clk-lmk04832.c 43 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * LMK04832 Ultra Low-Noise JESD204B Compliant Clock Jitter Cleaner
  4. * Pin compatible with the LMK0482x family
  5. *
  6. * Datasheet: https://www.ti.com/lit/ds/symlink/lmk04832.pdf
  7. *
  8. * Copyright (c) 2020, Xiphos Systems Corp.
  9. *
  10. */
  11. #include <linux/bitfield.h>
  12. #include <linux/clk.h>
  13. #include <linux/clk-provider.h>
  14. #include <linux/debugfs.h>
  15. #include <linux/device.h>
  16. #include <linux/gcd.h>
  17. #include <linux/gpio/consumer.h>
  18. #include <linux/module.h>
  19. #include <linux/uaccess.h>
  20. #include <linux/regmap.h>
  21. #include <linux/spi/spi.h>
  22. /* 0x000 - 0x00d System Functions */
  23. #define LMK04832_REG_RST3W 0x000
  24. #define LMK04832_BIT_RESET BIT(7)
  25. #define LMK04832_BIT_SPI_3WIRE_DIS BIT(4)
  26. #define LMK04832_REG_POWERDOWN 0x002
  27. #define LMK04832_REG_ID_DEV_TYPE 0x003
  28. #define LMK04832_REG_ID_PROD_MSB 0x004
  29. #define LMK04832_REG_ID_PROD_LSB 0x005
  30. #define LMK04832_REG_ID_MASKREV 0x006
  31. #define LMK04832_REG_ID_VNDR_MSB 0x00c
  32. #define LMK04832_REG_ID_VNDR_LSB 0x00d
  33. /* 0x100 - 0x137 Device Clock and SYSREF Clock Output Control */
  34. #define LMK04832_REG_CLKOUT_CTRL0(ch) (0x100 + (ch >> 1) * 8)
  35. #define LMK04832_BIT_DCLK_DIV_LSB GENMASK(7, 0)
  36. #define LMK04832_REG_CLKOUT_CTRL1(ch) (0x101 + (ch >> 1) * 8)
  37. #define LMK04832_BIT_DCLKX_Y_DDLY_LSB GENMASK(7, 0)
  38. #define LMK04832_REG_CLKOUT_CTRL2(ch) (0x102 + (ch >> 1) * 8)
  39. #define LMK04832_BIT_CLKOUTX_Y_PD BIT(7)
  40. #define LMK04832_BIT_DCLKX_Y_DDLY_PD BIT(4)
  41. #define LMK04832_BIT_DCLKX_Y_DDLY_MSB GENMASK(3, 2)
  42. #define LMK04832_BIT_DCLK_DIV_MSB GENMASK(1, 0)
  43. #define LMK04832_REG_CLKOUT_SRC_MUX(ch) (0x103 + (ch % 2) + (ch >> 1) * 8)
  44. #define LMK04832_BIT_CLKOUT_SRC_MUX BIT(5)
  45. #define LMK04832_REG_CLKOUT_CTRL3(ch) (0x103 + (ch >> 1) * 8)
  46. #define LMK04832_BIT_DCLKX_Y_PD BIT(4)
  47. #define LMK04832_BIT_DCLKX_Y_DCC BIT(2)
  48. #define LMK04832_BIT_DCLKX_Y_HS BIT(0)
  49. #define LMK04832_REG_CLKOUT_CTRL4(ch) (0x104 + (ch >> 1) * 8)
  50. #define LMK04832_BIT_SCLK_PD BIT(4)
  51. #define LMK04832_BIT_SCLKX_Y_DIS_MODE GENMASK(3, 2)
  52. #define LMK04832_REG_SCLKX_Y_ADLY(ch) (0x105 + (ch >> 1) * 8)
  53. #define LMK04832_REG_SCLKX_Y_DDLY(ch) (0x106 + (ch >> 1) * 8)
  54. #define LMK04832_BIT_SCLKX_Y_DDLY GENMASK(3, 0)
  55. #define LMK04832_REG_CLKOUT_FMT(ch) (0x107 + (ch >> 1) * 8)
  56. #define LMK04832_BIT_CLKOUT_FMT(ch) (ch % 2 ? 0xf0 : 0x0f)
  57. #define LMK04832_VAL_CLKOUT_FMT_POWERDOWN 0x00
  58. #define LMK04832_VAL_CLKOUT_FMT_LVDS 0x01
  59. #define LMK04832_VAL_CLKOUT_FMT_HSDS6 0x02
  60. #define LMK04832_VAL_CLKOUT_FMT_HSDS8 0x03
  61. #define LMK04832_VAL_CLKOUT_FMT_LVPECL1600 0x04
  62. #define LMK04832_VAL_CLKOUT_FMT_LVPECL2000 0x05
  63. #define LMK04832_VAL_CLKOUT_FMT_LCPECL 0x06
  64. #define LMK04832_VAL_CLKOUT_FMT_CML16 0x07
  65. #define LMK04832_VAL_CLKOUT_FMT_CML24 0x08
  66. #define LMK04832_VAL_CLKOUT_FMT_CML32 0x09
  67. #define LMK04832_VAL_CLKOUT_FMT_CMOS_OFF_INV 0x0a
  68. #define LMK04832_VAL_CLKOUT_FMT_CMOS_NOR_OFF 0x0b
  69. #define LMK04832_VAL_CLKOUT_FMT_CMOS_INV_INV 0x0c
  70. #define LMK04832_VAL_CLKOUT_FMT_CMOS_INV_NOR 0x0d
  71. #define LMK04832_VAL_CLKOUT_FMT_CMOS_NOR_INV 0x0e
  72. #define LMK04832_VAL_CLKOUT_FMT_CMOS_NOR_NOR 0x0f
  73. /* 0x138 - 0x145 SYSREF, SYNC, and Device Config */
  74. #define LMK04832_REG_VCO_OSCOUT 0x138
  75. #define LMK04832_BIT_VCO_MUX GENMASK(6, 5)
  76. #define LMK04832_VAL_VCO_MUX_VCO0 0x00
  77. #define LMK04832_VAL_VCO_MUX_VCO1 0x01
  78. #define LMK04832_VAL_VCO_MUX_EXT 0x02
  79. #define LMK04832_REG_SYSREF_OUT 0x139
  80. #define LMK04832_BIT_SYSREF_REQ_EN BIT(6)
  81. #define LMK04832_BIT_SYSREF_MUX GENMASK(1, 0)
  82. #define LMK04832_VAL_SYSREF_MUX_NORMAL_SYNC 0x00
  83. #define LMK04832_VAL_SYSREF_MUX_RECLK 0x01
  84. #define LMK04832_VAL_SYSREF_MUX_PULSER 0x02
  85. #define LMK04832_VAL_SYSREF_MUX_CONTINUOUS 0x03
  86. #define LMK04832_REG_SYSREF_DIV_MSB 0x13a
  87. #define LMK04832_BIT_SYSREF_DIV_MSB GENMASK(4, 0)
  88. #define LMK04832_REG_SYSREF_DIV_LSB 0x13b
  89. #define LMK04832_REG_SYSREF_DDLY_MSB 0x13c
  90. #define LMK04832_BIT_SYSREF_DDLY_MSB GENMASK(4, 0)
  91. #define LMK04832_REG_SYSREF_DDLY_LSB 0x13d
  92. #define LMK04832_REG_SYSREF_PULSE_CNT 0x13e
  93. #define LMK04832_REG_FB_CTRL 0x13f
  94. #define LMK04832_BIT_PLL2_RCLK_MUX BIT(7)
  95. #define LMK04832_VAL_PLL2_RCLK_MUX_OSCIN 0x00
  96. #define LMK04832_VAL_PLL2_RCLK_MUX_CLKIN 0x01
  97. #define LMK04832_BIT_PLL2_NCLK_MUX BIT(5)
  98. #define LMK04832_VAL_PLL2_NCLK_MUX_PLL2_P 0x00
  99. #define LMK04832_VAL_PLL2_NCLK_MUX_FB_MUX 0x01
  100. #define LMK04832_BIT_FB_MUX_EN BIT(0)
  101. #define LMK04832_REG_MAIN_PD 0x140
  102. #define LMK04832_BIT_PLL1_PD BIT(7)
  103. #define LMK04832_BIT_VCO_LDO_PD BIT(6)
  104. #define LMK04832_BIT_VCO_PD BIT(5)
  105. #define LMK04832_BIT_OSCIN_PD BIT(4)
  106. #define LMK04832_BIT_SYSREF_GBL_PD BIT(3)
  107. #define LMK04832_BIT_SYSREF_PD BIT(2)
  108. #define LMK04832_BIT_SYSREF_DDLY_PD BIT(1)
  109. #define LMK04832_BIT_SYSREF_PLSR_PD BIT(0)
  110. #define LMK04832_REG_SYNC 0x143
  111. #define LMK04832_BIT_SYNC_CLR BIT(7)
  112. #define LMK04832_BIT_SYNC_1SHOT_EN BIT(6)
  113. #define LMK04832_BIT_SYNC_POL BIT(5)
  114. #define LMK04832_BIT_SYNC_EN BIT(4)
  115. #define LMK04832_BIT_SYNC_MODE GENMASK(1, 0)
  116. #define LMK04832_VAL_SYNC_MODE_OFF 0x00
  117. #define LMK04832_VAL_SYNC_MODE_ON 0x01
  118. #define LMK04832_VAL_SYNC_MODE_PULSER_PIN 0x02
  119. #define LMK04832_VAL_SYNC_MODE_PULSER_SPI 0x03
  120. #define LMK04832_REG_SYNC_DIS 0x144
  121. /* 0x146 - 0x14a CLKin Control */
  122. #define LMK04832_REG_CLKIN_SEL0 0x148
  123. #define LMK04832_REG_CLKIN_SEL1 0x149
  124. #define LMK04832_REG_CLKIN_RST 0x14a
  125. #define LMK04832_BIT_SDIO_RDBK_TYPE BIT(6)
  126. #define LMK04832_BIT_CLKIN_SEL_MUX GENMASK(5, 3)
  127. #define LMK04832_VAL_CLKIN_SEL_MUX_SPI_RDBK 0x06
  128. #define LMK04832_BIT_CLKIN_SEL_TYPE GENMASK(2, 0)
  129. #define LMK04832_VAL_CLKIN_SEL_TYPE_OUT 0x03
  130. /* 0x14b - 0x152 Holdover */
  131. /* 0x153 - 0x15f PLL1 Configuration */
  132. /* 0x160 - 0x16e PLL2 Configuration */
  133. #define LMK04832_REG_PLL2_R_MSB 0x160
  134. #define LMK04832_BIT_PLL2_R_MSB GENMASK(3, 0)
  135. #define LMK04832_REG_PLL2_R_LSB 0x161
  136. #define LMK04832_REG_PLL2_MISC 0x162
  137. #define LMK04832_BIT_PLL2_MISC_P GENMASK(7, 5)
  138. #define LMK04832_BIT_PLL2_MISC_REF_2X_EN BIT(0)
  139. #define LMK04832_REG_PLL2_N_CAL_0 0x163
  140. #define LMK04832_BIT_PLL2_N_CAL_0 GENMASK(1, 0)
  141. #define LMK04832_REG_PLL2_N_CAL_1 0x164
  142. #define LMK04832_REG_PLL2_N_CAL_2 0x165
  143. #define LMK04832_REG_PLL2_N_0 0x166
