sata_mv.c 122 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * sata_mv.c - Marvell SATA support
  4. *
  5. * Copyright 2008-2009: Marvell Corporation, all rights reserved.
  6. * Copyright 2005: EMC Corporation, all rights reserved.
  7. * Copyright 2005 Red Hat, Inc. All rights reserved.
  8. *
  9. * Originally written by Brett Russ.
  10. * Extensive overhaul and enhancement by Mark Lord <[email protected]>.
  11. *
  12. * Please ALWAYS copy [email protected] on emails.
  13. */
  14. /*
  15. * sata_mv TODO list:
  16. *
  17. * --> Develop a low-power-consumption strategy, and implement it.
  18. *
  19. * --> Add sysfs attributes for per-chip / per-HC IRQ coalescing thresholds.
  20. *
  21. * --> [Experiment, Marvell value added] Is it possible to use target
  22. * mode to cross-connect two Linux boxes with Marvell cards? If so,
  23. * creating LibATA target mode support would be very interesting.
  24. *
  25. * Target mode, for those without docs, is the ability to directly
  26. * connect two SATA ports.
  27. */
  28. /*
  29. * 80x1-B2 errata PCI#11:
  30. *
  31. * Users of the 6041/6081 Rev.B2 chips (current is C0)
  32. * should be careful to insert those cards only onto PCI-X bus #0,
  33. * and only in device slots 0..7, not higher. The chips may not
  34. * work correctly otherwise (note: this is a pretty rare condition).
  35. */
  36. #include <linux/kernel.h>
  37. #include <linux/module.h>
  38. #include <linux/pci.h>
  39. #include <linux/init.h>
  40. #include <linux/blkdev.h>
  41. #include <linux/delay.h>
  42. #include <linux/interrupt.h>
  43. #include <linux/dmapool.h>
  44. #include <linux/dma-mapping.h>
  45. #include <linux/device.h>
  46. #include <linux/clk.h>
  47. #include <linux/phy/phy.h>
  48. #include <linux/platform_device.h>
  49. #include <linux/ata_platform.h>
  50. #include <linux/mbus.h>
  51. #include <linux/bitops.h>
  52. #include <linux/gfp.h>
  53. #include <linux/of.h>
  54. #include <linux/of_irq.h>
  55. #include <scsi/scsi_host.h>
  56. #include <scsi/scsi_cmnd.h>
  57. #include <scsi/scsi_device.h>
  58. #include <linux/libata.h>
  59. #define DRV_NAME "sata_mv"
  60. #define DRV_VERSION "1.28"
  61. /*
  62. * module options
  63. */
  64. #ifdef CONFIG_PCI
  65. static int msi;
  66. module_param(msi, int, S_IRUGO);
  67. MODULE_PARM_DESC(msi, "Enable use of PCI MSI (0=off, 1=on)");
  68. #endif
  69. static int irq_coalescing_io_count;
  70. module_param(irq_coalescing_io_count, int, S_IRUGO);
  71. MODULE_PARM_DESC(irq_coalescing_io_count,
  72. "IRQ coalescing I/O count threshold (0..255)");
  73. static int irq_coalescing_usecs;
  74. module_param(irq_coalescing_usecs, int, S_IRUGO);
  75. MODULE_PARM_DESC(irq_coalescing_usecs,
  76. "IRQ coalescing time threshold in usecs");
  77. enum {
  78. /* BAR's are enumerated in terms of pci_resource_start() terms */
  79. MV_PRIMARY_BAR = 0, /* offset 0x10: memory space */
  80. MV_IO_BAR = 2, /* offset 0x18: IO space */
  81. MV_MISC_BAR = 3, /* offset 0x1c: FLASH, NVRAM, SRAM */
  82. MV_MAJOR_REG_AREA_SZ = 0x10000, /* 64KB */
  83. MV_MINOR_REG_AREA_SZ = 0x2000, /* 8KB */
  84. /* For use with both IRQ coalescing methods ("all ports" or "per-HC" */
  85. COAL_CLOCKS_PER_USEC = 150, /* for calculating COAL_TIMEs */
  86. MAX_COAL_TIME_THRESHOLD = ((1 << 24) - 1), /* internal clocks count */
  87. MAX_COAL_IO_COUNT = 255, /* completed I/O count */
  88. MV_PCI_REG_BASE = 0,
  89. /*
  90. * Per-chip ("all ports") interrupt coalescing feature.
  91. * This is only for GEN_II / GEN_IIE hardware.
  92. *
  93. * Coalescing defers the interrupt until either the IO_THRESHOLD
  94. * (count of completed I/Os) is met, or the TIME_THRESHOLD is met.
  95. */
  96. COAL_REG_BASE = 0x18000,
  97. IRQ_COAL_CAUSE = (COAL_REG_BASE + 0x08),
  98. ALL_PORTS_COAL_IRQ = (1 << 4), /* all ports irq event */
  99. IRQ_COAL_IO_THRESHOLD = (COAL_REG_BASE + 0xcc),
  100. IRQ_COAL_TIME_THRESHOLD = (COAL_REG_BASE + 0xd0),
  101. /*
  102. * Registers for the (unused here) transaction coalescing feature:
  103. */
  104. TRAN_COAL_CAUSE_LO = (COAL_REG_BASE + 0x88),
  105. TRAN_COAL_CAUSE_HI = (COAL_REG_BASE + 0x8c),
  106. SATAHC0_REG_BASE = 0x20000,
  107. FLASH_CTL = 0x1046c,
  108. GPIO_PORT_CTL = 0x104f0,
  109. RESET_CFG = 0x180d8,
  110. MV_PCI_REG_SZ = MV_MAJOR_REG_AREA_SZ,
  111. MV_SATAHC_REG_SZ = MV_MAJOR_REG_AREA_SZ,
  112. MV_SATAHC_ARBTR_REG_SZ = MV_MINOR_REG_AREA_SZ, /* arbiter */
  113. MV_PORT_REG_SZ = MV_MINOR_REG_AREA_SZ,
  114. MV_MAX_Q_DEPTH = 32,
  115. MV_MAX_Q_DEPTH_MASK = MV_MAX_Q_DEPTH - 1,
  116. /* CRQB needs alignment on a 1KB boundary. Size == 1KB
  117. * CRPB needs alignment on a 256B boundary. Size == 256B
  118. * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B
  119. */
  120. MV_CRQB_Q_SZ = (32 * MV_MAX_Q_DEPTH),
  121. MV_CRPB_Q_SZ = (8 * MV_MAX_Q_DEPTH),
  122. MV_MAX_SG_CT = 256,
  123. MV_SG_TBL_SZ = (16 * MV_MAX_SG_CT),
  124. /* Determine hc from 0-7 port: hc = port >> MV_PORT_HC_SHIFT */
  125. MV_PORT_HC_SHIFT = 2,
