12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643 |
- // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
- /*
- * Copyright (C) 2017-2022 Jason A. Donenfeld <[email protected]>. All Rights Reserved.
- * Copyright Matt Mackall <[email protected]>, 2003, 2004, 2005
- * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All rights reserved.
- *
- * This driver produces cryptographically secure pseudorandom data. It is divided
- * into roughly six sections, each with a section header:
- *
- * - Initialization and readiness waiting.
- * - Fast key erasure RNG, the "crng".
- * - Entropy accumulation and extraction routines.
- * - Entropy collection routines.
- * - Userspace reader/writer interfaces.
- * - Sysctl interface.
- *
- * The high level overview is that there is one input pool, into which
- * various pieces of data are hashed. Prior to initialization, some of that
- * data is then "credited" as having a certain number of bits of entropy.
- * When enough bits of entropy are available, the hash is finalized and
- * handed as a key to a stream cipher that expands it indefinitely for
- * various consumers. This key is periodically refreshed as the various
- * entropy collectors, described below, add data to the input pool.
- */
- #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
- #include <linux/utsname.h>
- #include <linux/module.h>
- #include <linux/kernel.h>
- #include <linux/major.h>
- #include <linux/string.h>
- #include <linux/fcntl.h>
- #include <linux/slab.h>
- #include <linux/random.h>
- #include <linux/poll.h>
- #include <linux/init.h>
- #include <linux/fs.h>
- #include <linux/blkdev.h>
- #include <linux/interrupt.h>
- #include <linux/mm.h>
- #include <linux/nodemask.h>
- #include <linux/spinlock.h>
- #include <linux/kthread.h>
- #include <linux/percpu.h>
- #include <linux/ptrace.h>
- #include <linux/workqueue.h>
- #include <linux/irq.h>
- #include <linux/ratelimit.h>
- #include <linux/syscalls.h>
- #include <linux/completion.h>
- #include <linux/uuid.h>
- #include <linux/uaccess.h>
- #include <linux/suspend.h>
- #include <linux/siphash.h>
- #include <crypto/chacha.h>
- #include <crypto/blake2s.h>
- #include <asm/processor.h>
- #include <asm/irq.h>
- #include <asm/irq_regs.h>
- #include <asm/io.h>
- /*********************************************************************
- *
- * Initialization and readiness waiting.
- *
- * Much of the RNG infrastructure is devoted to various dependencies
- * being able to wait until the RNG has collected enough entropy and
- * is ready for safe consumption.
- *
- *********************************************************************/
- /*
- * crng_init is protected by base_crng->lock, and only increases
- * its value (from empty->early->ready).
- */
- static enum {
- CRNG_EMPTY = 0, /* Little to no entropy collected */
- CRNG_EARLY = 1, /* At least POOL_EARLY_BITS collected */
- CRNG_READY = 2 /* Fully initialized with POOL_READY_BITS collected */
- } crng_init __read_mostly = CRNG_EMPTY;
- static DEFINE_STATIC_KEY_FALSE(crng_is_ready);
- #define crng_ready() (static_branch_likely(&crng_is_ready) || crng_init >= CRNG_READY)
- /* Various types of waiters for crng_init->CRNG_READY transition. */
- static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
- static struct fasync_struct *fasync;
- /* Control how we warn userspace. */
- static struct ratelimit_state urandom_warning =
- RATELIMIT_STATE_INIT_FLAGS("urandom_warning", HZ, 3, RATELIMIT_MSG_ON_RELEASE);
- static int ratelimit_disable __read_mostly =
- IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM);
- module_param_named(ratelimit_disable, ratelimit_disable, int, 0644);
- MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression");
- /*
- * Returns whether or not the input pool has been seeded and thus guaranteed
- * to supply cryptographically secure random numbers. This applies to: the
- * /dev/urandom device, the get_random_bytes function, and the get_random_{u8,
- * u16,u32,u64,long} family of functions.
- *
- * Returns: true if the input pool has been seeded.
- * false if the input pool has not been seeded.
- */
- bool rng_is_initialized(void)
- {
- return crng_ready();
- }
- EXPORT_SYMBOL(rng_is_initialized);
- static void __cold crng_set_ready(struct work_struct *work)
- {
- static_branch_enable(&crng_is_ready);
- }
- /* Used by wait_for_random_bytes(), and considered an entropy collector, below. */
- static void try_to_generate_entropy(void);
- /*
- * Wait for the input pool to be seeded and thus guaranteed to supply
- * cryptographically secure random numbers. This applies to: the /dev/urandom
- * device, the get_random_bytes function, and the get_random_{u8,u16,u32,u64,
- * int,long} family of functions. Using any of these functions without first
- * calling this function forfeits the guarantee of security.
- *
- * Returns: 0 if the input pool has been seeded.
- * -ERESTARTSYS if the function was interrupted by a signal.
- */
- int wait_for_random_bytes(void)
- {
- while (!crng_ready()) {
- int ret;
- try_to_generate_entropy();
- ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ);
- if (ret)
- return ret > 0 ? 0 : ret;
- }
- return 0;
- }
- EXPORT_SYMBOL(wait_for_random_bytes);
- #define warn_unseeded_randomness() \
- if (IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM) && !crng_ready()) \
- printk_deferred(KERN_NOTICE "random: %s called from %pS with crng_init=%d\n", \
- __func__, (void *)_RET_IP_, crng_init)
- /*********************************************************************
- *
- * Fast key erasure RNG, the "crng".
- *
- * These functions expand entropy from the entropy extractor into
- * long streams for external consumption using the "fast key erasure"
- * RNG described at <https://blog.cr.yp.to/20170723-random.html>.
- *
- * There are a few exported interfaces for use by other drivers:
- *
- * void get_random_bytes(void *buf, size_t len)
- * u8 get_random_u8()
- * u16 get_random_u16()
- * u32 get_random_u32()
- * u32 get_random_u32_below(u32 ceil)
- * u32 get_random_u32_above(u32 floor)
- * u32 get_random_u32_inclusive(u32 floor, u32 ceil)
- * u64 get_random_u64()
- * unsigned long get_random_long()
- *
- * These interfaces will return the requested number of random bytes
- * into the given buffer or as a return value. This is equivalent to
- * a read from /dev/urandom. The u8, u16, u32, u64, long family of
- * functions may be higher performance for one-off random integers,
- * because they do a bit of buffering and do not invoke reseeding
- * until the buffer is emptied.
- *
- *********************************************************************/
- enum {
- CRNG_RESEED_START_INTERVAL = HZ,
- CRNG_RESEED_INTERVAL = 60 * HZ
- };
- static struct {
- u8 key[CHACHA_KEY_SIZE] __aligned(__alignof__(long));
- unsigned long birth;
- unsigned long generation;
- spinlock_t lock;
- } base_crng = {
- .lock = __SPIN_LOCK_UNLOCKED(base_crng.lock)
- };
- struct crng {
- u8 key[CHACHA_KEY_SIZE];
- unsigned long generation;
- local_lock_t lock;
- };
- static DEFINE_PER_CPU(struct crng, crngs) = {
- .generation = ULONG_MAX,
- .lock = INIT_LOCAL_LOCK(crngs.lock),
- };
- /* Used by crng_reseed() and crng_make_state() to extract a new seed from the input pool. */
- static void extract_entropy(void *buf, size_t len);
- /* This extracts a new crng key from the input pool. */
- static void crng_reseed(void)
- {
- unsigned long flags;
- unsigned long next_gen;
- u8 key[CHACHA_KEY_SIZE];
- extract_entropy(key, sizeof(key));
- /*
- * We copy the new key into the base_crng, overwriting the old one,
- * and update the generation counter. We avoid hitting ULONG_MAX,
- * because the per-cpu crngs are initialized to ULONG_MAX, so this
- * forces new CPUs that come online to always initialize.