  144. #define LMK04832_BIT_PLL2_N_0 GENMASK(1, 0)
  145. #define LMK04832_REG_PLL2_N_1 0x167
  146. #define LMK04832_REG_PLL2_N_2 0x168
  147. #define LMK04832_REG_PLL2_DLD_CNT_MSB 0x16a
  148. #define LMK04832_REG_PLL2_DLD_CNT_LSB 0x16b
  149. #define LMK04832_REG_PLL2_LD 0x16e
  150. #define LMK04832_BIT_PLL2_LD_MUX GENMASK(7, 3)
  151. #define LMK04832_VAL_PLL2_LD_MUX_PLL2_DLD 0x02
  152. #define LMK04832_BIT_PLL2_LD_TYPE GENMASK(2, 0)
  153. #define LMK04832_VAL_PLL2_LD_TYPE_OUT_PP 0x03
  154. /* 0x16F - 0x555 Misc Registers */
  155. #define LMK04832_REG_PLL2_PD 0x173
  156. #define LMK04832_BIT_PLL2_PRE_PD BIT(6)
  157. #define LMK04832_BIT_PLL2_PD BIT(5)
  158. #define LMK04832_REG_PLL1R_RST 0x177
  159. #define LMK04832_REG_CLR_PLL_LOST 0x182
  160. #define LMK04832_REG_RB_PLL_LD 0x183
  161. #define LMK04832_REG_RB_CLK_DAC_VAL_MSB 0x184
  162. #define LMK04832_REG_RB_DAC_VAL_LSB 0x185
  163. #define LMK04832_REG_RB_HOLDOVER 0x188
  164. #define LMK04832_REG_SPI_LOCK 0x555
  165. enum lmk04832_device_types {
  166. LMK04832,
  167. };
  168. /**
  169. * lmk04832_device_info - Holds static device information that is specific to
  170. * the chip revision
  171. *
  172. * pid: Product Identifier
  173. * maskrev: IC version identifier
  174. * num_channels: Number of available output channels (clkout count)
  175. * vco0_range: {min, max} of the VCO0 operating range (in MHz)
  176. * vco1_range: {min, max} of the VCO1 operating range (in MHz)
  177. */
  178. struct lmk04832_device_info {
  179. u16 pid;
  180. u8 maskrev;
  181. size_t num_channels;
  182. unsigned int vco0_range[2];
  183. unsigned int vco1_range[2];
  184. };
  185. static const struct lmk04832_device_info lmk04832_device_info[] = {
  186. [LMK04832] = {
  187. .pid = 0x63d1, /* WARNING PROD_ID is inverted in the datasheet */
  188. .maskrev = 0x70,
  189. .num_channels = 14,
  190. .vco0_range = { 2440, 2580 },
  191. .vco1_range = { 2945, 3255 },
  192. },
  193. };
  194. enum lmk04832_rdbk_type {
  195. RDBK_CLKIN_SEL0,
  196. RDBK_CLKIN_SEL1,
  197. RDBK_RESET,
  198. };
  199. struct lmk_dclk {
  200. struct lmk04832 *lmk;
  201. struct clk_hw hw;
  202. u8 id;
  203. };
  204. struct lmk_clkout {
  205. struct lmk04832 *lmk;
  206. struct clk_hw hw;
  207. bool sysref;
  208. u32 format;
  209. u8 id;
  210. };
  211. /**
  212. * struct lmk04832 - The LMK04832 device structure
  213. *
  214. * @dev: reference to a struct device, linked to the spi_device
  215. * @regmap: struct regmap instance use to access the chip
  216. * @sync_mode: operational mode for SYNC signal
  217. * @sysref_mux: select SYSREF source
  218. * @sysref_pulse_cnt: number of SYSREF pulses generated while not in continuous
  219. * mode.
  220. * @sysref_ddly: SYSREF digital delay value
  221. * @oscin: PLL2 input clock
  222. * @vco: reference to the internal VCO clock
  223. * @sclk: reference to the internal sysref clock (SCLK)
  224. * @vco_rate: user provided VCO rate
  225. * @reset_gpio: reference to the reset GPIO
  226. * @dclk: list of internal device clock references.
  227. * Each pair of clkout clocks share a single device clock (DCLKX_Y)
  228. * @clkout: list of output clock references
  229. * @clk_data: holds clkout related data like clk_hw* and number of clocks
  230. */
  231. struct lmk04832 {
  232. struct device *dev;
  233. struct regmap *regmap;
  234. unsigned int sync_mode;
  235. unsigned int sysref_mux;
  236. unsigned int sysref_pulse_cnt;
  237. unsigned int sysref_ddly;
  238. struct clk *oscin;
  239. struct clk_hw vco;
  240. struct clk_hw sclk;
  241. unsigned int vco_rate;
  242. struct gpio_desc *reset_gpio;
  243. struct lmk_dclk *dclk;
  244. struct lmk_clkout *clkout;
  245. struct clk_hw_onecell_data *clk_data;
  246. };
  247. static bool lmk04832_regmap_rd_regs(struct device *dev, unsigned int reg)
  248. {
  249. switch (reg) {
  250. case LMK04832_REG_RST3W ... LMK04832_REG_ID_MASKREV:
  251. case LMK04832_REG_ID_VNDR_MSB:
  252. case LMK04832_REG_ID_VNDR_LSB:
  253. case LMK04832_REG_CLKOUT_CTRL0(0) ... LMK04832_REG_PLL2_DLD_CNT_LSB:
  254. case LMK04832_REG_PLL2_LD:
  255. case LMK04832_REG_PLL2_PD:
  256. case LMK04832_REG_PLL1R_RST:
  257. case LMK04832_REG_CLR_PLL_LOST ... LMK04832_REG_RB_DAC_VAL_LSB:
  258. case LMK04832_REG_RB_HOLDOVER:
  259. case LMK04832_REG_SPI_LOCK:
  260. return true;
  261. default:
  262. return false;
  263. };
  264. };
  265. static bool lmk04832_regmap_wr_regs(struct device *dev, unsigned int reg)
  266. {
  267. switch (reg) {
  268. case LMK04832_REG_RST3W:
  269. case LMK04832_REG_POWERDOWN:
  270. return true;
  271. case LMK04832_REG_ID_DEV_TYPE ... LMK04832_REG_ID_MASKREV:
  272. case LMK04832_REG_ID_VNDR_MSB:
  273. case LMK04832_REG_ID_VNDR_LSB:
  274. return false;
  275. case LMK04832_REG_CLKOUT_CTRL0(0) ... LMK04832_REG_PLL2_DLD_CNT_LSB:
  276. case LMK04832_REG_PLL2_LD:
  277. case LMK04832_REG_PLL2_PD:
  278. case LMK04832_REG_PLL1R_RST:
  279. case LMK04832_REG_CLR_PLL_LOST ... LMK04832_REG_RB_DAC_VAL_LSB:
  280. case LMK04832_REG_RB_HOLDOVER:
  281. case LMK04832_REG_SPI_LOCK:
  282. return true;
  283. default:
  284. return false;
  285. };
  286. };
  287. static const struct regmap_config regmap_config = {
  288. .name = "lmk04832",
  289. .reg_bits = 16,
  290. .val_bits = 8,
  291. .use_single_read = 1,
  292. .use_single_write = 1,
  293. .read_flag_mask = 0x80,
  294. .write_flag_mask = 0x00,
  295. .readable_reg = lmk04832_regmap_rd_regs,
  296. .writeable_reg = lmk04832_regmap_wr_regs,
  297. .cache_type = REGCACHE_NONE,
  298. .max_register = LMK04832_REG_SPI_LOCK,
  299. };
  300. static int lmk04832_vco_is_enabled(struct clk_hw *hw)
  301. {
  302. struct lmk04832 *lmk = container_of(hw, struct lmk04832, vco);
  303. unsigned int tmp;
  304. int ret;
  305. ret = regmap_read(lmk->regmap, LMK04832_REG_MAIN_PD, &tmp);
  306. if (ret)
  307. return ret;
  308. return !(FIELD_GET(LMK04832_BIT_OSCIN_PD, tmp) |
  309. FIELD_GET(LMK04832_BIT_VCO_PD, tmp) |
  310. FIELD_GET(LMK04832_BIT_VCO_LDO_PD, tmp));
  311. }
  312. static int lmk04832_vco_prepare(struct clk_hw *hw)
  313. {
  314. struct lmk04832 *lmk = container_of(hw, struct lmk04832, vco);
  315. int ret;
  316. ret = regmap_update_bits(lmk->regmap, LMK04832_REG_PLL2_PD,
  317. LMK04832_BIT_PLL2_PRE_PD |
  318. LMK04832_BIT_PLL2_PD,
  319. 0x00);
  320. if (ret)
  321. return ret;
  322. return regmap_update_bits(lmk->regmap, LMK04832_REG_MAIN_PD,
  323. LMK04832_BIT_VCO_LDO_PD |
  324. LMK04832_BIT_VCO_PD |
  325. LMK04832_BIT_OSCIN_PD, 0x00);
  326. }
  327. static void lmk04832_vco_unprepare(struct clk_hw *hw)
  328. {
  329. struct lmk04832 *lmk = container_of(hw, struct lmk04832, vco);
  330. regmap_update_bits(lmk->regmap, LMK04832_REG_PLL2_PD,
  331. LMK04832_BIT_PLL2_PRE_PD | LMK04832_BIT_PLL2_PD,
  332. 0xff);