  126. MV_PORTS_PER_HC = (1 << MV_PORT_HC_SHIFT), /* 4 */
  127. /* Determine hc port from 0-7 port: hardport = port & MV_PORT_MASK */
  128. MV_PORT_MASK = (MV_PORTS_PER_HC - 1), /* 3 */
  129. /* Host Flags */
  130. MV_FLAG_DUAL_HC = (1 << 30), /* two SATA Host Controllers */
  131. MV_COMMON_FLAGS = ATA_FLAG_SATA | ATA_FLAG_PIO_POLLING,
  132. MV_GEN_I_FLAGS = MV_COMMON_FLAGS | ATA_FLAG_NO_ATAPI,
  133. MV_GEN_II_FLAGS = MV_COMMON_FLAGS | ATA_FLAG_NCQ |
  134. ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA,
  135. MV_GEN_IIE_FLAGS = MV_GEN_II_FLAGS | ATA_FLAG_AN,
  136. CRQB_FLAG_READ = (1 << 0),
  137. CRQB_TAG_SHIFT = 1,
  138. CRQB_IOID_SHIFT = 6, /* CRQB Gen-II/IIE IO Id shift */
  139. CRQB_PMP_SHIFT = 12, /* CRQB Gen-II/IIE PMP shift */
  140. CRQB_HOSTQ_SHIFT = 17, /* CRQB Gen-II/IIE HostQueTag shift */
  141. CRQB_CMD_ADDR_SHIFT = 8,
  142. CRQB_CMD_CS = (0x2 << 11),
  143. CRQB_CMD_LAST = (1 << 15),
  144. CRPB_FLAG_STATUS_SHIFT = 8,
  145. CRPB_IOID_SHIFT_6 = 5, /* CRPB Gen-II IO Id shift */
  146. CRPB_IOID_SHIFT_7 = 7, /* CRPB Gen-IIE IO Id shift */
  147. EPRD_FLAG_END_OF_TBL = (1 << 31),
  148. /* PCI interface registers */
  149. MV_PCI_COMMAND = 0xc00,
  150. MV_PCI_COMMAND_MWRCOM = (1 << 4), /* PCI Master Write Combining */
  151. MV_PCI_COMMAND_MRDTRIG = (1 << 7), /* PCI Master Read Trigger */
  152. PCI_MAIN_CMD_STS = 0xd30,
  153. STOP_PCI_MASTER = (1 << 2),
  154. PCI_MASTER_EMPTY = (1 << 3),
  155. GLOB_SFT_RST = (1 << 4),
  156. MV_PCI_MODE = 0xd00,
  157. MV_PCI_MODE_MASK = 0x30,
  158. MV_PCI_EXP_ROM_BAR_CTL = 0xd2c,
  159. MV_PCI_DISC_TIMER = 0xd04,
  160. MV_PCI_MSI_TRIGGER = 0xc38,
  161. MV_PCI_SERR_MASK = 0xc28,
  162. MV_PCI_XBAR_TMOUT = 0x1d04,
  163. MV_PCI_ERR_LOW_ADDRESS = 0x1d40,
  164. MV_PCI_ERR_HIGH_ADDRESS = 0x1d44,
  165. MV_PCI_ERR_ATTRIBUTE = 0x1d48,
  166. MV_PCI_ERR_COMMAND = 0x1d50,
  167. PCI_IRQ_CAUSE = 0x1d58,
  168. PCI_IRQ_MASK = 0x1d5c,
  169. PCI_UNMASK_ALL_IRQS = 0x7fffff, /* bits 22-0 */
  170. PCIE_IRQ_CAUSE = 0x1900,
  171. PCIE_IRQ_MASK = 0x1910,
  172. PCIE_UNMASK_ALL_IRQS = 0x40a, /* assorted bits */
  173. /* Host Controller Main Interrupt Cause/Mask registers (1 per-chip) */
  174. PCI_HC_MAIN_IRQ_CAUSE = 0x1d60,
  175. PCI_HC_MAIN_IRQ_MASK = 0x1d64,
  176. SOC_HC_MAIN_IRQ_CAUSE = 0x20020,
  177. SOC_HC_MAIN_IRQ_MASK = 0x20024,
  178. ERR_IRQ = (1 << 0), /* shift by (2 * port #) */
  179. DONE_IRQ = (1 << 1), /* shift by (2 * port #) */
  180. HC0_IRQ_PEND = 0x1ff, /* bits 0-8 = HC0's ports */
  181. HC_SHIFT = 9, /* bits 9-17 = HC1's ports */
  182. DONE_IRQ_0_3 = 0x000000aa, /* DONE_IRQ ports 0,1,2,3 */
  183. DONE_IRQ_4_7 = (DONE_IRQ_0_3 << HC_SHIFT), /* 4,5,6,7 */
  184. PCI_ERR = (1 << 18),
  185. TRAN_COAL_LO_DONE = (1 << 19), /* transaction coalescing */
  186. TRAN_COAL_HI_DONE = (1 << 20), /* transaction coalescing */
  187. PORTS_0_3_COAL_DONE = (1 << 8), /* HC0 IRQ coalescing */
  188. PORTS_4_7_COAL_DONE = (1 << 17), /* HC1 IRQ coalescing */
  189. ALL_PORTS_COAL_DONE = (1 << 21), /* GEN_II(E) IRQ coalescing */
  190. GPIO_INT = (1 << 22),
  191. SELF_INT = (1 << 23),
  192. TWSI_INT = (1 << 24),
  193. HC_MAIN_RSVD = (0x7f << 25), /* bits 31-25 */
  194. HC_MAIN_RSVD_5 = (0x1fff << 19), /* bits 31-19 */
  195. HC_MAIN_RSVD_SOC = (0x3fffffb << 6), /* bits 31-9, 7-6 */
  196. /* SATAHC registers */
  197. HC_CFG = 0x00,
  198. HC_IRQ_CAUSE = 0x14,
  199. DMA_IRQ = (1 << 0), /* shift by port # */
  200. HC_COAL_IRQ = (1 << 4), /* IRQ coalescing */
  201. DEV_IRQ = (1 << 8), /* shift by port # */
  202. /*
  203. * Per-HC (Host-Controller) interrupt coalescing feature.
  204. * This is present on all chip generations.
  205. *
  206. * Coalescing defers the interrupt until either the IO_THRESHOLD
  207. * (count of completed I/Os) is met, or the TIME_THRESHOLD is met.
  208. */
  209. HC_IRQ_COAL_IO_THRESHOLD = 0x000c,
  210. HC_IRQ_COAL_TIME_THRESHOLD = 0x0010,
  211. SOC_LED_CTRL = 0x2c,
  212. SOC_LED_CTRL_BLINK = (1 << 0), /* Active LED blink */
  213. SOC_LED_CTRL_ACT_PRESENCE = (1 << 2), /* Multiplex dev presence */
  214. /* with dev activity LED */
  215. /* Shadow block registers */
  216. SHD_BLK = 0x100,
  217. SHD_CTL_AST = 0x20, /* ofs from SHD_BLK */
  218. /* SATA registers */
  219. SATA_STATUS = 0x300, /* ctrl, err regs follow status */
  220. SATA_ACTIVE = 0x350,
  221. FIS_IRQ_CAUSE = 0x364,
  222. FIS_IRQ_CAUSE_AN = (1 << 9), /* async notification */
  223. LTMODE = 0x30c, /* requires read-after-write */
  224. LTMODE_BIT8 = (1 << 8), /* unknown, but necessary */
  225. PHY_MODE2 = 0x330,
  226. PHY_MODE3 = 0x310,
  227. PHY_MODE4 = 0x314, /* requires read-after-write */
  228. PHY_MODE4_CFG_MASK = 0x00000003, /* phy internal config field */
  229. PHY_MODE4_CFG_VALUE = 0x00000001, /* phy internal config field */
  230. PHY_MODE4_RSVD_ZEROS = 0x5de3fffa, /* Gen2e always write zeros */
  231. PHY_MODE4_RSVD_ONES = 0x00000005, /* Gen2e always write ones */
  232. SATA_IFCTL = 0x344,
  233. SATA_TESTCTL = 0x348,
  234. SATA_IFSTAT = 0x34c,
  235. VENDOR_UNIQUE_FIS = 0x35c,