- */
- spin_lock_irqsave(&base_crng.lock, flags);
- memcpy(base_crng.key, key, sizeof(base_crng.key));
- next_gen = base_crng.generation + 1;
- if (next_gen == ULONG_MAX)
- ++next_gen;
- WRITE_ONCE(base_crng.generation, next_gen);
- WRITE_ONCE(base_crng.birth, jiffies);
- if (!static_branch_likely(&crng_is_ready))
- crng_init = CRNG_READY;
- spin_unlock_irqrestore(&base_crng.lock, flags);
- memzero_explicit(key, sizeof(key));
- }
- /*
- * This generates a ChaCha block using the provided key, and then
- * immediately overwrites that key with half the block. It returns
- * the resultant ChaCha state to the user, along with the second
- * half of the block containing 32 bytes of random data that may
- * be used; random_data_len may not be greater than 32.
- *
- * The returned ChaCha state contains within it a copy of the old
- * key value, at index 4, so the state should always be zeroed out
- * immediately after using in order to maintain forward secrecy.
- * If the state cannot be erased in a timely manner, then it is
- * safer to set the random_data parameter to &chacha_state[4] so
- * that this function overwrites it before returning.
- */
- static void crng_fast_key_erasure(u8 key[CHACHA_KEY_SIZE],
- u32 chacha_state[CHACHA_STATE_WORDS],
- u8 *random_data, size_t random_data_len)
- {
- u8 first_block[CHACHA_BLOCK_SIZE];
- BUG_ON(random_data_len > 32);
- chacha_init_consts(chacha_state);
- memcpy(&chacha_state[4], key, CHACHA_KEY_SIZE);
- memset(&chacha_state[12], 0, sizeof(u32) * 4);
- chacha20_block(chacha_state, first_block);
- memcpy(key, first_block, CHACHA_KEY_SIZE);
- memcpy(random_data, first_block + CHACHA_KEY_SIZE, random_data_len);
- memzero_explicit(first_block, sizeof(first_block));
- }
- /*
- * Return the interval until the next reseeding, which is normally
- * CRNG_RESEED_INTERVAL, but during early boot, it is at an interval
- * proportional to the uptime.
- */
- static unsigned int crng_reseed_interval(void)
- {
- static bool early_boot = true;
- if (unlikely(READ_ONCE(early_boot))) {
- time64_t uptime = ktime_get_seconds();
- if (uptime >= CRNG_RESEED_INTERVAL / HZ * 2)
- WRITE_ONCE(early_boot, false);
- else
- return max_t(unsigned int, CRNG_RESEED_START_INTERVAL,
- (unsigned int)uptime / 2 * HZ);
- }
- return CRNG_RESEED_INTERVAL;
- }
- /*
- * This function returns a ChaCha state that you may use for generating
- * random data. It also returns up to 32 bytes on its own of random data
- * that may be used; random_data_len may not be greater than 32.
- */
- static void crng_make_state(u32 chacha_state[CHACHA_STATE_WORDS],
- u8 *random_data, size_t random_data_len)
- {
- unsigned long flags;
- struct crng *crng;
- BUG_ON(random_data_len > 32);
- /*
- * For the fast path, we check whether we're ready, unlocked first, and
- * then re-check once locked later. In the case where we're really not
- * ready, we do fast key erasure with the base_crng directly, extracting
- * when crng_init is CRNG_EMPTY.
- */
- if (!crng_ready()) {
- bool ready;
- spin_lock_irqsave(&base_crng.lock, flags);
- ready = crng_ready();
- if (!ready) {
- if (crng_init == CRNG_EMPTY)
- extract_entropy(base_crng.key, sizeof(base_crng.key));
- crng_fast_key_erasure(base_crng.key, chacha_state,
- random_data, random_data_len);
- }
- spin_unlock_irqrestore(&base_crng.lock, flags);
- if (!ready)
- return;
- }
- /*
- * If the base_crng is old enough, we reseed, which in turn bumps the
- * generation counter that we check below.
- */
- if (unlikely(time_is_before_jiffies(READ_ONCE(base_crng.birth) + crng_reseed_interval())))
- crng_reseed();
- local_lock_irqsave(&crngs.lock, flags);
- crng = raw_cpu_ptr(&crngs);
- /*
- * If our per-cpu crng is older than the base_crng, then it means
- * somebody reseeded the base_crng. In that case, we do fast key
- * erasure on the base_crng, and use its output as the new key
- * for our per-cpu crng. This brings us up to date with base_crng.
- */
- if (unlikely(crng->generation != READ_ONCE(base_crng.generation))) {
- spin_lock(&base_crng.lock);
- crng_fast_key_erasure(base_crng.key, chacha_state,
- crng->key, sizeof(crng->key));
- crng->generation = base_crng.generation;
- spin_unlock(&base_crng.lock);
- }
- /*
- * Finally, when we've made it this far, our per-cpu crng has an up
- * to date key, and we can do fast key erasure with it to produce
- * some random data and a ChaCha state for the caller. All other
- * branches of this function are "unlikely", so most of the time we
- * should wind up here immediately.
- */
- crng_fast_key_erasure(crng->key, chacha_state, random_data, random_data_len);
- local_unlock_irqrestore(&crngs.lock, flags);
- }
- static void _get_random_bytes(void *buf, size_t len)
- {
- u32 chacha_state[CHACHA_STATE_WORDS];
- u8 tmp[CHACHA_BLOCK_SIZE];
- size_t first_block_len;
- if (!len)
- return;
- first_block_len = min_t(size_t, 32, len);
- crng_make_state(chacha_state, buf, first_block_len);
- len -= first_block_len;
- buf += first_block_len;
- while (len) {
- if (len < CHACHA_BLOCK_SIZE) {
- chacha20_block(chacha_state, tmp);
- memcpy(buf, tmp, len);
- memzero_explicit(tmp, sizeof(tmp));
- break;
- }
- chacha20_block(chacha_state, buf);
- if (unlikely(chacha_state[12] == 0))
- ++chacha_state[13];
- len -= CHACHA_BLOCK_SIZE;
- buf += CHACHA_BLOCK_SIZE;
- }
- memzero_explicit(chacha_state, sizeof(chacha_state));
- }
- /*
- * This function is the exported kernel interface. It returns some number of
- * good random numbers, suitable for key generation, seeding TCP sequence
- * numbers, etc. In order to ensure that the randomness returned by this
- * function is okay, the function wait_for_random_bytes() should be called and
- * return 0 at least once at any point prior.