  333. /* Don't set LMK04832_BIT_OSCIN_PD since other clocks depend on it */
  334. regmap_update_bits(lmk->regmap, LMK04832_REG_MAIN_PD,
  335. LMK04832_BIT_VCO_LDO_PD | LMK04832_BIT_VCO_PD, 0xff);
  336. }
  337. static unsigned long lmk04832_vco_recalc_rate(struct clk_hw *hw,
  338. unsigned long prate)
  339. {
  340. struct lmk04832 *lmk = container_of(hw, struct lmk04832, vco);
  341. unsigned int pll2_p[] = {8, 2, 2, 3, 4, 5, 6, 7};
  342. unsigned int pll2_n, p, pll2_r;
  343. unsigned int pll2_misc;
  344. unsigned long vco_rate;
  345. u8 tmp[3];
  346. int ret;
  347. ret = regmap_read(lmk->regmap, LMK04832_REG_PLL2_MISC, &pll2_misc);
  348. if (ret)
  349. return ret;
  350. p = FIELD_GET(LMK04832_BIT_PLL2_MISC_P, pll2_misc);
  351. ret = regmap_bulk_read(lmk->regmap, LMK04832_REG_PLL2_N_0, &tmp, 3);
  352. if (ret)
  353. return ret;
  354. pll2_n = FIELD_PREP(0x030000, tmp[0]) |
  355. FIELD_PREP(0x00ff00, tmp[1]) |
  356. FIELD_PREP(0x0000ff, tmp[2]);
  357. ret = regmap_bulk_read(lmk->regmap, LMK04832_REG_PLL2_R_MSB, &tmp, 2);
  358. if (ret)
  359. return ret;
  360. pll2_r = FIELD_PREP(0x0f00, tmp[0]) |
  361. FIELD_PREP(0x00ff, tmp[1]);
  362. vco_rate = (prate << FIELD_GET(LMK04832_BIT_PLL2_MISC_REF_2X_EN,
  363. pll2_misc)) * pll2_n * pll2_p[p] / pll2_r;
  364. return vco_rate;
  365. };
  366. /**
  367. * lmk04832_check_vco_ranges - Check requested VCO frequency against VCO ranges
  368. *
  369. * @lmk: Reference to the lmk device
  370. * @rate: Desired output rate for the VCO
  371. *
  372. * The LMK04832 has 2 internal VCO, each with independent operating ranges.
  373. * Use the device_info structure to determine which VCO to use based on rate.
  374. *
  375. * Returns VCO_MUX value or negative errno.
  376. */
  377. static int lmk04832_check_vco_ranges(struct lmk04832 *lmk, unsigned long rate)
  378. {
  379. struct spi_device *spi = to_spi_device(lmk->dev);
  380. const struct lmk04832_device_info *info;
  381. unsigned long mhz = rate / 1000000;
  382. info = &lmk04832_device_info[spi_get_device_id(spi)->driver_data];
  383. if (mhz >= info->vco0_range[0] && mhz <= info->vco0_range[1])
  384. return LMK04832_VAL_VCO_MUX_VCO0;
  385. if (mhz >= info->vco1_range[0] && mhz <= info->vco1_range[1])
  386. return LMK04832_VAL_VCO_MUX_VCO1;
  387. dev_err(lmk->dev, "%lu Hz is out of VCO ranges\n", rate);
  388. return -ERANGE;
  389. }
  390. /**
  391. * lmk04832_calc_pll2_params - Get PLL2 parameters used to set the VCO frequency
  392. *
  393. * @prate: parent rate to the PLL2, usually OSCin
  394. * @rate: Desired output rate for the VCO
  395. * @n: reference to PLL2_N
  396. * @p: reference to PLL2_P
  397. * @r: reference to PLL2_R
  398. *
  399. * This functions assumes LMK04832_BIT_PLL2_MISC_REF_2X_EN is set since it is
  400. * recommended in the datasheet because a higher phase detector frequencies
  401. * makes the design of wider loop bandwidth filters possible.
  402. *
  403. * the VCO rate can be calculated using the following expression:
  404. *
  405. * VCO = OSCin * 2 * PLL2_N * PLL2_P / PLL2_R
  406. *
  407. * Returns vco rate or negative errno.
  408. */
  409. static long lmk04832_calc_pll2_params(unsigned long prate, unsigned long rate,
  410. unsigned int *n, unsigned int *p,
  411. unsigned int *r)
  412. {
  413. unsigned int pll2_n, pll2_p, pll2_r;
  414. unsigned long num, div;
  415. /* Set PLL2_P to a fixed value to simplify optimizations */
  416. pll2_p = 2;
  417. div = gcd(rate, prate);
  418. num = DIV_ROUND_CLOSEST(rate, div);
  419. pll2_r = DIV_ROUND_CLOSEST(prate, div);
  420. if (num > 4) {
  421. pll2_n = num >> 2;
  422. } else {
  423. pll2_r = pll2_r << 2;
  424. pll2_n = num;
  425. }
  426. if (pll2_n < 1 || pll2_n > 0x03ffff)
  427. return -EINVAL;
  428. if (pll2_r < 1 || pll2_r > 0xfff)
  429. return -EINVAL;
  430. *n = pll2_n;
  431. *p = pll2_p;
  432. *r = pll2_r;
  433. return DIV_ROUND_CLOSEST(prate * 2 * pll2_p * pll2_n, pll2_r);
  434. }
  435. static long lmk04832_vco_round_rate(struct clk_hw *hw, unsigned long rate,
  436. unsigned long *prate)
  437. {
  438. struct lmk04832 *lmk = container_of(hw, struct lmk04832, vco);
  439. unsigned int n, p, r;
  440. long vco_rate;
  441. int ret;
  442. ret = lmk04832_check_vco_ranges(lmk, rate);
  443. if (ret < 0)
  444. return ret;
  445. vco_rate = lmk04832_calc_pll2_params(*prate, rate, &n, &p, &r);
  446. if (vco_rate < 0) {
  447. dev_err(lmk->dev, "PLL2 parameters out of range\n");
  448. return vco_rate;
  449. }
  450. if (rate != vco_rate)
  451. return -EINVAL;
  452. return vco_rate;
  453. };
  454. static int lmk04832_vco_set_rate(struct clk_hw *hw, unsigned long rate,
  455. unsigned long prate)
  456. {
  457. struct lmk04832 *lmk = container_of(hw, struct lmk04832, vco);
  458. unsigned int n, p, r;
  459. long vco_rate;
  460. int vco_mux;
  461. int ret;
  462. vco_mux = lmk04832_check_vco_ranges(lmk, rate);
  463. if (vco_mux < 0)
  464. return vco_mux;
  465. ret = regmap_update_bits(lmk->regmap, LMK04832_REG_VCO_OSCOUT,
  466. LMK04832_BIT_VCO_MUX,
  467. FIELD_PREP(LMK04832_BIT_VCO_MUX, vco_mux));
  468. if (ret)
  469. return ret;
  470. vco_rate = lmk04832_calc_pll2_params(prate, rate, &n, &p, &r);
  471. if (vco_rate < 0) {
  472. dev_err(lmk->dev, "failed to determine PLL2 parameters\n");
  473. return vco_rate;
  474. }
  475. ret = regmap_update_bits(lmk->regmap, LMK04832_REG_PLL2_R_MSB,
  476. LMK04832_BIT_PLL2_R_MSB,
  477. FIELD_GET(0x000700, r));
  478. if (ret)
  479. return ret;
  480. ret = regmap_write(lmk->regmap, LMK04832_REG_PLL2_R_LSB,
  481. FIELD_GET(0x0000ff, r));
  482. if (ret)
  483. return ret;
  484. ret = regmap_update_bits(lmk->regmap, LMK04832_REG_PLL2_MISC,
  485. LMK04832_BIT_PLL2_MISC_P,
  486. FIELD_PREP(LMK04832_BIT_PLL2_MISC_P, p));
  487. if (ret)
  488. return ret;
  489. /*
  490. * PLL2_N registers must be programmed after other PLL2 dividers are
  491. * programmed to ensure proper VCO frequency calibration
  492. */
  493. ret = regmap_write(lmk->regmap, LMK04832_REG_PLL2_N_0,
  494. FIELD_GET(0x030000, n));
  495. if (ret)
  496. return ret;
  497. ret = regmap_write(lmk->regmap, LMK04832_REG_PLL2_N_1,
  498. FIELD_GET(0x00ff00, n));
  499. if (ret)
  500. return ret;
  501. return regmap_write(lmk->regmap, LMK04832_REG_PLL2_N_2,
  502. FIELD_GET(0x0000ff, n));
  503. };
  504. static const struct clk_ops lmk04832_vco_ops = {
  505. .is_enabled = lmk04832_vco_is_enabled,
  506. .prepare = lmk04832_vco_prepare,
  507. .unprepare = lmk04832_vco_unprepare,
  508. .recalc_rate = lmk04832_vco_recalc_rate,
  509. .round_rate = lmk04832_vco_round_rate,
  510. .set_rate = lmk04832_vco_set_rate,
  511. };
  512. /*
  513. * lmk04832_register_vco - Initialize the internal VCO and clock distribution
  514. * path in PLL2 single loop mode.