  236. FISCFG = 0x360,
  237. FISCFG_WAIT_DEV_ERR = (1 << 8), /* wait for host on DevErr */
  238. FISCFG_SINGLE_SYNC = (1 << 16), /* SYNC on DMA activation */
  239. PHY_MODE9_GEN2 = 0x398,
  240. PHY_MODE9_GEN1 = 0x39c,
  241. PHYCFG_OFS = 0x3a0, /* only in 65n devices */
  242. MV5_PHY_MODE = 0x74,
  243. MV5_LTMODE = 0x30,
  244. MV5_PHY_CTL = 0x0C,
  245. SATA_IFCFG = 0x050,
  246. LP_PHY_CTL = 0x058,
  247. LP_PHY_CTL_PIN_PU_PLL = (1 << 0),
  248. LP_PHY_CTL_PIN_PU_RX = (1 << 1),
  249. LP_PHY_CTL_PIN_PU_TX = (1 << 2),
  250. LP_PHY_CTL_GEN_TX_3G = (1 << 5),
  251. LP_PHY_CTL_GEN_RX_3G = (1 << 9),
  252. MV_M2_PREAMP_MASK = 0x7e0,
  253. /* Port registers */
  254. EDMA_CFG = 0,
  255. EDMA_CFG_Q_DEPTH = 0x1f, /* max device queue depth */
  256. EDMA_CFG_NCQ = (1 << 5), /* for R/W FPDMA queued */
  257. EDMA_CFG_NCQ_GO_ON_ERR = (1 << 14), /* continue on error */
  258. EDMA_CFG_RD_BRST_EXT = (1 << 11), /* read burst 512B */
  259. EDMA_CFG_WR_BUFF_LEN = (1 << 13), /* write buffer 512B */
  260. EDMA_CFG_EDMA_FBS = (1 << 16), /* EDMA FIS-Based Switching */
  261. EDMA_CFG_FBS = (1 << 26), /* FIS-Based Switching */
  262. EDMA_ERR_IRQ_CAUSE = 0x8,
  263. EDMA_ERR_IRQ_MASK = 0xc,
  264. EDMA_ERR_D_PAR = (1 << 0), /* UDMA data parity err */
  265. EDMA_ERR_PRD_PAR = (1 << 1), /* UDMA PRD parity err */
  266. EDMA_ERR_DEV = (1 << 2), /* device error */
  267. EDMA_ERR_DEV_DCON = (1 << 3), /* device disconnect */
  268. EDMA_ERR_DEV_CON = (1 << 4), /* device connected */
  269. EDMA_ERR_SERR = (1 << 5), /* SError bits [WBDST] raised */
  270. EDMA_ERR_SELF_DIS = (1 << 7), /* Gen II/IIE self-disable */
  271. EDMA_ERR_SELF_DIS_5 = (1 << 8), /* Gen I self-disable */
  272. EDMA_ERR_BIST_ASYNC = (1 << 8), /* BIST FIS or Async Notify */
  273. EDMA_ERR_TRANS_IRQ_7 = (1 << 8), /* Gen IIE transprt layer irq */
  274. EDMA_ERR_CRQB_PAR = (1 << 9), /* CRQB parity error */
  275. EDMA_ERR_CRPB_PAR = (1 << 10), /* CRPB parity error */
  276. EDMA_ERR_INTRL_PAR = (1 << 11), /* internal parity error */
  277. EDMA_ERR_IORDY = (1 << 12), /* IORdy timeout */
  278. EDMA_ERR_LNK_CTRL_RX = (0xf << 13), /* link ctrl rx error */
  279. EDMA_ERR_LNK_CTRL_RX_0 = (1 << 13), /* transient: CRC err */
  280. EDMA_ERR_LNK_CTRL_RX_1 = (1 << 14), /* transient: FIFO err */
  281. EDMA_ERR_LNK_CTRL_RX_2 = (1 << 15), /* fatal: caught SYNC */
  282. EDMA_ERR_LNK_CTRL_RX_3 = (1 << 16), /* transient: FIS rx err */
  283. EDMA_ERR_LNK_DATA_RX = (0xf << 17), /* link data rx error */
  284. EDMA_ERR_LNK_CTRL_TX = (0x1f << 21), /* link ctrl tx error */
  285. EDMA_ERR_LNK_CTRL_TX_0 = (1 << 21), /* transient: CRC err */
  286. EDMA_ERR_LNK_CTRL_TX_1 = (1 << 22), /* transient: FIFO err */
  287. EDMA_ERR_LNK_CTRL_TX_2 = (1 << 23), /* transient: caught SYNC */
  288. EDMA_ERR_LNK_CTRL_TX_3 = (1 << 24), /* transient: caught DMAT */
  289. EDMA_ERR_LNK_CTRL_TX_4 = (1 << 25), /* transient: FIS collision */
  290. EDMA_ERR_LNK_DATA_TX = (0x1f << 26), /* link data tx error */
  291. EDMA_ERR_TRANS_PROTO = (1 << 31), /* transport protocol error */
  292. EDMA_ERR_OVERRUN_5 = (1 << 5),
  293. EDMA_ERR_UNDERRUN_5 = (1 << 6),
  294. EDMA_ERR_IRQ_TRANSIENT = EDMA_ERR_LNK_CTRL_RX_0 |
  295. EDMA_ERR_LNK_CTRL_RX_1 |
  296. EDMA_ERR_LNK_CTRL_RX_3 |
  297. EDMA_ERR_LNK_CTRL_TX,
  298. EDMA_EH_FREEZE = EDMA_ERR_D_PAR |
  299. EDMA_ERR_PRD_PAR |
  300. EDMA_ERR_DEV_DCON |
  301. EDMA_ERR_DEV_CON |
  302. EDMA_ERR_SERR |
  303. EDMA_ERR_SELF_DIS |
  304. EDMA_ERR_CRQB_PAR |
  305. EDMA_ERR_CRPB_PAR |
  306. EDMA_ERR_INTRL_PAR |
  307. EDMA_ERR_IORDY |
  308. EDMA_ERR_LNK_CTRL_RX_2 |
  309. EDMA_ERR_LNK_DATA_RX |
  310. EDMA_ERR_LNK_DATA_TX |
  311. EDMA_ERR_TRANS_PROTO,
  312. EDMA_EH_FREEZE_5 = EDMA_ERR_D_PAR |
  313. EDMA_ERR_PRD_PAR |
  314. EDMA_ERR_DEV_DCON |
  315. EDMA_ERR_DEV_CON |
  316. EDMA_ERR_OVERRUN_5 |
  317. EDMA_ERR_UNDERRUN_5 |
  318. EDMA_ERR_SELF_DIS_5 |
  319. EDMA_ERR_CRQB_PAR |
  320. EDMA_ERR_CRPB_PAR |
  321. EDMA_ERR_INTRL_PAR |
  322. EDMA_ERR_IORDY,
  323. EDMA_REQ_Q_BASE_HI = 0x10,
  324. EDMA_REQ_Q_IN_PTR = 0x14, /* also contains BASE_LO */
  325. EDMA_REQ_Q_OUT_PTR = 0x18,
  326. EDMA_REQ_Q_PTR_SHIFT = 5,
  327. EDMA_RSP_Q_BASE_HI = 0x1c,
  328. EDMA_RSP_Q_IN_PTR = 0x20,
  329. EDMA_RSP_Q_OUT_PTR = 0x24, /* also contains BASE_LO */
  330. EDMA_RSP_Q_PTR_SHIFT = 3,
  331. EDMA_CMD = 0x28, /* EDMA command register */
  332. EDMA_EN = (1 << 0), /* enable EDMA */
  333. EDMA_DS = (1 << 1), /* disable EDMA; self-negated */
  334. EDMA_RESET = (1 << 2), /* reset eng/trans/link/phy */
  335. EDMA_STATUS = 0x30, /* EDMA engine status */
  336. EDMA_STATUS_CACHE_EMPTY = (1 << 6), /* GenIIe command cache empty */
  337. EDMA_STATUS_IDLE = (1 << 7), /* GenIIe EDMA enabled/idle */
  338. EDMA_IORDY_TMOUT = 0x34,
  339. EDMA_ARB_CFG = 0x38,
  340. EDMA_HALTCOND = 0x60, /* GenIIe halt conditions */
  341. EDMA_UNKNOWN_RSVD = 0x6C, /* GenIIe unknown/reserved */
  342. BMDMA_CMD = 0x224, /* bmdma command register */
  343. BMDMA_STATUS = 0x228, /* bmdma status register */