- */
- void get_random_bytes(void *buf, size_t len)
- {
- warn_unseeded_randomness();
- _get_random_bytes(buf, len);
- }
- EXPORT_SYMBOL(get_random_bytes);
- static ssize_t get_random_bytes_user(struct iov_iter *iter)
- {
- u32 chacha_state[CHACHA_STATE_WORDS];
- u8 block[CHACHA_BLOCK_SIZE];
- size_t ret = 0, copied;
- if (unlikely(!iov_iter_count(iter)))
- return 0;
- /*
- * Immediately overwrite the ChaCha key at index 4 with random
- * bytes, in case userspace causes copy_to_iter() below to sleep
- * forever, so that we still retain forward secrecy in that case.
- */
- crng_make_state(chacha_state, (u8 *)&chacha_state[4], CHACHA_KEY_SIZE);
- /*
- * However, if we're doing a read of len <= 32, we don't need to
- * use chacha_state after, so we can simply return those bytes to
- * the user directly.
- */
- if (iov_iter_count(iter) <= CHACHA_KEY_SIZE) {
- ret = copy_to_iter(&chacha_state[4], CHACHA_KEY_SIZE, iter);
- goto out_zero_chacha;
- }
- for (;;) {
- chacha20_block(chacha_state, block);
- if (unlikely(chacha_state[12] == 0))
- ++chacha_state[13];
- copied = copy_to_iter(block, sizeof(block), iter);
- ret += copied;
- if (!iov_iter_count(iter) || copied != sizeof(block))
- break;
- BUILD_BUG_ON(PAGE_SIZE % sizeof(block) != 0);
- if (ret % PAGE_SIZE == 0) {
- if (signal_pending(current))
- break;
- cond_resched();
- }
- }
- memzero_explicit(block, sizeof(block));
- out_zero_chacha:
- memzero_explicit(chacha_state, sizeof(chacha_state));
- return ret ? ret : -EFAULT;
- }
- /*
- * Batched entropy returns random integers. The quality of the random
- * number is good as /dev/urandom. In order to ensure that the randomness
- * provided by this function is okay, the function wait_for_random_bytes()
- * should be called and return 0 at least once at any point prior.
- */
- #define DEFINE_BATCHED_ENTROPY(type) \
- struct batch_ ##type { \
- /* \
- * We make this 1.5x a ChaCha block, so that we get the \
- * remaining 32 bytes from fast key erasure, plus one full \
- * block from the detached ChaCha state. We can increase \
- * the size of this later if needed so long as we keep the \
- * formula of (integer_blocks + 0.5) * CHACHA_BLOCK_SIZE. \
- */ \
- type entropy[CHACHA_BLOCK_SIZE * 3 / (2 * sizeof(type))]; \
- local_lock_t lock; \
- unsigned long generation; \
- unsigned int position; \
- }; \
- \
- static DEFINE_PER_CPU(struct batch_ ##type, batched_entropy_ ##type) = { \
- .lock = INIT_LOCAL_LOCK(batched_entropy_ ##type.lock), \
- .position = UINT_MAX \
- }; \
- \
- type get_random_ ##type(void) \
- { \
- type ret; \
- unsigned long flags; \
- struct batch_ ##type *batch; \
- unsigned long next_gen; \
- \
- warn_unseeded_randomness(); \
- \
- if (!crng_ready()) { \
- _get_random_bytes(&ret, sizeof(ret)); \
- return ret; \
- } \
- \
- local_lock_irqsave(&batched_entropy_ ##type.lock, flags); \
- batch = raw_cpu_ptr(&batched_entropy_##type); \
- \
- next_gen = READ_ONCE(base_crng.generation); \
- if (batch->position >= ARRAY_SIZE(batch->entropy) || \
- next_gen != batch->generation) { \
- _get_random_bytes(batch->entropy, sizeof(batch->entropy)); \
- batch->position = 0; \
- batch->generation = next_gen; \
- } \
- \
- ret = batch->entropy[batch->position]; \
- batch->entropy[batch->position] = 0; \
- ++batch->position; \
- local_unlock_irqrestore(&batched_entropy_ ##type.lock, flags); \
- return ret; \
- } \
- EXPORT_SYMBOL(get_random_ ##type);
- DEFINE_BATCHED_ENTROPY(u8)
- DEFINE_BATCHED_ENTROPY(u16)
- DEFINE_BATCHED_ENTROPY(u32)
- DEFINE_BATCHED_ENTROPY(u64)
- u32 __get_random_u32_below(u32 ceil)
- {
- /*
- * This is the slow path for variable ceil. It is still fast, most of
- * the time, by doing traditional reciprocal multiplication and
- * opportunistically comparing the lower half to ceil itself, before
- * falling back to computing a larger bound, and then rejecting samples
- * whose lower half would indicate a range indivisible by ceil. The use
- * of `-ceil % ceil` is analogous to `2^32 % ceil`, but is computable
- * in 32-bits.
- */
- u32 rand = get_random_u32();
- u64 mult;
- /*
- * This function is technically undefined for ceil == 0, and in fact
- * for the non-underscored constant version in the header, we build bug
- * on that. But for the non-constant case, it's convenient to have that
- * evaluate to being a straight call to get_random_u32(), so that
- * get_random_u32_inclusive() can work over its whole range without
- * undefined behavior.
- */
- if (unlikely(!ceil))
- return rand;
- mult = (u64)ceil * rand;
- if (unlikely((u32)mult < ceil)) {
- u32 bound = -ceil % ceil;
- while (unlikely((u32)mult < bound))
- mult = (u64)ceil * get_random_u32();
- }
- return mult >> 32;
- }
- EXPORT_SYMBOL(__get_random_u32_below);
- #ifdef CONFIG_SMP
- /*
- * This function is called when the CPU is coming up, with entry
- * CPUHP_RANDOM_PREPARE, which comes before CPUHP_WORKQUEUE_PREP.
- */
- int __cold random_prepare_cpu(unsigned int cpu)
- {
- /*
- * When the cpu comes back online, immediately invalidate both
- * the per-cpu crng and all batches, so that we serve fresh
- * randomness.
- */
- per_cpu_ptr(&crngs, cpu)->generation = ULONG_MAX;
- per_cpu_ptr(&batched_entropy_u8, cpu)->position = UINT_MAX;
- per_cpu_ptr(&batched_entropy_u16, cpu)->position = UINT_MAX;
- per_cpu_ptr(&batched_entropy_u32, cpu)->position = UINT_MAX;
- per_cpu_ptr(&batched_entropy_u64, cpu)->position = UINT_MAX;
- return 0;
- }
- #endif
- /**********************************************************************
- *
- * Entropy accumulation and extraction routines.
- *
- * Callers may add entropy via:
- *
- * static void mix_pool_bytes(const void *buf, size_t len)
- *
- * After which, if added entropy should be credited:
- *
- * static void credit_init_bits(size_t bits)
- *
- * Finally, extract entropy via:
- *
- * static void extract_entropy(void *buf, size_t len)
- *
- **********************************************************************/
- enum {
- POOL_BITS = BLAKE2S_HASH_SIZE * 8,
- POOL_READY_BITS = POOL_BITS, /* When crng_init->CRNG_READY */
- POOL_EARLY_BITS = POOL_READY_BITS / 2 /* When crng_init->CRNG_EARLY */
- };
- static struct {
- struct blake2s_state hash;
- spinlock_t lock;
- unsigned int init_bits;
- } input_pool = {
- .hash.h = { BLAKE2S_IV0 ^ (0x01010000 | BLAKE2S_HASH_SIZE),
- BLAKE2S_IV1, BLAKE2S_IV2, BLAKE2S_IV3, BLAKE2S_IV4,
- BLAKE2S_IV5, BLAKE2S_IV6, BLAKE2S_IV7 },
- .hash.outlen = BLAKE2S_HASH_SIZE,
- .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
- };
- static void _mix_pool_bytes(const void *buf, size_t len)
- {
- blake2s_update(&input_pool.hash, buf, len);
- }
- /*
- * This function adds bytes into the input pool. It does not
- * update the initialization bit counter; the caller should call
- * credit_init_bits if this is appropriate.