  515. */
  516. static int lmk04832_register_vco(struct lmk04832 *lmk)
  517. {
  518. const char *parent_names[1];
  519. struct clk_init_data init;
  520. int ret;
  521. init.name = "lmk-vco";
  522. parent_names[0] = __clk_get_name(lmk->oscin);
  523. init.parent_names = parent_names;
  524. init.ops = &lmk04832_vco_ops;
  525. init.num_parents = 1;
  526. ret = regmap_update_bits(lmk->regmap, LMK04832_REG_VCO_OSCOUT,
  527. LMK04832_BIT_VCO_MUX,
  528. FIELD_PREP(LMK04832_BIT_VCO_MUX,
  529. LMK04832_VAL_VCO_MUX_VCO1));
  530. if (ret)
  531. return ret;
  532. ret = regmap_update_bits(lmk->regmap, LMK04832_REG_FB_CTRL,
  533. LMK04832_BIT_PLL2_RCLK_MUX |
  534. LMK04832_BIT_PLL2_NCLK_MUX,
  535. FIELD_PREP(LMK04832_BIT_PLL2_RCLK_MUX,
  536. LMK04832_VAL_PLL2_RCLK_MUX_OSCIN)|
  537. FIELD_PREP(LMK04832_BIT_PLL2_NCLK_MUX,
  538. LMK04832_VAL_PLL2_NCLK_MUX_PLL2_P));
  539. if (ret)
  540. return ret;
  541. ret = regmap_update_bits(lmk->regmap, LMK04832_REG_PLL2_MISC,
  542. LMK04832_BIT_PLL2_MISC_REF_2X_EN,
  543. LMK04832_BIT_PLL2_MISC_REF_2X_EN);
  544. if (ret)
  545. return ret;
  546. ret = regmap_write(lmk->regmap, LMK04832_REG_PLL2_LD,
  547. FIELD_PREP(LMK04832_BIT_PLL2_LD_MUX,
  548. LMK04832_VAL_PLL2_LD_MUX_PLL2_DLD) |
  549. FIELD_PREP(LMK04832_BIT_PLL2_LD_TYPE,
  550. LMK04832_VAL_PLL2_LD_TYPE_OUT_PP));
  551. if (ret)
  552. return ret;
  553. lmk->vco.init = &init;
  554. return devm_clk_hw_register(lmk->dev, &lmk->vco);
  555. }
  556. static int lmk04832_clkout_set_ddly(struct lmk04832 *lmk, int id)
  557. {
  558. int dclk_div_adj[] = {0, 0, -2, -2, 0, 3, -1, 0};
  559. unsigned int sclkx_y_ddly = 10;
  560. unsigned int dclkx_y_ddly;
  561. unsigned int dclkx_y_div;
  562. unsigned int sysref_ddly;
  563. unsigned int dclkx_y_hs;
  564. unsigned int lsb, msb;
  565. int ret;
  566. ret = regmap_update_bits(lmk->regmap,
  567. LMK04832_REG_CLKOUT_CTRL2(id),
  568. LMK04832_BIT_DCLKX_Y_DDLY_PD,
  569. FIELD_PREP(LMK04832_BIT_DCLKX_Y_DDLY_PD, 0));
  570. if (ret)
  571. return ret;
  572. ret = regmap_read(lmk->regmap, LMK04832_REG_SYSREF_DDLY_LSB, &lsb);
  573. if (ret)
  574. return ret;
  575. ret = regmap_read(lmk->regmap, LMK04832_REG_SYSREF_DDLY_MSB, &msb);
  576. if (ret)
  577. return ret;
  578. sysref_ddly = FIELD_GET(LMK04832_BIT_SYSREF_DDLY_MSB, msb) << 8 | lsb;
  579. ret = regmap_read(lmk->regmap, LMK04832_REG_CLKOUT_CTRL0(id), &lsb);
  580. if (ret)
  581. return ret;
  582. ret = regmap_read(lmk->regmap, LMK04832_REG_CLKOUT_CTRL2(id), &msb);
  583. if (ret)
  584. return ret;
  585. dclkx_y_div = FIELD_GET(LMK04832_BIT_DCLK_DIV_MSB, msb) << 8 | lsb;
  586. ret = regmap_read(lmk->regmap, LMK04832_REG_CLKOUT_CTRL3(id), &lsb);
  587. if (ret)
  588. return ret;
  589. dclkx_y_hs = FIELD_GET(LMK04832_BIT_DCLKX_Y_HS, lsb);
  590. dclkx_y_ddly = sysref_ddly + 1 -
  591. dclk_div_adj[dclkx_y_div < 6 ? dclkx_y_div : 7] -
  592. dclkx_y_hs + sclkx_y_ddly;
  593. if (dclkx_y_ddly < 7 || dclkx_y_ddly > 0x3fff) {
  594. dev_err(lmk->dev, "DCLKX_Y_DDLY out of range (%d)\n",
  595. dclkx_y_ddly);
  596. return -EINVAL;
  597. }
  598. ret = regmap_write(lmk->regmap,
  599. LMK04832_REG_SCLKX_Y_DDLY(id),
  600. FIELD_GET(LMK04832_BIT_SCLKX_Y_DDLY, sclkx_y_ddly));
  601. if (ret)
  602. return ret;
  603. ret = regmap_write(lmk->regmap, LMK04832_REG_CLKOUT_CTRL1(id),
  604. FIELD_GET(0x00ff, dclkx_y_ddly));
  605. if (ret)
  606. return ret;
  607. dev_dbg(lmk->dev, "clkout%02u: sysref_ddly=%u, dclkx_y_ddly=%u, "
  608. "dclk_div_adj=%+d, dclkx_y_hs=%u, sclkx_y_ddly=%u\n",
  609. id, sysref_ddly, dclkx_y_ddly,
  610. dclk_div_adj[dclkx_y_div < 6 ? dclkx_y_div : 7],
  611. dclkx_y_hs, sclkx_y_ddly);
  612. return regmap_update_bits(lmk->regmap, LMK04832_REG_CLKOUT_CTRL2(id),
  613. LMK04832_BIT_DCLKX_Y_DDLY_MSB,
  614. FIELD_GET(0x0300, dclkx_y_ddly));
  615. }
  616. /** lmk04832_sclk_sync - Establish deterministic phase relationship between sclk
  617. * and dclk
  618. *
  619. * @lmk: Reference to the lmk device
  620. *
  621. * The synchronization sequence:
  622. * - in the datasheet https://www.ti.com/lit/ds/symlink/lmk04832.pdf, p.31
  623. * (8.3.3.1 How to enable SYSREF)
  624. * - Ti forum: https://e2e.ti.com/support/clock-and-timing/f/48/t/970972
  625. *
  626. * Returns 0 or negative errno.