  344. BMDMA_PRD_LOW = 0x22c, /* bmdma PRD addr 31:0 */
  345. BMDMA_PRD_HIGH = 0x230, /* bmdma PRD addr 63:32 */
  346. /* Host private flags (hp_flags) */
  347. MV_HP_FLAG_MSI = (1 << 0),
  348. MV_HP_ERRATA_50XXB0 = (1 << 1),
  349. MV_HP_ERRATA_50XXB2 = (1 << 2),
  350. MV_HP_ERRATA_60X1B2 = (1 << 3),
  351. MV_HP_ERRATA_60X1C0 = (1 << 4),
  352. MV_HP_GEN_I = (1 << 6), /* Generation I: 50xx */
  353. MV_HP_GEN_II = (1 << 7), /* Generation II: 60xx */
  354. MV_HP_GEN_IIE = (1 << 8), /* Generation IIE: 6042/7042 */
  355. MV_HP_PCIE = (1 << 9), /* PCIe bus/regs: 7042 */
  356. MV_HP_CUT_THROUGH = (1 << 10), /* can use EDMA cut-through */
  357. MV_HP_FLAG_SOC = (1 << 11), /* SystemOnChip, no PCI */
  358. MV_HP_QUIRK_LED_BLINK_EN = (1 << 12), /* is led blinking enabled? */
  359. MV_HP_FIX_LP_PHY_CTL = (1 << 13), /* fix speed in LP_PHY_CTL ? */
  360. /* Port private flags (pp_flags) */
  361. MV_PP_FLAG_EDMA_EN = (1 << 0), /* is EDMA engine enabled? */
  362. MV_PP_FLAG_NCQ_EN = (1 << 1), /* is EDMA set up for NCQ? */
  363. MV_PP_FLAG_FBS_EN = (1 << 2), /* is EDMA set up for FBS? */
  364. MV_PP_FLAG_DELAYED_EH = (1 << 3), /* delayed dev err handling */
  365. MV_PP_FLAG_FAKE_ATA_BUSY = (1 << 4), /* ignore initial ATA_DRDY */
  366. };
  367. #define IS_GEN_I(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_I)
  368. #define IS_GEN_II(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_II)
  369. #define IS_GEN_IIE(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_IIE)
  370. #define IS_PCIE(hpriv) ((hpriv)->hp_flags & MV_HP_PCIE)
  371. #define IS_SOC(hpriv) ((hpriv)->hp_flags & MV_HP_FLAG_SOC)
  372. #define WINDOW_CTRL(i) (0x20030 + ((i) << 4))
  373. #define WINDOW_BASE(i) (0x20034 + ((i) << 4))
  374. enum {
  375. /* DMA boundary 0xffff is required by the s/g splitting
  376. * we need on /length/ in mv_fill-sg().
  377. */
  378. MV_DMA_BOUNDARY = 0xffffU,
  379. /* mask of register bits containing lower 32 bits
  380. * of EDMA request queue DMA address
  381. */
  382. EDMA_REQ_Q_BASE_LO_MASK = 0xfffffc00U,
  383. /* ditto, for response queue */
  384. EDMA_RSP_Q_BASE_LO_MASK = 0xffffff00U,
  385. };
  386. enum chip_type {
  387. chip_504x,
  388. chip_508x,
  389. chip_5080,
  390. chip_604x,
  391. chip_608x,
  392. chip_6042,
  393. chip_7042,
  394. chip_soc,
  395. };
  396. /* Command ReQuest Block: 32B */
  397. struct mv_crqb {
  398. __le32 sg_addr;
  399. __le32 sg_addr_hi;
  400. __le16 ctrl_flags;
  401. __le16 ata_cmd[11];
  402. };
  403. struct mv_crqb_iie {
  404. __le32 addr;
  405. __le32 addr_hi;
  406. __le32 flags;
  407. __le32 len;
  408. __le32 ata_cmd[4];
  409. };
  410. /* Command ResPonse Block: 8B */
  411. struct mv_crpb {
  412. __le16 id;
  413. __le16 flags;
  414. __le32 tmstmp;
  415. };
  416. /* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */
  417. struct mv_sg {
  418. __le32 addr;
  419. __le32 flags_size;
  420. __le32 addr_hi;
  421. __le32 reserved;
  422. };
  423. /*
  424. * We keep a local cache of a few frequently accessed port
  425. * registers here, to avoid having to read them (very slow)
  426. * when switching between EDMA and non-EDMA modes.
  427. */
  428. struct mv_cached_regs {
  429. u32 fiscfg;
  430. u32 ltmode;
  431. u32 haltcond;
  432. u32 unknown_rsvd;
  433. };
  434. struct mv_port_priv {
  435. struct mv_crqb *crqb;
  436. dma_addr_t crqb_dma;
  437. struct mv_crpb *crpb;
  438. dma_addr_t crpb_dma;
  439. struct mv_sg *sg_tbl[MV_MAX_Q_DEPTH];
  440. dma_addr_t sg_tbl_dma[MV_MAX_Q_DEPTH];
  441. unsigned int req_idx;
  442. unsigned int resp_idx;
  443. u32 pp_flags;
  444. struct mv_cached_regs cached;
  445. unsigned int delayed_eh_pmp_map;
  446. };
  447. struct mv_port_signal {
  448. u32 amps;
  449. u32 pre;
  450. };
  451. struct mv_host_priv {
  452. u32 hp_flags;
  453. unsigned int board_idx;
  454. u32 main_irq_mask;
  455. struct mv_port_signal signal[8];
  456. const struct mv_hw_ops *ops;
  457. int n_ports;
  458. void __iomem *base;
  459. void __iomem *main_irq_cause_addr;
  460. void __iomem *main_irq_mask_addr;
  461. u32 irq_cause_offset;
  462. u32 irq_mask_offset;
  463. u32 unmask_all_irqs;
  464. /*
  465. * Needed on some devices that require their clocks to be enabled.
  466. * These are optional: if the platform device does not have any
  467. * clocks, they won't be used. Also, if the underlying hardware
  468. * does not support the common clock framework (CONFIG_HAVE_CLK=n),
  469. * all the clock operations become no-ops (see clk.h).
  470. */
  471. struct clk *clk;
  472. struct clk **port_clks;
  473. /*
  474. * Some devices have a SATA PHY which can be enabled/disabled
  475. * in order to save power. These are optional: if the platform
  476. * devices does not have any phy, they won't be used.
  477. */
  478. struct phy **port_phys;
  479. /*
  480. * These consistent DMA memory pools give us guaranteed
  481. * alignment for hardware-accessed data structures,
  482. * and less memory waste in accomplishing the alignment.
