val);
  1000. val &= VC7_REG_OUTPUT_BANK_SRC_MASK;
  1001. memset(&bank_src_map, 0, sizeof(bank_src_map));
  1002. ret = vc7_get_bank_clk(vc7, bank_idx, val, &bank_src_map);
  1003. if (ret) {
  1004. dev_err_probe(&client->dev, ret,
  1005. "unable to register output %d\n", i);
  1006. return ret;
  1007. }
  1008. switch (bank_src_map.type) {
  1009. case VC7_FOD:
  1010. parent_names[0] = clk_hw_get_name(&bank_src_map.src.fod->hw);
  1011. break;
  1012. case VC7_IOD:
  1013. parent_names[0] = clk_hw_get_name(&bank_src_map.src.iod->hw);
  1014. break;
  1015. }
  1016. memset(&clk_init, 0, sizeof(clk_init));
  1017. clk_init.name = kasprintf(GFP_KERNEL, "%s_out%d", node_name, i);
  1018. clk_init.ops = &vc7_clk_out_ops;
  1019. clk_init.flags = CLK_SET_RATE_PARENT;
  1020. clk_init.parent_names = parent_names;
  1021. clk_init.num_parents = 1;
  1022. vc7->clk_out[i].num = i;
  1023. vc7->clk_out[i].vc7 = vc7;
  1024. vc7->clk_out[i].hw.init = &clk_init;
  1025. ret = devm_clk_hw_register(&client->dev, &vc7->clk_out[i].hw);
  1026. if (ret)
  1027. goto err_clk_register;
  1028. kfree(clk_init.name); /* ccf made a copy of the name */
  1029. }
  1030. ret = of_clk_add_hw_provider(client->dev.of_node, vc7_of_clk_get, vc7);
  1031. if (ret) {
  1032. dev_err_probe(&client->dev, ret, "unable to add clk provider\n");
  1033. goto err_clk;
  1034. }
  1035. return ret;
  1036. err_clk_register:
  1037. dev_err_probe(&client->dev, ret,
  1038. "unable to register %s\n", clk_init.name);
  1039. kfree(clk_init.name); /* ccf made a copy of the name */
  1040. err_clk:
  1041. clk_unregister_fixed_rate(vc7->clk_apll.clk);
  1042. return ret;
  1043. }
  1044. static void vc7_remove(struct i2c_client *client)
  1045. {
  1046. struct vc7_driver_data *vc7 = i2c_get_clientdata(client);
  1047. of_clk_del_provider(client->dev.of_node);
  1048. clk_unregister_fixed_rate(vc7->clk_apll.clk);
  1049. }
  1050. static bool vc7_volatile_reg(struct device *dev, unsigned int reg)
  1051. {
  1052. if (reg == VC7_PAGE_ADDR)
  1053. return false;
  1054. return true;
  1055. }
  1056. static const struct vc7_chip_info vc7_rc21008a_info = {
  1057. .model = VC7_RC21008A,
  1058. .num_banks = 6,
  1059. .num_outputs = 8,
  1060. };
  1061. static struct regmap_range_cfg vc7_range_cfg[] = {
  1062. {
  1063. .range_min = 0,
  1064. .range_max = VC7_MAX_REG,
  1065. .selector_reg = VC7_PAGE_ADDR,
  1066. .selector_mask = 0xFF,
  1067. .selector_shift = 0,
  1068. .window_start = 0,
  1069. .window_len = VC7_PAGE_WINDOW,
  1070. }};
  1071. static const struct regmap_config vc7_regmap_config = {
  1072. .reg_bits = 8,
  1073. .val_bits = 8,
  1074. .max_register = VC7_MAX_REG,
  1075. .ranges = vc7_range_cfg,
  1076. .num_ranges = ARRAY_SIZE(vc7_range_cfg),
  1077. .volatile_reg = vc7_volatile_reg,
  1078. .cache_type = REGCACHE_RBTREE,
  1079. .can_multi_write = true,
  1080. .reg_format_endian = REGMAP_ENDIAN_LITTLE,
  1081. .val_format_endian = REGMAP_ENDIAN_LITTLE,
  1082. };
  1083. static const struct i2c_device_id vc7_i2c_id[] = {
  1084. { "rc21008a", .driver_data = (kernel_ulong_t)&vc7_rc21008a_info },
  1085. {}
  1086. };
  1087. MODULE_DEVICE_TABLE(i2c, vc7_i2c_id);
  1088. static const struct of_device_id vc7_of_match[] = {
  1089. { .compatible = "renesas,rc21008a", .data = &vc7_rc21008a_info },
  1090. {}
  1091. };
  1092. MODULE_DEVICE_TABLE(of, vc7_of_match);
  1093. static struct i2c_driver vc7_i2c_driver = {
  1094. .driver = {
  1095. .name = "vc7",
  1096. .of_match_table = vc7_of_match,
  1097. },
  1098. .probe_new = vc7_probe,
  1099. .remove = vc7_remove,
  1100. .id_table = vc7_i2c_id,
  1101. };
  1102. module_i2c_driver(vc7_i2c_driver);
  1103. MODULE_LICENSE("GPL");
  1104. MODULE_AUTHOR("Alex Helms <[email protected]");
  1105. MODULE_DESCRIPTION("Renesas Versaclock7 common clock framework driver");