  627. */
  628. static int lmk04832_sclk_sync_sequence(struct lmk04832 *lmk)
  629. {
  630. int ret;
  631. int i;
  632. /* 1. (optional) mute all sysref_outputs during synchronization */
  633. /* 2. Enable and write device clock digital delay to applicable clocks */
  634. ret = regmap_update_bits(lmk->regmap, LMK04832_REG_MAIN_PD,
  635. LMK04832_BIT_SYSREF_DDLY_PD,
  636. FIELD_PREP(LMK04832_BIT_SYSREF_DDLY_PD, 0));
  637. if (ret)
  638. return ret;
  639. for (i = 0; i < lmk->clk_data->num; i += 2) {
  640. ret = lmk04832_clkout_set_ddly(lmk, i);
  641. if (ret)
  642. return ret;
  643. }
  644. /*
  645. * 3. Configure SYNC_MODE to SYNC_PIN and SYSREF_MUX to Normal SYNC,
  646. * and clear SYSREF_REQ_EN (see 6.)
  647. */
  648. ret = regmap_update_bits(lmk->regmap, LMK04832_REG_SYSREF_OUT,
  649. LMK04832_BIT_SYSREF_REQ_EN |
  650. LMK04832_BIT_SYSREF_MUX,
  651. FIELD_PREP(LMK04832_BIT_SYSREF_REQ_EN, 0) |
  652. FIELD_PREP(LMK04832_BIT_SYSREF_MUX,
  653. LMK04832_VAL_SYSREF_MUX_NORMAL_SYNC));
  654. if (ret)
  655. return ret;
  656. ret = regmap_update_bits(lmk->regmap, LMK04832_REG_SYNC,
  657. LMK04832_BIT_SYNC_MODE,
  658. FIELD_PREP(LMK04832_BIT_SYNC_MODE,
  659. LMK04832_VAL_SYNC_MODE_ON));
  660. if (ret)
  661. return ret;
  662. /* 4. Clear SYNXC_DISx or applicable clocks and clear SYNC_DISSYSREF */
  663. ret = regmap_write(lmk->regmap, LMK04832_REG_SYNC_DIS, 0x00);
  664. if (ret)
  665. return ret;
  666. /*
  667. * 5. If SCLKX_Y_DDLY != 0, Set SYSREF_CLR=1 for at least 15 clock
  668. * distribution path cycles (VCO cycles), then back to 0. In
  669. * PLL2-only use case, this will be complete in less than one SPI
  670. * transaction. If SYSREF local digital delay is not used, this step
  671. * can be skipped.
  672. */
  673. ret = regmap_update_bits(lmk->regmap, LMK04832_REG_SYNC,
  674. LMK04832_BIT_SYNC_CLR,
  675. FIELD_PREP(LMK04832_BIT_SYNC_CLR, 0x01));
  676. if (ret)
  677. return ret;
  678. ret = regmap_update_bits(lmk->regmap, LMK04832_REG_SYNC,
  679. LMK04832_BIT_SYNC_CLR,
  680. FIELD_PREP(LMK04832_BIT_SYNC_CLR, 0x00));
  681. if (ret)
  682. return ret;
  683. /*
  684. * 6. Toggle SYNC_POL state between inverted and not inverted.
  685. * If you use an external signal on the SYNC pin instead of toggling
  686. * SYNC_POL, make sure that SYSREF_REQ_EN=0 so that the SYSREF_MUX
  687. * does not shift into continuous SYSREF mode.
  688. */
  689. ret = regmap_update_bits(lmk->regmap, LMK04832_REG_SYNC,
  690. LMK04832_BIT_SYNC_POL,
  691. FIELD_PREP(LMK04832_BIT_SYNC_POL, 0x01));
  692. if (ret)
  693. return ret;
  694. ret = regmap_update_bits(lmk->regmap, LMK04832_REG_SYNC,
  695. LMK04832_BIT_SYNC_POL,
  696. FIELD_PREP(LMK04832_BIT_SYNC_POL, 0x00));
  697. if (ret)
  698. return ret;
  699. /* 7. Set all SYNC_DISx=1, including SYNC_DISSYSREF */
  700. ret = regmap_write(lmk->regmap, LMK04832_REG_SYNC_DIS, 0xff);
  701. if (ret)
  702. return ret;
  703. /* 8. Restore state of SYNC_MODE and SYSREF_MUX to desired values */
  704. ret = regmap_update_bits(lmk->regmap, LMK04832_REG_SYSREF_OUT,
  705. LMK04832_BIT_SYSREF_MUX,
  706. FIELD_PREP(LMK04832_BIT_SYSREF_MUX,
  707. lmk->sysref_mux));
  708. if (ret)
  709. return ret;
  710. ret = regmap_update_bits(lmk->regmap, LMK04832_REG_SYNC,
  711. LMK04832_BIT_SYNC_MODE,
  712. FIELD_PREP(LMK04832_BIT_SYNC_MODE,
  713. lmk->sync_mode));
  714. if (ret)
  715. return ret;
  716. /*
  717. * 9. (optional) if SCLKx_y_DIS_MODE was used to mute SYSREF outputs
  718. * during the SYNC event, restore SCLKx_y_DIS_MODE=0 for active state,
  719. * or set SYSREF_GBL_PD=0 if SCLKx_y_DIS_MODE is set to a conditional
  720. * option.
  721. */
  722. /*
  723. * 10. (optional) To reduce power consumption, after the synchronization
  724. * event is complete, DCLKx_y_DDLY_PD=1 and SYSREF_DDLY_PD=1 disable the
  725. * digital delay counters (which are only used immediately after the
  726. * SYNC pulse to delay the output by some number of VCO counts).
  727. */
  728. return ret;
  729. }
  730. static int lmk04832_sclk_is_enabled(struct clk_hw *hw)
  731. {
  732. struct lmk04832 *lmk = container_of(hw, struct lmk04832, sclk);
  733. unsigned int tmp;
  734. int ret;
  735. ret = regmap_read(lmk->regmap, LMK04832_REG_MAIN_PD, &tmp);
  736. if (ret)
  737. return ret;
  738. return FIELD_GET(LMK04832_BIT_SYSREF_PD, tmp);
  739. }
  740. static int lmk04832_sclk_prepare(struct clk_hw *hw)
  741. {
  742. struct lmk04832 *lmk = container_of(hw, struct lmk04832, sclk);
  743. return regmap_update_bits(lmk->regmap, LMK04832_REG_MAIN_PD,
  744. LMK04832_BIT_SYSREF_PD, 0x00);
  745. }
  746. static void lmk04832_sclk_unprepare(struct clk_hw *hw)
  747. {
  748. struct lmk04832 *lmk = container_of(hw, struct lmk04832, sclk);
  749. regmap_update_bits(lmk->regmap, LMK04832_REG_MAIN_PD,
  750. LMK04832_BIT_SYSREF_PD, LMK04832_BIT_SYSREF_PD);
  751. }
  752. static unsigned long lmk04832_sclk_recalc_rate(struct clk_hw *hw,
  753. unsigned long prate)
  754. {
  755. struct lmk04832 *lmk = container_of(hw, struct lmk04832, sclk);
  756. unsigned int sysref_div;
  757. u8 tmp[2];
  758. int ret;
  759. ret = regmap_bulk_read(lmk->regmap, LMK04832_REG_SYSREF_DIV_MSB, &tmp, 2);
  760. if (ret)
  761. return ret;
  762. sysref_div = FIELD_GET(LMK04832_BIT_SYSREF_DIV_MSB, tmp[0]) << 8 |
  763. tmp[1];
  764. return DIV_ROUND_CLOSEST(prate, sysref_div);
  765. }
  766. static long lmk04832_sclk_round_rate(struct clk_hw *hw, unsigned long rate,
  767. unsigned long *prate)
  768. {
  769. struct lmk04832 *lmk = container_of(hw, struct lmk04832, sclk);
  770. unsigned long sclk_rate;
  771. unsigned int sysref_div;
  772. sysref_div = DIV_ROUND_CLOSEST(*prate, rate);
  773. sclk_rate = DIV_ROUND_CLOSEST(*prate, sysref_div);
  774. if (sysref_div < 0x07 || sysref_div > 0x1fff) {
  775. dev_err(lmk->dev, "SYSREF divider out of range\n");
  776. return -EINVAL;
  777. }
  778. if (rate != sclk_rate)
  779. return -EINVAL;
  780. return sclk_rate;
  781. }
  782. static int lmk04832_sclk_set_rate(struct clk_hw *hw, unsigned long rate,
  783. unsigned long prate)
  784. {