  483. */
  484. struct dma_pool *crqb_pool;
  485. struct dma_pool *crpb_pool;
  486. struct dma_pool *sg_tbl_pool;
  487. };
  488. struct mv_hw_ops {
  489. void (*phy_errata)(struct mv_host_priv *hpriv, void __iomem *mmio,
  490. unsigned int port);
  491. void (*enable_leds)(struct mv_host_priv *hpriv, void __iomem *mmio);
  492. void (*read_preamp)(struct mv_host_priv *hpriv, int idx,
  493. void __iomem *mmio);
  494. int (*reset_hc)(struct ata_host *host, void __iomem *mmio,
  495. unsigned int n_hc);
  496. void (*reset_flash)(struct mv_host_priv *hpriv, void __iomem *mmio);
  497. void (*reset_bus)(struct ata_host *host, void __iomem *mmio);
  498. };
  499. static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
  500. static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
  501. static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
  502. static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
  503. static int mv_port_start(struct ata_port *ap);
  504. static void mv_port_stop(struct ata_port *ap);
  505. static int mv_qc_defer(struct ata_queued_cmd *qc);
  506. static enum ata_completion_errors mv_qc_prep(struct ata_queued_cmd *qc);
  507. static enum ata_completion_errors mv_qc_prep_iie(struct ata_queued_cmd *qc);
  508. static unsigned int mv_qc_issue(struct ata_queued_cmd *qc);
  509. static int mv_hardreset(struct ata_link *link, unsigned int *class,
  510. unsigned long deadline);
  511. static void mv_eh_freeze(struct ata_port *ap);
  512. static void mv_eh_thaw(struct ata_port *ap);
  513. static void mv6_dev_config(struct ata_device *dev);
  514. static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
  515. unsigned int port);
  516. static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
  517. static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
  518. void __iomem *mmio);
  519. static int mv5_reset_hc(struct ata_host *host, void __iomem *mmio,
  520. unsigned int n_hc);
  521. static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
  522. static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio);
  523. static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
  524. unsigned int port);
  525. static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
  526. static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
  527. void __iomem *mmio);
  528. static int mv6_reset_hc(struct ata_host *host, void __iomem *mmio,
  529. unsigned int n_hc);
  530. static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
  531. static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
  532. void __iomem *mmio);
  533. static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
  534. void __iomem *mmio);
  535. static int mv_soc_reset_hc(struct ata_host *host,
  536. void __iomem *mmio, unsigned int n_hc);
  537. static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
  538. void __iomem *mmio);
  539. static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio);
  540. static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv,
  541. void __iomem *mmio, unsigned int port);
  542. static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio);
  543. static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
  544. unsigned int port_no);
  545. static int mv_stop_edma(struct ata_port *ap);
  546. static int mv_stop_edma_engine(void __iomem *port_mmio);
  547. static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma);
  548. static void mv_pmp_select(struct ata_port *ap, int pmp);
  549. static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
  550. unsigned long deadline);
  551. static int mv_softreset(struct ata_link *link, unsigned int *class,
  552. unsigned long deadline);
  553. static void mv_pmp_error_handler(struct ata_port *ap);
  554. static void mv_process_crpb_entries(struct ata_port *ap,
  555. struct mv_port_priv *pp);
  556. static void mv_sff_irq_clear(struct ata_port *ap);
  557. static int mv_check_atapi_dma(struct ata_queued_cmd *qc);
  558. static void mv_bmdma_setup(struct ata_queued_cmd *qc);
  559. static void mv_bmdma_start(struct ata_queued_cmd *qc);
  560. static void mv_bmdma_stop(struct ata_queued_cmd *qc);
  561. static u8 mv_bmdma_status(struct ata_port *ap);
  562. static u8 mv_sff_check_status(struct ata_port *ap);
  563. /* .sg_tablesize is (MV_MAX_SG_CT / 2) in the structures below
  564. * because we have to allow room for worst case splitting of
  565. * PRDs for 64K boundaries in mv_fill_sg().
  566. */
  567. #ifdef CONFIG_PCI
  568. static struct scsi_host_template mv5_sht = {
  569. ATA_BASE_SHT(DRV_NAME),
  570. .sg_tablesize = MV_MAX_SG_CT / 2,
  571. .dma_boundary = MV_DMA_BOUNDARY,
  572. };
  573. #endif
  574. static struct scsi_host_template mv6_sht = {
  575. __ATA_BASE_SHT(DRV_NAME),
  576. .can_queue = MV_MAX_Q_DEPTH - 1,
  577. .sg_tablesize = MV_MAX_SG_CT / 2,
  578. .dma_boundary = MV_DMA_BOUNDARY,
  579. .sdev_groups = ata_ncq_sdev_groups,
  580. .change_queue_depth = ata_scsi_change_queue_depth,
  581. .tag_alloc_policy = BLK_TAG_ALLOC_RR,
  582. .slave_configure = ata_scsi_slave_config
  583. };
  584. static struct ata_port_operations mv5_ops = {
  585. .inherits = &ata_sff_port_ops,
  586. .lost_interrupt = ATA_OP_NULL,
  587. .qc_defer = mv_qc_defer,
  588. .qc_prep = mv_qc_prep,
  589. .qc_issue = mv_qc_issue,
  590. .freeze = mv_eh_freeze,
  591. .thaw = mv_eh_thaw,
  592. .hardreset = mv_hardreset,
  593. .scr_read = mv5_scr_read,
  594. .scr_write = mv5_scr_write,
  595. .port_start = mv_port_start,
  596. .port_stop = mv_port_stop,
  597. };
  598. static struct ata_port_operations mv6_ops = {
  599. .inherits = &ata_bmdma_port_ops,
  600. .lost_interrupt = ATA_OP_NULL,
  601. .qc_defer = mv_qc_defer,
  602. .qc_prep = mv_qc_prep,
  603. .qc_issue = mv_qc_issue,
  604. .dev_config = mv6_dev_config,
  605. .freeze = mv_eh_freeze,
  606. .thaw = mv_eh_thaw,
  607. .hardreset = mv_hardreset,
  608. .softreset = mv_softreset,
  609. .pmp_hardreset = mv_pmp_hardreset,
  610. .pmp_softreset = mv_softreset,
  611. .error_handler = mv_pmp_error_handler,
  612. .scr_read = mv_scr_read,
  613. .scr_write = mv_scr_write,
  614. .sff_check_status = mv_sff_check_status,
  615. .sff_irq_clear = mv_sff_irq_clear,
  616. .check_atapi_dma = mv_check_atapi_dma,
  617. .bmdma_setup = mv_bmdma_setup,
  618. .bmdma_start = mv_bmdma_start,
  619. .bmdma_stop = mv_bmdma_stop,
  620. .bmdma_status = mv_bmdma_status,
  621. .port_start = mv_port_start,
  622. .port_stop = mv_port_stop,
  623. };
  624. static struct ata_port_operations mv_iie_ops = {
  625. .inherits = &mv6_ops,
  626. .dev_config = ATA_OP_NULL,
  627. .qc_prep = mv_qc_prep_iie,
  628. };
  629. static const struct ata_port_info mv_port_info[] = {
  630. { /* chip_504x */
  631. .flags = MV_GEN_I_FLAGS,
  632. .pio_mask = ATA_PIO4,
  633. .udma_mask = ATA_UDMA6,
  634. .port_ops = &mv5_ops,
  635. },
  636. { /* chip_508x */
  637. .flags = MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC,
  638. .pio_mask = ATA_PIO4,