- */
- static void mix_pool_bytes(const void *buf, size_t len)
- {
- unsigned long flags;
- spin_lock_irqsave(&input_pool.lock, flags);
- _mix_pool_bytes(buf, len);
- spin_unlock_irqrestore(&input_pool.lock, flags);
- }
- /*
- * This is an HKDF-like construction for using the hashed collected entropy
- * as a PRF key, that's then expanded block-by-block.
- */
- static void extract_entropy(void *buf, size_t len)
- {
- unsigned long flags;
- u8 seed[BLAKE2S_HASH_SIZE], next_key[BLAKE2S_HASH_SIZE];
- struct {
- unsigned long rdseed[32 / sizeof(long)];
- size_t counter;
- } block;
- size_t i, longs;
- for (i = 0; i < ARRAY_SIZE(block.rdseed);) {
- longs = arch_get_random_seed_longs(&block.rdseed[i], ARRAY_SIZE(block.rdseed) - i);
- if (longs) {
- i += longs;
- continue;
- }
- longs = arch_get_random_longs(&block.rdseed[i], ARRAY_SIZE(block.rdseed) - i);
- if (longs) {
- i += longs;
- continue;
- }
- block.rdseed[i++] = random_get_entropy();
- }
- spin_lock_irqsave(&input_pool.lock, flags);
- /* seed = HASHPRF(last_key, entropy_input) */
- blake2s_final(&input_pool.hash, seed);
- /* next_key = HASHPRF(seed, RDSEED || 0) */
- block.counter = 0;
- blake2s(next_key, (u8 *)&block, seed, sizeof(next_key), sizeof(block), sizeof(seed));
- blake2s_init_key(&input_pool.hash, BLAKE2S_HASH_SIZE, next_key, sizeof(next_key));
- spin_unlock_irqrestore(&input_pool.lock, flags);
- memzero_explicit(next_key, sizeof(next_key));
- while (len) {
- i = min_t(size_t, len, BLAKE2S_HASH_SIZE);
- /* output = HASHPRF(seed, RDSEED || ++counter) */
- ++block.counter;
- blake2s(buf, (u8 *)&block, seed, i, sizeof(block), sizeof(seed));
- len -= i;
- buf += i;
- }
- memzero_explicit(seed, sizeof(seed));
- memzero_explicit(&block, sizeof(block));
- }
- #define credit_init_bits(bits) if (!crng_ready()) _credit_init_bits(bits)
- static void __cold _credit_init_bits(size_t bits)
- {
- static struct execute_work set_ready;
- unsigned int new, orig, add;
- unsigned long flags;
- if (!bits)
- return;
- add = min_t(size_t, bits, POOL_BITS);
- orig = READ_ONCE(input_pool.init_bits);
- do {
- new = min_t(unsigned int, POOL_BITS, orig + add);
- } while (!try_cmpxchg(&input_pool.init_bits, &orig, new));
- if (orig < POOL_READY_BITS && new >= POOL_READY_BITS) {
- crng_reseed(); /* Sets crng_init to CRNG_READY under base_crng.lock. */
- if (static_key_initialized)
- execute_in_process_context(crng_set_ready, &set_ready);
- wake_up_interruptible(&crng_init_wait);
- kill_fasync(&fasync, SIGIO, POLL_IN);
- pr_notice("crng init done\n");
- if (urandom_warning.missed)
- pr_notice("%d urandom warning(s) missed due to ratelimiting\n",
- urandom_warning.missed);
- } else if (orig < POOL_EARLY_BITS && new >= POOL_EARLY_BITS) {
- spin_lock_irqsave(&base_crng.lock, flags);
- /* Check if crng_init is CRNG_EMPTY, to avoid race with crng_reseed(). */
- if (crng_init == CRNG_EMPTY) {
- extract_entropy(base_crng.key, sizeof(base_crng.key));
- crng_init = CRNG_EARLY;
- }
- spin_unlock_irqrestore(&base_crng.lock, flags);
- }
- }
- /**********************************************************************
- *
- * Entropy collection routines.
- *
- * The following exported functions are used for pushing entropy into
- * the above entropy accumulation routines:
- *
- * void add_device_randomness(const void *buf, size_t len);
- * void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy);
- * void add_bootloader_randomness(const void *buf, size_t len);
- * void add_vmfork_randomness(const void *unique_vm_id, size_t len);
- * void add_interrupt_randomness(int irq);
- * void add_input_randomness(unsigned int type, unsigned int code, unsigned int value);
- * void add_disk_randomness(struct gendisk *disk);
- *
- * add_device_randomness() adds data to the input pool that
- * is likely to differ between two devices (or possibly even per boot).
- * This would be things like MAC addresses or serial numbers, or the
- * read-out of the RTC. This does *not* credit any actual entropy to
- * the pool, but it initializes the pool to different values for devices
- * that might otherwise be identical and have very little entropy
- * available to them (particularly common in the embedded world).
- *
- * add_hwgenerator_randomness() is for true hardware RNGs, and will credit
- * entropy as specified by the caller. If the entropy pool is full it will
- * block until more entropy is needed.
- *
- * add_bootloader_randomness() is called by bootloader drivers, such as EFI
- * and device tree, and credits its input depending on whether or not the
- * configuration option CONFIG_RANDOM_TRUST_BOOTLOADER is set.
- *
- * add_vmfork_randomness() adds a unique (but not necessarily secret) ID
- * representing the current instance of a VM to the pool, without crediting,
- * and then force-reseeds the crng so that it takes effect immediately.
- *
- * add_interrupt_randomness() uses the interrupt timing as random
- * inputs to the entropy pool. Using the cycle counters and the irq source
- * as inputs, it feeds the input pool roughly once a second or after 64
- * interrupts, crediting 1 bit of entropy for whichever comes first.
- *
- * add_input_randomness() uses the input layer interrupt timing, as well
- * as the event type information from the hardware.
- *
- * add_disk_randomness() uses what amounts to the seek time of block
- * layer request events, on a per-disk_devt basis, as input to the
- * entropy pool. Note that high-speed solid state drives with very low
- * seek times do not make for good sources of entropy, as their seek
- * times are usually fairly consistent.
- *
- * The last two routines try to estimate how many bits of entropy
- * to credit. They do this by keeping track of the first and second
- * order deltas of the event timings.