  785. struct lmk04832 *lmk = container_of(hw, struct lmk04832, sclk);
  786. unsigned int sysref_div;
  787. int ret;
  788. sysref_div = DIV_ROUND_CLOSEST(prate, rate);
  789. if (sysref_div < 0x07 || sysref_div > 0x1fff) {
  790. dev_err(lmk->dev, "SYSREF divider out of range\n");
  791. return -EINVAL;
  792. }
  793. ret = regmap_write(lmk->regmap, LMK04832_REG_SYSREF_DIV_MSB,
  794. FIELD_GET(0x1f00, sysref_div));
  795. if (ret)
  796. return ret;
  797. ret = regmap_write(lmk->regmap, LMK04832_REG_SYSREF_DIV_LSB,
  798. FIELD_GET(0x00ff, sysref_div));
  799. if (ret)
  800. return ret;
  801. ret = lmk04832_sclk_sync_sequence(lmk);
  802. if (ret)
  803. dev_err(lmk->dev, "SYNC sequence failed\n");
  804. return ret;
  805. }
  806. static const struct clk_ops lmk04832_sclk_ops = {
  807. .is_enabled = lmk04832_sclk_is_enabled,
  808. .prepare = lmk04832_sclk_prepare,
  809. .unprepare = lmk04832_sclk_unprepare,
  810. .recalc_rate = lmk04832_sclk_recalc_rate,
  811. .round_rate = lmk04832_sclk_round_rate,
  812. .set_rate = lmk04832_sclk_set_rate,
  813. };
  814. static int lmk04832_register_sclk(struct lmk04832 *lmk)
  815. {
  816. const char *parent_names[1];
  817. struct clk_init_data init;
  818. int ret;
  819. init.name = "lmk-sclk";
  820. parent_names[0] = clk_hw_get_name(&lmk->vco);
  821. init.parent_names = parent_names;
  822. init.ops = &lmk04832_sclk_ops;
  823. init.flags = CLK_SET_RATE_PARENT;
  824. init.num_parents = 1;
  825. ret = regmap_update_bits(lmk->regmap, LMK04832_REG_SYSREF_OUT,
  826. LMK04832_BIT_SYSREF_MUX,
  827. FIELD_PREP(LMK04832_BIT_SYSREF_MUX,
  828. lmk->sysref_mux));
  829. if (ret)
  830. return ret;
  831. ret = regmap_write(lmk->regmap, LMK04832_REG_SYSREF_DDLY_LSB,
  832. FIELD_GET(0x00ff, lmk->sysref_ddly));
  833. if (ret)
  834. return ret;
  835. ret = regmap_write(lmk->regmap, LMK04832_REG_SYSREF_DDLY_MSB,
  836. FIELD_GET(0x1f00, lmk->sysref_ddly));
  837. if (ret)
  838. return ret;
  839. ret = regmap_write(lmk->regmap, LMK04832_REG_SYSREF_PULSE_CNT,
  840. ilog2(lmk->sysref_pulse_cnt));
  841. if (ret)
  842. return ret;
  843. ret = regmap_update_bits(lmk->regmap, LMK04832_REG_MAIN_PD,
  844. LMK04832_BIT_SYSREF_DDLY_PD |
  845. LMK04832_BIT_SYSREF_PLSR_PD,
  846. FIELD_PREP(LMK04832_BIT_SYSREF_DDLY_PD, 0) |
  847. FIELD_PREP(LMK04832_BIT_SYSREF_PLSR_PD, 0));
  848. if (ret)
  849. return ret;
  850. ret = regmap_write(lmk->regmap, LMK04832_REG_SYNC,
  851. FIELD_PREP(LMK04832_BIT_SYNC_POL, 0) |
  852. FIELD_PREP(LMK04832_BIT_SYNC_EN, 1) |
  853. FIELD_PREP(LMK04832_BIT_SYNC_MODE, lmk->sync_mode));
  854. if (ret)
  855. return ret;
  856. ret = regmap_write(lmk->regmap, LMK04832_REG_SYNC_DIS, 0xff);
  857. if (ret)
  858. return ret;
  859. lmk->sclk.init = &init;
  860. return devm_clk_hw_register(lmk->dev, &lmk->sclk);
  861. }
  862. static int lmk04832_dclk_is_enabled(struct clk_hw *hw)
  863. {
  864. struct lmk_dclk *dclk = container_of(hw, struct lmk_dclk, hw);
  865. struct lmk04832 *lmk = dclk->lmk;
  866. unsigned int tmp;
  867. int ret;
  868. ret = regmap_read(lmk->regmap, LMK04832_REG_CLKOUT_CTRL3(dclk->id),
  869. &tmp);
  870. if (ret)
  871. return ret;
  872. return !FIELD_GET(LMK04832_BIT_DCLKX_Y_PD, tmp);
  873. }
  874. static int lmk04832_dclk_prepare(struct clk_hw *hw)
  875. {
  876. struct lmk_dclk *dclk = container_of(hw, struct lmk_dclk, hw);
  877. struct lmk04832 *lmk = dclk->lmk;
  878. return regmap_update_bits(lmk->regmap,
  879. LMK04832_REG_CLKOUT_CTRL3(dclk->id),
  880. LMK04832_BIT_DCLKX_Y_PD, 0x00);
  881. }
  882. static void lmk04832_dclk_unprepare(struct clk_hw *hw)
  883. {
  884. struct lmk_dclk *dclk = container_of(hw, struct lmk_dclk, hw);
  885. struct lmk04832 *lmk = dclk->lmk;
  886. regmap_update_bits(lmk->regmap,
  887. LMK04832_REG_CLKOUT_CTRL3(dclk->id),
  888. LMK04832_BIT_DCLKX_Y_PD, 0xff);
  889. }
  890. static unsigned long lmk04832_dclk_recalc_rate(struct clk_hw *hw,
  891. unsigned long prate)
  892. {
  893. struct lmk_dclk *dclk = container_of(hw, struct lmk_dclk, hw);
  894. struct lmk04832 *lmk = dclk->lmk;
  895. unsigned int dclk_div;
  896. unsigned int lsb, msb;
  897. unsigned long rate;
  898. int ret;
  899. ret = regmap_read(lmk->regmap, LMK04832_REG_CLKOUT_CTRL0(dclk->id),
  900. &lsb);
  901. if (ret)
  902. return ret;
  903. ret = regmap_read(lmk->regmap, LMK04832_REG_CLKOUT_CTRL2(dclk->id),
  904. &msb);
  905. if (ret)
  906. return ret;
  907. dclk_div = FIELD_GET(LMK04832_BIT_DCLK_DIV_MSB, msb) << 8 | lsb;
  908. rate = DIV_ROUND_CLOSEST(prate, dclk_div);
  909. return rate;
  910. };
  911. static long lmk04832_dclk_round_rate(struct clk_hw *hw, unsigned long rate,
  912. unsigned long *prate)
  913. {
  914. struct lmk_dclk *dclk = container_of(hw, struct lmk_dclk, hw);
  915. struct lmk04832 *lmk = dclk->lmk;
  916. unsigned long dclk_rate;
  917. unsigned int dclk_div;
  918. dclk_div = DIV_ROUND_CLOSEST(*prate, rate);
  919. dclk_rate = DIV_ROUND_CLOSEST(*prate, dclk_div);
  920. if (dclk_div < 1 || dclk_div > 0x3ff) {
  921. dev_err(lmk->dev, "%s_div out of range\n", clk_hw_get_name(hw));
  922. return -EINVAL;
  923. }
  924. if (rate != dclk_rate)
  925. return -EINVAL;
  926. return dclk_rate;
  927. };
  928. static int lmk04832_dclk_set_rate(struct clk_hw *hw, unsigned long rate,
  929. unsigned long prate)
  930. {
  931. struct lmk_dclk *dclk = container_of(hw, struct lmk_dclk, hw);
  932. struct lmk04832 *lmk = dclk->lmk;
  933. unsigned int dclk_div;
  934. int ret;
  935. dclk_div = DIV_ROUND_CLOSEST(prate, rate);
  936. if (dclk_div > 0x3ff) {
  937. dev_err(lmk->dev, "%s_div out of range\n", clk_hw_get_name(hw));
  938. return -EINVAL;
  939. }
  940. /* Enable Duty Cycle Correction */
  941. if (dclk_div == 1) {
  942. ret = regmap_update_bits(lmk->regmap,
  943. LMK04832_REG_CLKOUT_CTRL3(dclk->id),
  944. LMK04832_BIT_DCLKX_Y_DCC,
  945. FIELD_PREP(LMK04832_BIT_DCLKX_Y_DCC, 1));
  946. if (ret)
  947. return ret;
  948. }
  949. /*
  950. * While using Divide-by-2 or Divide-by-3 for DCLK_X_Y_DIV, SYNC
  951. * procedure requires to first program Divide-by-4 and then back to
  952. * Divide-by-2 or Divide-by-3 before doing SYNC.