  639. .udma_mask = ATA_UDMA6,
  640. .port_ops = &mv5_ops,
  641. },
  642. { /* chip_5080 */
  643. .flags = MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC,
  644. .pio_mask = ATA_PIO4,
  645. .udma_mask = ATA_UDMA6,
  646. .port_ops = &mv5_ops,
  647. },
  648. { /* chip_604x */
  649. .flags = MV_GEN_II_FLAGS,
  650. .pio_mask = ATA_PIO4,
  651. .udma_mask = ATA_UDMA6,
  652. .port_ops = &mv6_ops,
  653. },
  654. { /* chip_608x */
  655. .flags = MV_GEN_II_FLAGS | MV_FLAG_DUAL_HC,
  656. .pio_mask = ATA_PIO4,
  657. .udma_mask = ATA_UDMA6,
  658. .port_ops = &mv6_ops,
  659. },
  660. { /* chip_6042 */
  661. .flags = MV_GEN_IIE_FLAGS,
  662. .pio_mask = ATA_PIO4,
  663. .udma_mask = ATA_UDMA6,
  664. .port_ops = &mv_iie_ops,
  665. },
  666. { /* chip_7042 */
  667. .flags = MV_GEN_IIE_FLAGS,
  668. .pio_mask = ATA_PIO4,
  669. .udma_mask = ATA_UDMA6,
  670. .port_ops = &mv_iie_ops,
  671. },
  672. { /* chip_soc */
  673. .flags = MV_GEN_IIE_FLAGS,
  674. .pio_mask = ATA_PIO4,
  675. .udma_mask = ATA_UDMA6,
  676. .port_ops = &mv_iie_ops,
  677. },
  678. };
  679. static const struct pci_device_id mv_pci_tbl[] = {
  680. { PCI_VDEVICE(MARVELL, 0x5040), chip_504x },
  681. { PCI_VDEVICE(MARVELL, 0x5041), chip_504x },
  682. { PCI_VDEVICE(MARVELL, 0x5080), chip_5080 },
  683. { PCI_VDEVICE(MARVELL, 0x5081), chip_508x },
  684. /* RocketRAID 1720/174x have different identifiers */
  685. { PCI_VDEVICE(TTI, 0x1720), chip_6042 },
  686. { PCI_VDEVICE(TTI, 0x1740), chip_6042 },
  687. { PCI_VDEVICE(TTI, 0x1742), chip_6042 },
  688. { PCI_VDEVICE(MARVELL, 0x6040), chip_604x },
  689. { PCI_VDEVICE(MARVELL, 0x6041), chip_604x },
  690. { PCI_VDEVICE(MARVELL, 0x6042), chip_6042 },
  691. { PCI_VDEVICE(MARVELL, 0x6080), chip_608x },
  692. { PCI_VDEVICE(MARVELL, 0x6081), chip_608x },
  693. { PCI_VDEVICE(ADAPTEC2, 0x0241), chip_604x },
  694. /* Adaptec 1430SA */
  695. { PCI_VDEVICE(ADAPTEC2, 0x0243), chip_7042 },
  696. /* Marvell 7042 support */
  697. { PCI_VDEVICE(MARVELL, 0x7042), chip_7042 },
  698. /* Highpoint RocketRAID PCIe series */
  699. { PCI_VDEVICE(TTI, 0x2300), chip_7042 },
  700. { PCI_VDEVICE(TTI, 0x2310), chip_7042 },
  701. { } /* terminate list */
  702. };
  703. static const struct mv_hw_ops mv5xxx_ops = {
  704. .phy_errata = mv5_phy_errata,
  705. .enable_leds = mv5_enable_leds,
  706. .read_preamp = mv5_read_preamp,
  707. .reset_hc = mv5_reset_hc,
  708. .reset_flash = mv5_reset_flash,
  709. .reset_bus = mv5_reset_bus,
  710. };
  711. static const struct mv_hw_ops mv6xxx_ops = {
  712. .phy_errata = mv6_phy_errata,
  713. .enable_leds = mv6_enable_leds,
  714. .read_preamp = mv6_read_preamp,
  715. .reset_hc = mv6_reset_hc,
  716. .reset_flash = mv6_reset_flash,
  717. .reset_bus = mv_reset_pci_bus,
  718. };
  719. static const struct mv_hw_ops mv_soc_ops = {
  720. .phy_errata = mv6_phy_errata,
  721. .enable_leds = mv_soc_enable_leds,
  722. .read_preamp = mv_soc_read_preamp,
  723. .reset_hc = mv_soc_reset_hc,
  724. .reset_flash = mv_soc_reset_flash,
  725. .reset_bus = mv_soc_reset_bus,
  726. };
  727. static const struct mv_hw_ops mv_soc_65n_ops = {
  728. .phy_errata = mv_soc_65n_phy_errata,
  729. .enable_leds = mv_soc_enable_leds,
  730. .reset_hc = mv_soc_reset_hc,
  731. .reset_flash = mv_soc_reset_flash,
  732. .reset_bus = mv_soc_reset_bus,
  733. };
  734. /*
  735. * Functions
  736. */
  737. static inline void writelfl(unsigned long data, void __iomem *addr)
  738. {
  739. writel(data, addr);
  740. (void) readl(addr); /* flush to avoid PCI posted write */
  741. }
  742. static inline unsigned int mv_hc_from_port(unsigned int port)
  743. {
  744. return port >> MV_PORT_HC_SHIFT;
  745. }
  746. static inline unsigned int mv_hardport_from_port(unsigned int port)
  747. {
  748. return port & MV_PORT_MASK;
  749. }
  750. /*
  751. * Consolidate some rather tricky bit shift calculations.
  752. * This is hot-path stuff, so not a function.
  753. * Simple code, with two return values, so macro rather than inline.
  754. *
  755. * port is the sole input, in range 0..7.
  756. * shift is one output, for use with main_irq_cause / main_irq_mask registers.
  757. * hardport is the other output, in range 0..3.
  758. *
  759. * Note that port and hardport may be the same variable in some cases.
  760. */
  761. #define MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport) \
  762. { \
  763. shift = mv_hc_from_port(port) * HC_SHIFT; \
  764. hardport = mv_hardport_from_port(port); \
  765. shift += hardport * 2; \
  766. }
  767. static inline void __iomem *mv_hc_base(void __iomem *base, unsigned int hc)
  768. {
  769. return (base + SATAHC0_REG_BASE + (hc * MV_SATAHC_REG_SZ));
  770. }
  771. static inline void __iomem *mv_hc_base_from_port(void __iomem *base,
  772. unsigned int port)
  773. {
  774. return mv_hc_base(base, mv_hc_from_port(port));
  775. }
  776. static inline void __iomem *mv_port_base(void __iomem *base, unsigned int port)
  777. {
  778. return mv_hc_base_from_port(base, port) +
  779. MV_SATAHC_ARBTR_REG_SZ +
  780. (mv_hardport_from_port(port) * MV_PORT_REG_SZ);
  781. }
  782. static void __iomem *mv5_phy_base(void __iomem *mmio, unsigned int port)
  783. {
  784. void __iomem *hc_mmio = mv_hc_base_from_port(mmio, port);
  785. unsigned long ofs = (mv_hardport_from_port(port) + 1) * 0x100UL;
  786. return hc_mmio + ofs;
  787. }
  788. static inline void __iomem *mv_host_base(struct ata_host *host)
  789. {
  790. struct mv_host_priv *hpriv = host->private_data;
  791. return hpriv->base;
  792. }
  793. static inline void __iomem *mv_ap_base(struct ata_port *ap)
  794. {
  795. return mv_port_base(mv_host_base(ap->host), ap->port_no);
  796. }
  797. static inline int mv_get_hc_count(unsigned long port_flags)
  798. {
  799. return ((port_flags & MV_FLAG_DUAL_HC) ? 2 : 1);
  800. }
  801. /**
  802. * mv_save_cached_regs - (re-)initialize cached port registers
  803. * @ap: the port whose registers we are caching
  804. *
  805. * Initialize the local cache of port registers,
  806. * so that reading them over and over again can
  807. * be avoided on the hotter paths of this driver.
  808. * This saves a few microseconds each time we switch
  809. * to/from EDMA mode to perform (eg.) a drive cache flush.
  810. */
  811. static void mv_save_cached_regs(struct ata_port *ap)
  812. {
  813. void __iomem *port_mmio = mv_ap_base(ap);
  814. struct mv_port_priv *pp = ap->private_data;
  815. pp->cached.fiscfg = readl(port_mmio + FISCFG);
  816. pp->cached.ltmode = readl(port_mmio + LTMODE);
  817. pp->cached.haltcond = readl(port_mmio + EDMA_HALTCOND);
  818. pp->cached.unknown_rsvd = readl(port_mmio + EDMA_UNKNOWN_RSVD);
  819. }
  820. /**
  821. * mv_write_cached_reg - write to a cached port register
  822. * @addr: hardware address of the register
  823. * @old: pointer to cached value of the register
  824. * @new: new value for the register
  825. *
  826. * Write a new value to a cached register,
  827. * but only if the value is different from before.