- *
- **********************************************************************/
- static bool trust_cpu __initdata = IS_ENABLED(CONFIG_RANDOM_TRUST_CPU);
- static bool trust_bootloader __initdata = IS_ENABLED(CONFIG_RANDOM_TRUST_BOOTLOADER);
- static int __init parse_trust_cpu(char *arg)
- {
- return kstrtobool(arg, &trust_cpu);
- }
- static int __init parse_trust_bootloader(char *arg)
- {
- return kstrtobool(arg, &trust_bootloader);
- }
- early_param("random.trust_cpu", parse_trust_cpu);
- early_param("random.trust_bootloader", parse_trust_bootloader);
- static int random_pm_notification(struct notifier_block *nb, unsigned long action, void *data)
- {
- unsigned long flags, entropy = random_get_entropy();
- /*
- * Encode a representation of how long the system has been suspended,
- * in a way that is distinct from prior system suspends.
- */
- ktime_t stamps[] = { ktime_get(), ktime_get_boottime(), ktime_get_real() };
- spin_lock_irqsave(&input_pool.lock, flags);
- _mix_pool_bytes(&action, sizeof(action));
- _mix_pool_bytes(stamps, sizeof(stamps));
- _mix_pool_bytes(&entropy, sizeof(entropy));
- spin_unlock_irqrestore(&input_pool.lock, flags);
- if (crng_ready() && (action == PM_RESTORE_PREPARE ||
- (action == PM_POST_SUSPEND && !IS_ENABLED(CONFIG_PM_AUTOSLEEP) &&
- !IS_ENABLED(CONFIG_PM_USERSPACE_AUTOSLEEP)))) {
- crng_reseed();
- pr_notice("crng reseeded on system resumption\n");
- }
- return 0;
- }
- static struct notifier_block pm_notifier = { .notifier_call = random_pm_notification };
- /*
- * This is called extremely early, before time keeping functionality is
- * available, but arch randomness is. Interrupts are not yet enabled.
- */
- void __init random_init_early(const char *command_line)
- {
- unsigned long entropy[BLAKE2S_BLOCK_SIZE / sizeof(long)];
- size_t i, longs, arch_bits;
- #if defined(LATENT_ENTROPY_PLUGIN)
- static const u8 compiletime_seed[BLAKE2S_BLOCK_SIZE] __initconst __latent_entropy;
- _mix_pool_bytes(compiletime_seed, sizeof(compiletime_seed));
- #endif
- for (i = 0, arch_bits = sizeof(entropy) * 8; i < ARRAY_SIZE(entropy);) {
- longs = arch_get_random_seed_longs_early(entropy, ARRAY_SIZE(entropy) - i);
- if (longs) {
- _mix_pool_bytes(entropy, sizeof(*entropy) * longs);
- i += longs;
- continue;
- }
- longs = arch_get_random_longs_early(entropy, ARRAY_SIZE(entropy) - i);
- if (longs) {
- _mix_pool_bytes(entropy, sizeof(*entropy) * longs);
- i += longs;
- continue;
- }
- arch_bits -= sizeof(*entropy) * 8;
- ++i;
- }
- _mix_pool_bytes(init_utsname(), sizeof(*(init_utsname())));
- _mix_pool_bytes(command_line, strlen(command_line));
- /* Reseed if already seeded by earlier phases. */
- if (crng_ready())
- crng_reseed();
- else if (trust_cpu)
- _credit_init_bits(arch_bits);
- }
- /*
- * This is called a little bit after the prior function, and now there is
- * access to timestamps counters. Interrupts are not yet enabled.
- */
- void __init random_init(void)
- {
- unsigned long entropy = random_get_entropy();
- ktime_t now = ktime_get_real();
- _mix_pool_bytes(&now, sizeof(now));
- _mix_pool_bytes(&entropy, sizeof(entropy));
- add_latent_entropy();
- /*
- * If we were initialized by the cpu or bootloader before jump labels
- * are initialized, then we should enable the static branch here, where
- * it's guaranteed that jump labels have been initialized.
- */
- if (!static_branch_likely(&crng_is_ready) && crng_init >= CRNG_READY)
- crng_set_ready(NULL);
- /* Reseed if already seeded by earlier phases. */
- if (crng_ready())
- crng_reseed();
- WARN_ON(register_pm_notifier(&pm_notifier));
- WARN(!entropy, "Missing cycle counter and fallback timer; RNG "
- "entropy collection will consequently suffer.");
- }
- /*
- * Add device- or boot-specific data to the input pool to help
- * initialize it.
- *
- * None of this adds any entropy; it is meant to avoid the problem of
- * the entropy pool having similar initial state across largely
- * identical devices.
- */
- void add_device_randomness(const void *buf, size_t len)
- {
- unsigned long entropy = random_get_entropy();
- unsigned long flags;
- spin_lock_irqsave(&input_pool.lock, flags);
- _mix_pool_bytes(&entropy, sizeof(entropy));
- _mix_pool_bytes(buf, len);
- spin_unlock_irqrestore(&input_pool.lock, flags);
- }
- EXPORT_SYMBOL(add_device_randomness);
- /*
- * Interface for in-kernel drivers of true hardware RNGs.
- * Those devices may produce endless random bits and will be throttled
- * when our pool is full.
- */
- void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy)
- {
- mix_pool_bytes(buf, len);
- credit_init_bits(entropy);
- /*
- * Throttle writing to once every reseed interval, unless we're not yet
- * initialized or no entropy is credited.
- */
- if (!kthread_should_stop() && (crng_ready() || !entropy))
- schedule_timeout_interruptible(crng_reseed_interval());
- }
- EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);
- /*
- * Handle random seed passed by bootloader, and credit it if
- * CONFIG_RANDOM_TRUST_BOOTLOADER is set.
- */
- void __init add_bootloader_randomness(const void *buf, size_t len)
- {
- mix_pool_bytes(buf, len);
- if (trust_bootloader)
- credit_init_bits(len * 8);
- }
- #if IS_ENABLED(CONFIG_VMGENID)
- static BLOCKING_NOTIFIER_HEAD(vmfork_chain);
- /*
- * Handle a new unique VM ID, which is unique, not secret, so we
- * don't credit it, but we do immediately force a reseed after so
- * that it's used by the crng posthaste.
- */
- void __cold add_vmfork_randomness(const void *unique_vm_id, size_t len)
- {
- add_device_randomness(unique_vm_id, len);
- if (crng_ready()) {
- crng_reseed();
- pr_notice("crng reseeded due to virtual machine fork\n");
- }
- blocking_notifier_call_chain(&vmfork_chain, 0, NULL);
- }
- #if IS_MODULE(CONFIG_VMGENID)
- EXPORT_SYMBOL_GPL(add_vmfork_randomness);
- #endif
- int __cold register_random_vmfork_notifier(struct notifier_block *nb)
- {
- return blocking_notifier_chain_register(&vmfork_chain, nb);
- }
- EXPORT_SYMBOL_GPL(register_random_vmfork_notifier);
- int __cold unregister_random_vmfork_notifier(struct notifier_block *nb)
- {
- return blocking_notifier_chain_unregister(&vmfork_chain, nb);
- }
- EXPORT_SYMBOL_GPL(unregister_random_vmfork_notifier);
- #endif
- struct fast_pool {
- unsigned long pool[4];
- unsigned long last;
- unsigned int count;
- struct timer_list mix;
- };
- static void mix_interrupt_randomness(struct timer_list *work);
- static DEFINE_PER_CPU(struct fast_pool, irq_randomness) = {
- #ifdef CONFIG_64BIT
- #define FASTMIX_PERM SIPHASH_PERMUTATION
- .pool = { SIPHASH_CONST_0, SIPHASH_CONST_1, SIPHASH_CONST_2, SIPHASH_CONST_3 },
- #else
- #define FASTMIX_PERM HSIPHASH_PERMUTATION
- .pool = { HSIPHASH_CONST_0, HSIPHASH_CONST_1, HSIPHASH_CONST_2, HSIPHASH_CONST_3 },
- #endif
- .mix = __TIMER_INITIALIZER(mix_interrupt_randomness, 0)
- };
- /*
- * This is [Half]SipHash-1-x, starting from an empty key. Because
- * the key is fixed, it assumes that its inputs are non-malicious,
- * and therefore this has no security on its own. s represents the
- * four-word SipHash state, while v represents a two-word input.