  953. */
  954. if (dclk_div == 2 || dclk_div == 3) {
  955. ret = regmap_update_bits(lmk->regmap,
  956. LMK04832_REG_CLKOUT_CTRL2(dclk->id),
  957. LMK04832_BIT_DCLK_DIV_MSB, 0x00);
  958. if (ret)
  959. return ret;
  960. ret = regmap_write(lmk->regmap,
  961. LMK04832_REG_CLKOUT_CTRL0(dclk->id), 0x04);
  962. if (ret)
  963. return ret;
  964. }
  965. ret = regmap_write(lmk->regmap, LMK04832_REG_CLKOUT_CTRL0(dclk->id),
  966. FIELD_GET(0x0ff, dclk_div));
  967. if (ret)
  968. return ret;
  969. ret = regmap_update_bits(lmk->regmap,
  970. LMK04832_REG_CLKOUT_CTRL2(dclk->id),
  971. LMK04832_BIT_DCLK_DIV_MSB,
  972. FIELD_GET(0x300, dclk_div));
  973. if (ret)
  974. return ret;
  975. ret = lmk04832_sclk_sync_sequence(lmk);
  976. if (ret)
  977. dev_err(lmk->dev, "SYNC sequence failed\n");
  978. return ret;
  979. };
  980. static const struct clk_ops lmk04832_dclk_ops = {
  981. .is_enabled = lmk04832_dclk_is_enabled,
  982. .prepare = lmk04832_dclk_prepare,
  983. .unprepare = lmk04832_dclk_unprepare,
  984. .recalc_rate = lmk04832_dclk_recalc_rate,
  985. .round_rate = lmk04832_dclk_round_rate,
  986. .set_rate = lmk04832_dclk_set_rate,
  987. };
  988. static int lmk04832_clkout_is_enabled(struct clk_hw *hw)
  989. {
  990. struct lmk_clkout *clkout = container_of(hw, struct lmk_clkout, hw);
  991. struct lmk04832 *lmk = clkout->lmk;
  992. unsigned int clkoutx_y_pd;
  993. unsigned int sclkx_y_pd;
  994. unsigned int tmp;
  995. u32 enabled;
  996. int ret;
  997. u8 fmt;
  998. ret = regmap_read(lmk->regmap, LMK04832_REG_CLKOUT_CTRL2(clkout->id),
  999. &clkoutx_y_pd);
  1000. if (ret)
  1001. return ret;
  1002. enabled = !FIELD_GET(LMK04832_BIT_CLKOUTX_Y_PD, clkoutx_y_pd);
  1003. ret = regmap_read(lmk->regmap, LMK04832_REG_CLKOUT_SRC_MUX(clkout->id),
  1004. &tmp);
  1005. if (ret)
  1006. return ret;
  1007. if (FIELD_GET(LMK04832_BIT_CLKOUT_SRC_MUX, tmp)) {
  1008. ret = regmap_read(lmk->regmap,
  1009. LMK04832_REG_CLKOUT_CTRL4(clkout->id),
  1010. &sclkx_y_pd);
  1011. if (ret)
  1012. return ret;
  1013. enabled = enabled && !FIELD_GET(LMK04832_BIT_SCLK_PD, sclkx_y_pd);
  1014. }
  1015. ret = regmap_read(lmk->regmap, LMK04832_REG_CLKOUT_FMT(clkout->id),
  1016. &tmp);
  1017. if (ret)
  1018. return ret;
  1019. if (clkout->id % 2)
  1020. fmt = FIELD_GET(0xf0, tmp);
  1021. else
  1022. fmt = FIELD_GET(0x0f, tmp);
  1023. return enabled && !fmt;
  1024. }
  1025. static int lmk04832_clkout_prepare(struct clk_hw *hw)
  1026. {
  1027. struct lmk_clkout *clkout = container_of(hw, struct lmk_clkout, hw);
  1028. struct lmk04832 *lmk = clkout->lmk;
  1029. unsigned int tmp;
  1030. int ret;
  1031. if (clkout->format == LMK04832_VAL_CLKOUT_FMT_POWERDOWN)
  1032. dev_err(lmk->dev, "prepared %s but format is powerdown\n",
  1033. clk_hw_get_name(hw));
  1034. ret = regmap_update_bits(lmk->regmap,
  1035. LMK04832_REG_CLKOUT_CTRL2(clkout->id),
  1036. LMK04832_BIT_CLKOUTX_Y_PD, 0x00);
  1037. if (ret)
  1038. return ret;
  1039. ret = regmap_read(lmk->regmap, LMK04832_REG_CLKOUT_SRC_MUX(clkout->id),
  1040. &tmp);
  1041. if (ret)
  1042. return ret;
  1043. if (FIELD_GET(LMK04832_BIT_CLKOUT_SRC_MUX, tmp)) {
  1044. ret = regmap_update_bits(lmk->regmap,
  1045. LMK04832_REG_CLKOUT_CTRL4(clkout->id),
  1046. LMK04832_BIT_SCLK_PD, 0x00);
  1047. if (ret)
  1048. return ret;
  1049. }
  1050. return regmap_update_bits(lmk->regmap,
  1051. LMK04832_REG_CLKOUT_FMT(clkout->id),
  1052. LMK04832_BIT_CLKOUT_FMT(clkout->id),
  1053. clkout->format << 4 * (clkout->id % 2));
  1054. }
  1055. static void lmk04832_clkout_unprepare(struct clk_hw *hw)
  1056. {
  1057. struct lmk_clkout *clkout = container_of(hw, struct lmk_clkout, hw);
  1058. struct lmk04832 *lmk = clkout->lmk;
  1059. regmap_update_bits(lmk->regmap, LMK04832_REG_CLKOUT_FMT(clkout->id),
  1060. LMK04832_BIT_CLKOUT_FMT(clkout->id),
  1061. 0x00);
  1062. }
  1063. static int lmk04832_clkout_set_parent(struct clk_hw *hw, uint8_t index)
  1064. {
  1065. struct lmk_clkout *clkout = container_of(hw, struct lmk_clkout, hw);
  1066. struct lmk04832 *lmk = clkout->lmk;
  1067. return regmap_update_bits(lmk->regmap,
  1068. LMK04832_REG_CLKOUT_SRC_MUX(clkout->id),
  1069. LMK04832_BIT_CLKOUT_SRC_MUX,
  1070. FIELD_PREP(LMK04832_BIT_CLKOUT_SRC_MUX,
  1071. index));
  1072. }
  1073. static uint8_t lmk04832_clkout_get_parent(struct clk_hw *hw)
  1074. {
  1075. struct lmk_clkout *clkout = container_of(hw, struct lmk_clkout, hw);
  1076. struct lmk04832 *lmk = clkout->lmk;
  1077. unsigned int tmp;
  1078. int ret;
  1079. ret = regmap_read(lmk->regmap, LMK04832_REG_CLKOUT_SRC_MUX(clkout->id),
  1080. &tmp);
  1081. if (ret)
  1082. return ret;
  1083. return FIELD_GET(LMK04832_BIT_CLKOUT_SRC_MUX, tmp);
  1084. }
  1085. static const struct clk_ops lmk04832_clkout_ops = {
  1086. .is_enabled = lmk04832_clkout_is_enabled,
  1087. .prepare = lmk04832_clkout_prepare,
  1088. .unprepare = lmk04832_clkout_unprepare,
  1089. .set_parent = lmk04832_clkout_set_parent,
  1090. .get_parent = lmk04832_clkout_get_parent,
  1091. };
  1092. static int lmk04832_register_clkout(struct lmk04832 *lmk, const int num)
  1093. {
  1094. char name[] = "lmk-clkoutXX";
  1095. char dclk_name[] = "lmk-dclkXX_YY";
  1096. const char *parent_names[2];
  1097. struct clk_init_data init;
  1098. int dclk_num = num / 2;
  1099. int ret;
  1100. if (num % 2 == 0) {
  1101. sprintf(dclk_name, "lmk-dclk%02d_%02d", num, num + 1);
  1102. init.name = dclk_name;
  1103. parent_names[0] = clk_hw_get_name(&lmk->vco);
  1104. init.ops = &lmk04832_dclk_ops;
  1105. init.flags = CLK_SET_RATE_PARENT;
  1106. init.num_parents = 1;
  1107. lmk->dclk[dclk_num].id = num;
  1108. lmk->dclk[dclk_num].lmk = lmk;
  1109. lmk->dclk[dclk_num].hw.init = &init;
  1110. ret = devm_clk_hw_register(lmk->dev, &lmk->dclk[dclk_num].hw);
  1111. if (ret)
  1112. return ret;
  1113. } else {
  1114. sprintf(dclk_name, "lmk-dclk%02d_%02d", num - 1, num);
  1115. }
  1116. if (of_property_read_string_index(lmk->dev->of_node,
  1117. "clock-output-names",
  1118. num, &init.name)) {
  1119. sprintf(name, "lmk-clkout%02d", num);
  1120. init.name = name;
  1121. }
  1122. parent_names[0] = dclk_name;
  1123. parent_names[1] = clk_hw_get_name(&lmk->sclk);
  1124. init.parent_names = parent_names;
  1125. init.ops = &lmk04832_clkout_ops;
  1126. init.flags = CLK_SET_RATE_PARENT | CLK_SET_RATE_NO_REPARENT;
  1127. init.num_parents = ARRAY_SIZE(parent_names);
  1128. lmk->clkout[num].id = num;
  1129. lmk->clkout[num].lmk = lmk;
  1130. lmk->clkout[num].hw.init = &init;
  1131. lmk->clk_data->hws[num] = &lmk->clkout[num].hw;
  1132. /* Set initial parent */
  1133. regmap_update_bits(lmk->regmap,
  1134. LMK04832_REG_CLKOUT_SRC_MUX(num),
  1135. LMK04832_BIT_CLKOUT_SRC_MUX,
  1136. FIELD_PREP(LMK04832_BIT_CLKOUT_SRC_MUX,
  1137. lmk->clkout[num].sysref));
  1138. return devm_clk_hw_register(lmk->dev, &lmk->clkout[num].hw);
  1139. }