  828. */
  829. static inline void mv_write_cached_reg(void __iomem *addr, u32 *old, u32 new)
  830. {
  831. if (new != *old) {
  832. unsigned long laddr;
  833. *old = new;
  834. /*
  835. * Workaround for 88SX60x1-B2 FEr SATA#13:
  836. * Read-after-write is needed to prevent generating 64-bit
  837. * write cycles on the PCI bus for SATA interface registers
  838. * at offsets ending in 0x4 or 0xc.
  839. *
  840. * Looks like a lot of fuss, but it avoids an unnecessary
  841. * +1 usec read-after-write delay for unaffected registers.
  842. */
  843. laddr = (unsigned long)addr & 0xffff;
  844. if (laddr >= 0x300 && laddr <= 0x33c) {
  845. laddr &= 0x000f;
  846. if (laddr == 0x4 || laddr == 0xc) {
  847. writelfl(new, addr); /* read after write */
  848. return;
  849. }
  850. }
  851. writel(new, addr); /* unaffected by the errata */
  852. }
  853. }
  854. static void mv_set_edma_ptrs(void __iomem *port_mmio,
  855. struct mv_host_priv *hpriv,
  856. struct mv_port_priv *pp)
  857. {
  858. u32 index;
  859. /*
  860. * initialize request queue
  861. */
  862. pp->req_idx &= MV_MAX_Q_DEPTH_MASK; /* paranoia */
  863. index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
  864. WARN_ON(pp->crqb_dma & 0x3ff);
  865. writel((pp->crqb_dma >> 16) >> 16, port_mmio + EDMA_REQ_Q_BASE_HI);
  866. writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | index,
  867. port_mmio + EDMA_REQ_Q_IN_PTR);
  868. writelfl(index, port_mmio + EDMA_REQ_Q_OUT_PTR);
  869. /*
  870. * initialize response queue
  871. */
  872. pp->resp_idx &= MV_MAX_Q_DEPTH_MASK; /* paranoia */
  873. index = pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT;
  874. WARN_ON(pp->crpb_dma & 0xff);
  875. writel((pp->crpb_dma >> 16) >> 16, port_mmio + EDMA_RSP_Q_BASE_HI);
  876. writelfl(index, port_mmio + EDMA_RSP_Q_IN_PTR);
  877. writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) | index,
  878. port_mmio + EDMA_RSP_Q_OUT_PTR);
  879. }
  880. static void mv_write_main_irq_mask(u32 mask, struct mv_host_priv *hpriv)
  881. {
  882. /*
  883. * When writing to the main_irq_mask in hardware,
  884. * we must ensure exclusivity between the interrupt coalescing bits
  885. * and the corresponding individual port DONE_IRQ bits.
  886. *
  887. * Note that this register is really an "IRQ enable" register,
  888. * not an "IRQ mask" register as Marvell's naming might suggest.
  889. */
  890. if (mask & (ALL_PORTS_COAL_DONE | PORTS_0_3_COAL_DONE))
  891. mask &= ~DONE_IRQ_0_3;
  892. if (mask & (ALL_PORTS_COAL_DONE | PORTS_4_7_COAL_DONE))
  893. mask &= ~DONE_IRQ_4_7;
  894. writelfl(mask, hpriv->main_irq_mask_addr);
  895. }
  896. static void mv_set_main_irq_mask(struct ata_host *host,
  897. u32 disable_bits, u32 enable_bits)
  898. {
  899. struct mv_host_priv *hpriv = host->private_data;
  900. u32 old_mask, new_mask;
  901. old_mask = hpriv->main_irq_mask;
  902. new_mask = (old_mask & ~disable_bits) | enable_bits;
  903. if (new_mask != old_mask) {
  904. hpriv->main_irq_mask = new_mask;
  905. mv_write_main_irq_mask(new_mask, hpriv);
  906. }
  907. }
  908. static void mv_enable_port_irqs(struct ata_port *ap,
  909. unsigned int port_bits)
  910. {
  911. unsigned int shift, hardport, port = ap->port_no;
  912. u32 disable_bits, enable_bits;
  913. MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
  914. disable_bits = (DONE_IRQ | ERR_IRQ) << shift;
  915. enable_bits = port_bits << shift;
  916. mv_set_main_irq_mask(ap->host, disable_bits, enable_bits);
  917. }
  918. static void mv_clear_and_enable_port_irqs(struct ata_port *ap,
  919. void __iomem *port_mmio,
  920. unsigned int port_irqs)
  921. {
  922. struct mv_host_priv *hpriv = ap->host->private_data;
  923. int hardport = mv_hardport_from_port(ap->port_no);
  924. void __iomem *hc_mmio = mv_hc_base_from_port(
  925. mv_host_base(ap->host), ap->port_no);
  926. u32 hc_irq_cause;
  927. /* clear EDMA event indicators, if any */
  928. writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
  929. /* clear pending irq events */
  930. hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport);
  931. writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE);
  932. /* clear FIS IRQ Cause */
  933. if (IS_GEN_IIE(hpriv))
  934. writelfl(0, port_mmio + FIS_IRQ_CAUSE);
  935. mv_enable_port_irqs(ap, port_irqs);
  936. }
  937. static void mv_set_irq_coalescing(struct ata_host *host,
  938. unsigned int count, unsigned int usecs)
  939. {
  940. struct mv_host_priv *hpriv = host->private_data;
  941. void __iomem *mmio = hpriv->base, *hc_mmio;
  942. u32 coal_enable = 0;
  943. unsigned long flags;
  944. unsigned int clks, is_dual_hc = hpriv->n_ports > MV_PORTS_PER_HC;
  945. const u32 coal_disable = PORTS_0_3_COAL_DONE | PORTS_4_7_COAL_DONE |
  946. ALL_PORTS_COAL_DONE;
  947. /* Disable IRQ coalescing if either threshold is zero */
  948. if (!usecs || !count) {
  949. clks = count = 0;
  950. } else {
  951. /* Respect maximum limits of the hardware */
  952. clks = usecs * COAL_CLOCKS_PER_USEC;
  953. if (clks > MAX_COAL_TIME_THRESHOLD)
  954. clks = MAX_COAL_TIME_THRESHOLD;
  955. if (count > MAX_COAL_IO_COUNT)
  956. count = MAX_COAL_IO_COUNT;
  957. }
  958. spin_lock_irqsave(&host->lock, flags);
  959. mv_set_main_irq_mask(host, coal_disable, 0);
  960. if (is_dual_hc && !IS_GEN_I(hpriv)) {
  961. /*
  962. * GEN_II/GEN_IIE with dual host controllers:
  963. * one set of global thresholds for the entire chip.
  964. */
  965. writel(clks, mmio + IRQ_COAL_TIME_THRESHOLD);
  966. writel(count, mmio + IRQ_COAL_IO_THRESHOLD);
  967. /* clear leftover coal IRQ bit */
  968. writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE);
  969. if (count)
  970. coal_enable = ALL_PORTS_COAL_DONE;
  971. clks = count = 0; /* force clearing of regular regs below */
  972. }
  973. /*
  974. * All chips: independent thresholds for each HC on the chip.
  975. */
  976. hc_mmio = mv_hc_base_from_port(mmio, 0);
  977. writel(clks, hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD);
  978. writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD);
  979. writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE);
  980. if (count)
  981. coal_enable |= PORTS_0_3_COAL_DONE;
  982. if (is_dual_hc) {
  983. hc_mmio = mv_hc_base_from_port(mmio, MV_PORTS_PER_HC);
  984. writel(clks, hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD);
  985. writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD);
  986. writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE);
  987. if (count)
  988. coal_enable |= PORTS_4_7_COAL_DONE;
  989. }
  990. mv_set_main_irq_mask(host, 0, coal_enable);
  991. spin_unlock_irqrestore(&host->lock, flags);
  992. }
  993. /*
  994. * mv_start_edma - Enable eDMA engine
  995. * @pp: port private data
  996. *
  997. * Verify the local cache of the eDMA state is accurate with a
  998. * WARN_ON.