- */
- static void fast_mix(unsigned long s[4], unsigned long v1, unsigned long v2)
- {
- s[3] ^= v1;
- FASTMIX_PERM(s[0], s[1], s[2], s[3]);
- s[0] ^= v1;
- s[3] ^= v2;
- FASTMIX_PERM(s[0], s[1], s[2], s[3]);
- s[0] ^= v2;
- }
- #ifdef CONFIG_SMP
- /*
- * This function is called when the CPU has just come online, with
- * entry CPUHP_AP_RANDOM_ONLINE, just after CPUHP_AP_WORKQUEUE_ONLINE.
- */
- int __cold random_online_cpu(unsigned int cpu)
- {
- /*
- * During CPU shutdown and before CPU onlining, add_interrupt_
- * randomness() may schedule mix_interrupt_randomness(), and
- * set the MIX_INFLIGHT flag. However, because the worker can
- * be scheduled on a different CPU during this period, that
- * flag will never be cleared. For that reason, we zero out
- * the flag here, which runs just after workqueues are onlined
- * for the CPU again. This also has the effect of setting the
- * irq randomness count to zero so that new accumulated irqs
- * are fresh.
- */
- per_cpu_ptr(&irq_randomness, cpu)->count = 0;
- return 0;
- }
- #endif
- static void mix_interrupt_randomness(struct timer_list *work)
- {
- struct fast_pool *fast_pool = container_of(work, struct fast_pool, mix);
- /*
- * The size of the copied stack pool is explicitly 2 longs so that we
- * only ever ingest half of the siphash output each time, retaining
- * the other half as the next "key" that carries over. The entropy is
- * supposed to be sufficiently dispersed between bits so on average
- * we don't wind up "losing" some.
- */
- unsigned long pool[2];
- unsigned int count;
- /* Check to see if we're running on the wrong CPU due to hotplug. */
- local_irq_disable();
- if (fast_pool != this_cpu_ptr(&irq_randomness)) {
- local_irq_enable();
- return;
- }
- /*
- * Copy the pool to the stack so that the mixer always has a
- * consistent view, before we reenable irqs again.
- */
- memcpy(pool, fast_pool->pool, sizeof(pool));
- count = fast_pool->count;
- fast_pool->count = 0;
- fast_pool->last = jiffies;
- local_irq_enable();
- mix_pool_bytes(pool, sizeof(pool));
- credit_init_bits(clamp_t(unsigned int, (count & U16_MAX) / 64, 1, sizeof(pool) * 8));
- memzero_explicit(pool, sizeof(pool));
- }
- void add_interrupt_randomness(int irq)
- {
- enum { MIX_INFLIGHT = 1U << 31 };
- unsigned long entropy = random_get_entropy();
- struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness);
- struct pt_regs *regs = get_irq_regs();
- unsigned int new_count;
- fast_mix(fast_pool->pool, entropy,
- (regs ? instruction_pointer(regs) : _RET_IP_) ^ swab(irq));
- new_count = ++fast_pool->count;
- if (new_count & MIX_INFLIGHT)
- return;
- if (new_count < 1024 && !time_is_before_jiffies(fast_pool->last + HZ))
- return;
- fast_pool->count |= MIX_INFLIGHT;
- if (!timer_pending(&fast_pool->mix)) {
- fast_pool->mix.expires = jiffies;
- add_timer_on(&fast_pool->mix, raw_smp_processor_id());
- }
- }
- EXPORT_SYMBOL_GPL(add_interrupt_randomness);
- /* There is one of these per entropy source */
- struct timer_rand_state {
- unsigned long last_time;
- long last_delta, last_delta2;
- };
- /*
- * This function adds entropy to the entropy "pool" by using timing
- * delays. It uses the timer_rand_state structure to make an estimate
- * of how many bits of entropy this call has added to the pool. The
- * value "num" is also added to the pool; it should somehow describe
- * the type of event that just happened.
- */
- static void add_timer_randomness(struct timer_rand_state *state, unsigned int num)
- {
- unsigned long entropy = random_get_entropy(), now = jiffies, flags;
- long delta, delta2, delta3;
- unsigned int bits;
- /*
- * If we're in a hard IRQ, add_interrupt_randomness() will be called
- * sometime after, so mix into the fast pool.
- */
- if (in_hardirq()) {
- fast_mix(this_cpu_ptr(&irq_randomness)->pool, entropy, num);
- } else {
- spin_lock_irqsave(&input_pool.lock, flags);
- _mix_pool_bytes(&entropy, sizeof(entropy));
- _mix_pool_bytes(&num, sizeof(num));
- spin_unlock_irqrestore(&input_pool.lock, flags);
- }
- if (crng_ready())
- return;
- /*
- * Calculate number of bits of randomness we probably added.
- * We take into account the first, second and third-order deltas
- * in order to make our estimate.
- */
- delta = now - READ_ONCE(state->last_time);
- WRITE_ONCE(state->last_time, now);
- delta2 = delta - READ_ONCE(state->last_delta);
- WRITE_ONCE(state->last_delta, delta);
- delta3 = delta2 - READ_ONCE(state->last_delta2);
- WRITE_ONCE(state->last_delta2, delta2);
- if (delta < 0)
- delta = -delta;
- if (delta2 < 0)
- delta2 = -delta2;
- if (delta3 < 0)
- delta3 = -delta3;
- if (delta > delta2)
- delta = delta2;
- if (delta > delta3)
- delta = delta3;
- /*
- * delta is now minimum absolute delta. Round down by 1 bit
- * on general principles, and limit entropy estimate to 11 bits.
- */
- bits = min(fls(delta >> 1), 11);
- /*
- * As mentioned above, if we're in a hard IRQ, add_interrupt_randomness()
- * will run after this, which uses a different crediting scheme of 1 bit
- * per every 64 interrupts. In order to let that function do accounting
- * close to the one in this function, we credit a full 64/64 bit per bit,
- * and then subtract one to account for the extra one added.