  1140. static int lmk04832_set_spi_rdbk(const struct lmk04832 *lmk, const int rdbk_pin)
  1141. {
  1142. int reg;
  1143. int ret;
  1144. dev_info(lmk->dev, "setting up 4-wire mode\n");
  1145. ret = regmap_write(lmk->regmap, LMK04832_REG_RST3W,
  1146. LMK04832_BIT_SPI_3WIRE_DIS);
  1147. if (ret)
  1148. return ret;
  1149. switch (rdbk_pin) {
  1150. case RDBK_CLKIN_SEL0:
  1151. reg = LMK04832_REG_CLKIN_SEL0;
  1152. break;
  1153. case RDBK_CLKIN_SEL1:
  1154. reg = LMK04832_REG_CLKIN_SEL1;
  1155. break;
  1156. case RDBK_RESET:
  1157. reg = LMK04832_REG_CLKIN_RST;
  1158. break;
  1159. default:
  1160. return -EINVAL;
  1161. }
  1162. return regmap_write(lmk->regmap, reg,
  1163. FIELD_PREP(LMK04832_BIT_CLKIN_SEL_MUX,
  1164. LMK04832_VAL_CLKIN_SEL_MUX_SPI_RDBK) |
  1165. FIELD_PREP(LMK04832_BIT_CLKIN_SEL_TYPE,
  1166. LMK04832_VAL_CLKIN_SEL_TYPE_OUT));
  1167. }
  1168. static int lmk04832_probe(struct spi_device *spi)
  1169. {
  1170. const struct lmk04832_device_info *info;
  1171. int rdbk_pin = RDBK_CLKIN_SEL1;
  1172. struct device_node *child;
  1173. struct lmk04832 *lmk;
  1174. u8 tmp[3];
  1175. int ret;
  1176. int i;
  1177. info = &lmk04832_device_info[spi_get_device_id(spi)->driver_data];
  1178. lmk = devm_kzalloc(&spi->dev, sizeof(struct lmk04832), GFP_KERNEL);
  1179. if (!lmk)
  1180. return -ENOMEM;
  1181. lmk->dev = &spi->dev;
  1182. lmk->oscin = devm_clk_get(lmk->dev, "oscin");
  1183. if (IS_ERR(lmk->oscin)) {
  1184. dev_err(lmk->dev, "failed to get oscin clock\n");
  1185. return PTR_ERR(lmk->oscin);
  1186. }
  1187. ret = clk_prepare_enable(lmk->oscin);
  1188. if (ret)
  1189. return ret;
  1190. lmk->reset_gpio = devm_gpiod_get_optional(&spi->dev, "reset",
  1191. GPIOD_OUT_LOW);
  1192. lmk->dclk = devm_kcalloc(lmk->dev, info->num_channels >> 1,
  1193. sizeof(struct lmk_dclk), GFP_KERNEL);
  1194. if (!lmk->dclk) {
  1195. ret = -ENOMEM;
  1196. goto err_disable_oscin;
  1197. }
  1198. lmk->clkout = devm_kcalloc(lmk->dev, info->num_channels,
  1199. sizeof(*lmk->clkout), GFP_KERNEL);
  1200. if (!lmk->clkout) {
  1201. ret = -ENOMEM;
  1202. goto err_disable_oscin;
  1203. }
  1204. lmk->clk_data = devm_kzalloc(lmk->dev, struct_size(lmk->clk_data, hws,
  1205. info->num_channels),
  1206. GFP_KERNEL);
  1207. if (!lmk->clk_data) {
  1208. ret = -ENOMEM;
  1209. goto err_disable_oscin;
  1210. }
  1211. device_property_read_u32(lmk->dev, "ti,vco-hz", &lmk->vco_rate);
  1212. lmk->sysref_ddly = 8;
  1213. device_property_read_u32(lmk->dev, "ti,sysref-ddly", &lmk->sysref_ddly);
  1214. lmk->sysref_mux = LMK04832_VAL_SYSREF_MUX_CONTINUOUS;
  1215. device_property_read_u32(lmk->dev, "ti,sysref-mux",
  1216. &lmk->sysref_mux);
  1217. lmk->sync_mode = LMK04832_VAL_SYNC_MODE_OFF;
  1218. device_property_read_u32(lmk->dev, "ti,sync-mode",
  1219. &lmk->sync_mode);
  1220. lmk->sysref_pulse_cnt = 4;
  1221. device_property_read_u32(lmk->dev, "ti,sysref-pulse-count",
  1222. &lmk->sysref_pulse_cnt);
  1223. for_each_child_of_node(lmk->dev->of_node, child) {
  1224. int reg;
  1225. ret = of_property_read_u32(child, "reg", &reg);
  1226. if (ret) {
  1227. dev_err(lmk->dev, "missing reg property in child: %s\n",
  1228. child->full_name);
  1229. of_node_put(child);
  1230. goto err_disable_oscin;
  1231. }
  1232. of_property_read_u32(child, "ti,clkout-fmt",
  1233. &lmk->clkout[reg].format);
  1234. if (lmk->clkout[reg].format >= 0x0a && reg % 2 == 0
  1235. && reg != 8 && reg != 10)
  1236. dev_err(lmk->dev, "invalid format for clkout%02d\n",
  1237. reg);
  1238. lmk->clkout[reg].sysref =
  1239. of_property_read_bool(child, "ti,clkout-sysref");
  1240. }
  1241. lmk->regmap = devm_regmap_init_spi(spi, &regmap_config);
  1242. if (IS_ERR(lmk->regmap)) {
  1243. dev_err(lmk->dev, "%s: regmap allocation failed: %ld\n",
  1244. __func__, PTR_ERR(lmk->regmap));
  1245. ret = PTR_ERR(lmk->regmap);
  1246. goto err_disable_oscin;
  1247. }
  1248. regmap_write(lmk->regmap, LMK04832_REG_RST3W, LMK04832_BIT_RESET);
  1249. if (!(spi->mode & SPI_3WIRE)) {
  1250. device_property_read_u32(lmk->dev, "ti,spi-4wire-rdbk",
  1251. &rdbk_pin);
  1252. ret = lmk04832_set_spi_rdbk(lmk, rdbk_pin);
  1253. if (ret)
  1254. goto err_disable_oscin;
  1255. }
  1256. regmap_bulk_read(lmk->regmap, LMK04832_REG_ID_PROD_MSB, &tmp, 3);
  1257. if ((tmp[0] << 8 | tmp[1]) != info->pid || tmp[2] != info->maskrev) {
  1258. dev_err(lmk->dev, "unsupported device type: pid 0x%04x, maskrev 0x%02x\n",
  1259. tmp[0] << 8 | tmp[1], tmp[2]);
  1260. ret = -EINVAL;
  1261. goto err_disable_oscin;
  1262. }
  1263. ret = lmk04832_register_vco(lmk);
  1264. if (ret) {
  1265. dev_err(lmk->dev, "failed to init device clock path\n");
  1266. goto err_disable_oscin;
  1267. }
  1268. if (lmk->vco_rate) {
  1269. dev_info(lmk->dev, "setting VCO rate to %u Hz\n", lmk->vco_rate);
  1270. ret = clk_set_rate(lmk->vco.clk, lmk->vco_rate);
  1271. if (ret) {
  1272. dev_err(lmk->dev, "failed to set VCO rate\n");
  1273. goto err_disable_vco;
  1274. }
  1275. }
  1276. ret = lmk04832_register_sclk(lmk);
  1277. if (ret) {
  1278. dev_err(lmk->dev, "failed to init SYNC/SYSREF clock path\n");
  1279. goto err_disable_vco;
  1280. }
  1281. for (i = 0; i < info->num_channels; i++) {
  1282. ret = lmk04832_register_clkout(lmk, i);
  1283. if (ret) {
  1284. dev_err(lmk->dev, "failed to register clk %d\n", i);
  1285. goto err_disable_vco;
  1286. }
  1287. }
  1288. lmk->clk_data->num = info->num_channels;
  1289. ret = of_clk_add_hw_provider(lmk->dev->of_node, of_clk_hw_onecell_get,
  1290. lmk->clk_data);
  1291. if (ret) {
  1292. dev_err(lmk->dev, "failed to add provider (%d)\n", ret);
  1293. goto err_disable_vco;
  1294. }
  1295. spi_set_drvdata(spi, lmk);
  1296. return 0;
  1297. err_disable_vco:
  1298. clk_disable_unprepare(lmk->vco.clk);
  1299. err_disable_oscin:
  1300. clk_disable_unprepare(lmk->oscin);
  1301. return ret;
  1302. }
  1303. static void lmk04832_remove(struct spi_device *spi)
  1304. {
  1305. struct lmk04832 *lmk = spi_get_drvdata(spi);
  1306. clk_disable_unprepare(lmk->oscin);
  1307. of_clk_del_provider(spi->dev.of_node);
  1308. }
  1309. static const struct spi_device_id lmk04832_id[] = {
  1310. { "lmk04832", LMK04832 },
  1311. {}
  1312. };
  1313. MODULE_DEVICE_TABLE(spi, lmk04832_id);
  1314. static const struct of_device_id lmk04832_of_id[] = {
  1315. { .compatible = "ti,lmk04832" },
  1316. {}
  1317. };
  1318. MODULE_DEVICE_TABLE(of, lmk04832_of_id);
  1319. static struct spi_driver lmk04832_driver = {
  1320. .driver = {
  1321. .name = "lmk04832",
  1322. .of_match_table = lmk04832_of_id,
  1323. },
  1324. .probe = lmk04832_probe,
  1325. .remove = lmk04832_remove,
  1326. .id_table = lmk04832_id,
  1327. };
  1328. module_spi_driver(lmk04832_driver);
  1329. MODULE_AUTHOR("Liam Beguin <[email protected]>");
  1330. MODULE_DESCRIPTION("Texas Instruments LMK04832");
  1331. MODULE_LICENSE("GPL v2");