- */
- if (in_hardirq())
- this_cpu_ptr(&irq_randomness)->count += max(1u, bits * 64) - 1;
- else
- _credit_init_bits(bits);
- }
- void add_input_randomness(unsigned int type, unsigned int code, unsigned int value)
- {
- static unsigned char last_value;
- static struct timer_rand_state input_timer_state = { INITIAL_JIFFIES };
- /* Ignore autorepeat and the like. */
- if (value == last_value)
- return;
- last_value = value;
- add_timer_randomness(&input_timer_state,
- (type << 4) ^ code ^ (code >> 4) ^ value);
- }
- EXPORT_SYMBOL_GPL(add_input_randomness);
- #ifdef CONFIG_BLOCK
- void add_disk_randomness(struct gendisk *disk)
- {
- if (!disk || !disk->random)
- return;
- /* First major is 1, so we get >= 0x200 here. */
- add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
- }
- EXPORT_SYMBOL_GPL(add_disk_randomness);
- void __cold rand_initialize_disk(struct gendisk *disk)
- {
- struct timer_rand_state *state;
- /*
- * If kzalloc returns null, we just won't use that entropy
- * source.
- */
- state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
- if (state) {
- state->last_time = INITIAL_JIFFIES;
- disk->random = state;
- }
- }
- #endif
- struct entropy_timer_state {
- unsigned long entropy;
- struct timer_list timer;
- unsigned int samples, samples_per_bit;
- };
- /*
- * Each time the timer fires, we expect that we got an unpredictable
- * jump in the cycle counter. Even if the timer is running on another
- * CPU, the timer activity will be touching the stack of the CPU that is
- * generating entropy..
- *
- * Note that we don't re-arm the timer in the timer itself - we are
- * happy to be scheduled away, since that just makes the load more
- * complex, but we do not want the timer to keep ticking unless the
- * entropy loop is running.
- *
- * So the re-arming always happens in the entropy loop itself.
- */
- static void __cold entropy_timer(struct timer_list *timer)
- {
- struct entropy_timer_state *state = container_of(timer, struct entropy_timer_state, timer);
- if (++state->samples == state->samples_per_bit) {
- credit_init_bits(1);
- state->samples = 0;
- }
- }
- /*
- * If we have an actual cycle counter, see if we can
- * generate enough entropy with timing noise
- */
- static void __cold try_to_generate_entropy(void)
- {
- enum { NUM_TRIAL_SAMPLES = 8192, MAX_SAMPLES_PER_BIT = HZ / 15 };
- struct entropy_timer_state stack;
- unsigned int i, num_different = 0;
- unsigned long last = random_get_entropy();
- for (i = 0; i < NUM_TRIAL_SAMPLES - 1; ++i) {
- stack.entropy = random_get_entropy();
- if (stack.entropy != last)
- ++num_different;
- last = stack.entropy;
- }
- stack.samples_per_bit = DIV_ROUND_UP(NUM_TRIAL_SAMPLES, num_different + 1);
- if (stack.samples_per_bit > MAX_SAMPLES_PER_BIT)
- return;
- stack.samples = 0;
- timer_setup_on_stack(&stack.timer, entropy_timer, 0);
- while (!crng_ready() && !signal_pending(current)) {
- if (!timer_pending(&stack.timer))
- mod_timer(&stack.timer, jiffies);
- mix_pool_bytes(&stack.entropy, sizeof(stack.entropy));
- schedule();
- stack.entropy = random_get_entropy();
- }
- del_timer_sync(&stack.timer);
- destroy_timer_on_stack(&stack.timer);
- mix_pool_bytes(&stack.entropy, sizeof(stack.entropy));
- }
- /**********************************************************************
- *
- * Userspace reader/writer interfaces.
- *
- * getrandom(2) is the primary modern interface into the RNG and should
- * be used in preference to anything else.
- *
- * Reading from /dev/random has the same functionality as calling
- * getrandom(2) with flags=0. In earlier versions, however, it had
- * vastly different semantics and should therefore be avoided, to
- * prevent backwards compatibility issues.
- *
- * Reading from /dev/urandom has the same functionality as calling
- * getrandom(2) with flags=GRND_INSECURE. Because it does not block
- * waiting for the RNG to be ready, it should not be used.
- *
- * Writing to either /dev/random or /dev/urandom adds entropy to
- * the input pool but does not credit it.
- *
- * Polling on /dev/random indicates when the RNG is initialized, on
- * the read side, and when it wants new entropy, on the write side.
- *
- * Both /dev/random and /dev/urandom have the same set of ioctls for
- * adding entropy, getting the entropy count, zeroing the count, and
- * reseeding the crng.
- *
- **********************************************************************/
- SYSCALL_DEFINE3(getrandom, char __user *, ubuf, size_t, len, unsigned int, flags)
- {
- struct iov_iter iter;
- struct iovec iov;
- int ret;
- if (flags & ~(GRND_NONBLOCK | GRND_RANDOM | GRND_INSECURE))
- return -EINVAL;
- /*
- * Requesting insecure and blocking randomness at the same time makes
- * no sense.
- */
- if ((flags & (GRND_INSECURE | GRND_RANDOM)) == (GRND_INSECURE | GRND_RANDOM))
- return -EINVAL;
- if (!crng_ready() && !(flags & GRND_INSECURE)) {
- if (flags & GRND_NONBLOCK)
- return -EAGAIN;
- ret = wait_for_random_bytes();
- if (unlikely(ret))
- return ret;
- }
- ret = import_single_range(ITER_DEST, ubuf, len, &iov, &iter);
- if (unlikely(ret))
- return ret;
- return get_random_bytes_user(&iter);
- }
- static __poll_t random_poll(struct file *file, poll_table *wait)
- {
- poll_wait(file, &crng_init_wait, wait);
- return crng_ready() ? EPOLLIN | EPOLLRDNORM : EPOLLOUT | EPOLLWRNORM;
- }
- static ssize_t write_pool_user(struct iov_iter *iter)
- {
- u8 block[BLAKE2S_BLOCK_SIZE];
- ssize_t ret = 0;
- size_t copied;
- if (unlikely(!iov_iter_count(iter)))
- return 0;
- for (;;) {
- copied = copy_from_iter(block, sizeof(block), iter);
- ret += copied;
- mix_pool_bytes(block, copied);
- if (!iov_iter_count(iter) || copied != sizeof(block))
- break;
- BUILD_BUG_ON(PAGE_SIZE % sizeof(block) != 0);
- if (ret % PAGE_SIZE == 0) {
- if (signal_pending(current))
- break;
- cond_resched();
- }
- }
- memzero_explicit(block, sizeof(block));
- return ret ? ret : -EFAULT;
- }
- static ssize_t random_write_iter(struct kiocb *kiocb, struct iov_iter *iter)
- {
- return write_pool_user(iter);
- }
- static ssize_t urandom_read_iter(struct kiocb *kiocb, struct iov_iter *iter)
- {
- static int maxwarn = 10;
- /*
- * Opportunistically attempt to initialize the RNG on platforms that
- * have fast cycle counters, but don't (for now) require it to succeed.
- */
- if (!crng_ready())
- try_to_generate_entropy();
- if (!crng_ready()) {
- if (!ratelimit_disable && maxwarn <= 0)
- ++urandom_warning.missed;
- else if (ratelimit_disable || __ratelimit(&urandom_warning)) {
- --maxwarn;
- pr_notice("%s: uninitialized urandom read (%zu bytes read)\n",
- current->comm, iov_iter_count(iter));
- }
- }
- return get_random_bytes_user(iter);
- }
- static ssize_t random_read_iter(struct kiocb *kiocb, struct iov_iter *iter)
- {
- int ret;
- if (!crng_ready() &&
- ((kiocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO)) ||
- (kiocb->ki_filp->f_flags & O_NONBLOCK)))
- return -EAGAIN;
- ret = wait_for_random_bytes();
- if (ret != 0)
- return ret;
- return get_random_bytes_user(iter);
- }
- static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
- {
- int __user *p = (int __user *)arg;
- int ent_count;
- switch (cmd) {
- case RNDGETENTCNT:
- /* Inherently racy, no point locking. */
- if (put_user(input_pool.init_bits, p))
- return -EFAULT;
- return 0;
- case RNDADDTOENTCNT:
- if (!capable(CAP_SYS_ADMIN))
- return -EPERM;
- if (get_user(ent_count, p))
- return -EFAULT;
- if (ent_count < 0)
- return -EINVAL;
- credit_init_bits(ent_count);
- return 0;
- case RNDADDENTROPY: {
- struct iov_iter iter;
- struct iovec iov;
- ssize_t ret;
- int len;
- if (!capable(CAP_SYS_ADMIN))
- return -EPERM;
- if (get_user(ent_count, p++))
- return -EFAULT;
- if (ent_count < 0)
- return -EINVAL;
- if (get_user(len, p++))
- return -EFAULT;
- ret = import_single_range(ITER_SOURCE, p, len, &iov, &iter);
- if (unlikely(ret))
- return ret;
- ret = write_pool_user(&iter);
- if (unlikely(ret < 0))
- return ret;
- /* Since we're crediting, enforce that it was all written into the pool. */
- if (unlikely(ret != len))
- return -EFAULT;
- credit_init_bits(ent_count);
- return 0;
- }
- case RNDZAPENTCNT:
- case RNDCLEARPOOL:
- /* No longer has any effect. */
- if (!capable(CAP_SYS_ADMIN))
- return -EPERM;
- return 0;
- case RNDRESEEDCRNG:
- if (!capable(CAP_SYS_ADMIN))
- return -EPERM;
- if (!crng_ready())
- return -ENODATA;
- crng_reseed();
- return 0;
- default:
- return -EINVAL;
- }
- }
- static int random_fasync(int fd, struct file *filp, int on)
- {
- return fasync_helper(fd, filp, on, &fasync);
- }
- const struct file_operations random_fops = {
- .read_iter = random_read_iter,
- .write_iter = random_write_iter,
- .poll = random_poll,
- .unlocked_ioctl = random_ioctl,
- .compat_ioctl = compat_ptr_ioctl,
- .fasync = random_fasync,
- .llseek = noop_llseek,
- .splice_read = generic_file_splice_read,
- .splice_write = iter_file_splice_write,
- };
- const struct file_operations urandom_fops = {
- .read_iter = urandom_read_iter,
- .write_iter = random_write_iter,
- .unlocked_ioctl = random_ioctl,
- .compat_ioctl = compat_ptr_ioctl,
- .fasync = random_fasync,
- .llseek = noop_llseek,
- .splice_read = generic_file_splice_read,
- .splice_write = iter_file_splice_write,
- };
- /********************************************************************
- *
- * Sysctl interface.
- *
- * These are partly unused legacy knobs with dummy values to not break
- * userspace and partly still useful things. They are usually accessible
- * in /proc/sys/kernel/random/ and are as follows:
- *
- * - boot_id - a UUID representing the current boot.
- *
- * - uuid - a random UUID, different each time the file is read.
- *
- * - poolsize - the number of bits of entropy that the input pool can
- * hold, tied to the POOL_BITS constant.
- *
- * - entropy_avail - the number of bits of entropy currently in the
- * input pool. Always <= poolsize.
- *
- * - write_wakeup_threshold - the amount of entropy in the input pool
- * below which write polls to /dev/random will unblock, requesting
- * more entropy, tied to the POOL_READY_BITS constant. It is writable
- * to avoid breaking old userspaces, but writing to it does not
- * change any behavior of the RNG.
- *
- * - urandom_min_reseed_secs - fixed to the value CRNG_RESEED_INTERVAL.
- * It is writable to avoid breaking old userspaces, but writing
- * to it does not change any behavior of the RNG.
- *
- ********************************************************************/
- #ifdef CONFIG_SYSCTL
- #include <linux/sysctl.h>
- static int sysctl_random_min_urandom_seed = CRNG_RESEED_INTERVAL / HZ;
- static int sysctl_random_write_wakeup_bits = POOL_READY_BITS;
- static int sysctl_poolsize = POOL_BITS;
- static u8 sysctl_bootid[UUID_SIZE];
- /*
- * This function is used to return both the bootid UUID, and random
- * UUID. The difference is in whether table->data is NULL; if it is,
- * then a new UUID is generated and returned to the user.
- */
- static int proc_do_uuid(struct ctl_table *table, int write, void *buf,
- size_t *lenp, loff_t *ppos)
- {
- u8 tmp_uuid[UUID_SIZE], *uuid;
- char uuid_string[UUID_STRING_LEN + 1];
- struct ctl_table fake_table = {
- .data = uuid_string,
- .maxlen = UUID_STRING_LEN
- };
- if (write)
- return -EPERM;
- uuid = table->data;
- if (!uuid) {
- uuid = tmp_uuid;
- generate_random_uuid(uuid);
- } else {
- static DEFINE_SPINLOCK(bootid_spinlock);
- spin_lock(&bootid_spinlock);
- if (!uuid[8])
- generate_random_uuid(uuid);
- spin_unlock(&bootid_spinlock);
- }
- snprintf(uuid_string, sizeof(uuid_string), "%pU", uuid);
- return proc_dostring(&fake_table, 0, buf, lenp, ppos);
- }
- /* The same as proc_dointvec, but writes don't change anything. */
- static int proc_do_rointvec(struct ctl_table *table, int write, void *buf,
- size_t *lenp, loff_t *ppos)
- {
- return write ? 0 : proc_dointvec(table, 0, buf, lenp, ppos);
- }
- static struct ctl_table random_table[] = {
- {
- .procname = "poolsize",
- .data = &sysctl_poolsize,
- .maxlen = sizeof(int),
- .mode = 0444,
- .proc_handler = proc_dointvec,
- },
- {
- .procname = "entropy_avail",
- .data = &input_pool.init_bits,
- .maxlen = sizeof(int),
- .mode = 0444,
- .proc_handler = proc_dointvec,
- },
- {
- .procname = "write_wakeup_threshold",
- .data = &sysctl_random_write_wakeup_bits,
- .maxlen = sizeof(int),
- .mode = 0644,
- .proc_handler = proc_do_rointvec,
- },
- {
- .procname = "urandom_min_reseed_secs",
- .data = &sysctl_random_min_urandom_seed,
- .maxlen = sizeof(int),
- .mode = 0644,
- .proc_handler = proc_do_rointvec,
- },
- {
- .procname = "boot_id",
- .data = &sysctl_bootid,
- .mode = 0444,
- .proc_handler = proc_do_uuid,
- },
- {
- .procname = "uuid",
- .mode = 0444,
- .proc_handler = proc_do_uuid,
- },
- { }
- };
- /*
- * random_init() is called before sysctl_init(),
- * so we cannot call register_sysctl_init() in random_init()
- */
- static int __init random_sysctls_init(void)
- {
- register_sysctl_init("kernel/random", random_table);
- return 0;
- }
- device_initcall(random_sysctls_init);
- #endif
|