  999. *
  1000. * LOCKING:
  1001. * Inherited from caller.
  1002. */
  1003. static void mv_start_edma(struct ata_port *ap, void __iomem *port_mmio,
  1004. struct mv_port_priv *pp, u8 protocol)
  1005. {
  1006. int want_ncq = (protocol == ATA_PROT_NCQ);
  1007. if (pp->pp_flags & MV_PP_FLAG_EDMA_EN) {
  1008. int using_ncq = ((pp->pp_flags & MV_PP_FLAG_NCQ_EN) != 0);
  1009. if (want_ncq != using_ncq)
  1010. mv_stop_edma(ap);
  1011. }
  1012. if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) {
  1013. struct mv_host_priv *hpriv = ap->host->private_data;
  1014. mv_edma_cfg(ap, want_ncq, 1);
  1015. mv_set_edma_ptrs(port_mmio, hpriv, pp);
  1016. mv_clear_and_enable_port_irqs(ap, port_mmio, DONE_IRQ|ERR_IRQ);
  1017. writelfl(EDMA_EN, port_mmio + EDMA_CMD);
  1018. pp->pp_flags |= MV_PP_FLAG_EDMA_EN;
  1019. }
  1020. }
  1021. static void mv_wait_for_edma_empty_idle(struct ata_port *ap)
  1022. {
  1023. void __iomem *port_mmio = mv_ap_base(ap);
  1024. const u32 empty_idle = (EDMA_STATUS_CACHE_EMPTY | EDMA_STATUS_IDLE);
  1025. const int per_loop = 5, timeout = (15 * 1000 / per_loop);
  1026. int i;
  1027. /*
  1028. * Wait for the EDMA engine to finish transactions in progress.
  1029. * No idea what a good "timeout" value might be, but measurements
  1030. * indicate that it often requires hundreds of microseconds
  1031. * with two drives in-use. So we use the 15msec value above
  1032. * as a rough guess at what even more drives might require.
  1033. */
  1034. for (i = 0; i < timeout; ++i) {
  1035. u32 edma_stat = readl(port_mmio + EDMA_STATUS);
  1036. if ((edma_stat & empty_idle) == empty_idle)
  1037. break;
  1038. udelay(per_loop);
  1039. }
  1040. /* ata_port_info(ap, "%s: %u+ usecs\n", __func__, i); */
  1041. }
  1042. /**
  1043. * mv_stop_edma_engine - Disable eDMA engine
  1044. * @port_mmio: io base address
  1045. *
  1046. * LOCKING:
  1047. * Inherited from caller.
  1048. */
  1049. static int mv_stop_edma_engine(void __iomem *port_mmio)
  1050. {
  1051. int i;
  1052. /* Disable eDMA. The disable bit auto clears. */
  1053. writelfl(EDMA_DS, port_mmio + EDMA_CMD);
  1054. /* Wait for the chip to confirm eDMA is off. */
  1055. for (i = 10000; i > 0; i--) {
  1056. u32 reg = readl(port_mmio + EDMA_CMD);
  1057. if (!(reg & EDMA_EN))
  1058. return 0;
  1059. udelay(10);
  1060. }
  1061. return -EIO;
  1062. }
  1063. static int mv_stop_edma(struct ata_port *ap)
  1064. {
  1065. void __iomem *port_mmio = mv_ap_base(ap);
  1066. struct mv_port_priv *pp = ap->private_data;
  1067. int err = 0;
  1068. if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
  1069. return 0;
  1070. pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
  1071. mv_wait_for_edma_empty_idle(ap);
  1072. if (mv_stop_edma_engine(port_mmio)) {
  1073. ata_port_err(ap, "Unable to stop eDMA\n");
  1074. err = -EIO;
  1075. }
  1076. mv_edma_cfg(ap, 0, 0);
  1077. return err;
  1078. }
  1079. static void mv_dump_mem(struct device *dev, void __iomem *start, unsigned bytes)
  1080. {
  1081. int b, w, o;
  1082. unsigned char linebuf[38];
  1083. for (b = 0; b < bytes; ) {
  1084. for (w = 0, o = 0; b < bytes && w < 4; w++) {
  1085. o += scnprintf(linebuf + o, sizeof(linebuf) - o,
  1086. "%08x ", readl(start + b));
  1087. b += sizeof(u32);
  1088. }
  1089. dev_dbg(dev, "%s: %p: %s\n",
  1090. __func__, start + b, linebuf);
  1091. }
  1092. }
  1093. static void mv_dump_pci_cfg(struct pci_dev *pdev, unsigned bytes)
  1094. {
  1095. int b, w, o;
  1096. u32 dw = 0;
  1097. unsigned char linebuf[38];
  1098. for (b = 0; b < bytes; ) {
  1099. for (w = 0, o = 0; b < bytes && w < 4; w++) {
  1100. (void) pci_read_config_dword(pdev, b, &dw);
  1101. o += snprintf(linebuf + o, sizeof(linebuf) - o,
  1102. "%08x ", dw);
  1103. b += sizeof(u32);
  1104. }
  1105. dev_dbg(&pdev->dev, "%s: %02x: %s\n",
  1106. __func__, b, linebuf);
  1107. }
  1108. }
  1109. static void mv_dump_all_regs(void __iomem *mmio_base,
  1110. struct pci_dev *pdev)
  1111. {
  1112. void __iomem *hc_base;
  1113. void __iomem *port_base;
  1114. int start_port, num_ports, p, start_hc, num_hcs, hc;
  1115. start_hc = start_port = 0;
  1116. num_ports = 8; /* should be benign for 4 port devs */
  1117. num_hcs = 2;
  1118. dev_dbg(&pdev->dev,
  1119. "%s: All registers for port(s) %u-%u:\n", __func__,
  1120. start_port, num_ports > 1 ? num_ports - 1 : start_port);
  1121. dev_dbg(&pdev->dev, "%s: PCI config space regs:\n", __func__);
  1122. mv_dump_pci_cfg(pdev, 0x68);
  1123. dev_dbg(&pdev->dev, "%s: PCI regs:\n", __func__);
  1124. mv_dump_mem(&pdev->dev, mmio_base+0xc00, 0x3c);
  1125. mv_dump_mem(&pdev->dev, mmio_base+0xd00, 0x34);
  1126. mv_dump_mem(&pdev->dev, mmio_base+0xf00, 0x4);
  1127. mv_dump_mem(&pdev->dev, mmio_base+0x1d00, 0x6c);
  1128. for (hc = start_hc; hc < start_hc + num_hcs; hc++) {
  1129. hc_base = mv_hc_base(mmio_base, hc);
  1130. dev_dbg(&pdev->dev, "%s: HC regs (HC %i):\n", __func__, hc);
  1131. mv_dump_mem(&pdev->dev, hc_base, 0x1c);
  1132. }
  1133. for (p = start_port; p < start_port + num_ports; p++) {
  1134. port_base = mv_port_base(mmio_base, p);
  1135. dev_dbg(&pdev->dev, "%s: EDMA regs (port %i):\n", __func__, p);
  1136. mv_dump_mem(&pdev->dev, port_base, 0x54);
  1137. dev_dbg(&pdev->dev, "%s: SATA regs (port %i):\n", __func__, p);
  1138. mv_dump_mem(&pdev->dev, port_base+0x300, 0x60);
  1139. }
  1140. }
  1141. static unsigned int mv_scr_offset(unsigned int sc_reg_in)
  1142. {
  1143. unsigned int ofs;
  1144. switch (sc_reg_in) {
  1145. case SCR_STATUS:
  1146. case SCR_CONTROL:
  1147. case SCR_ERROR:
  1148. ofs = SATA_STATUS + (sc_reg_in * sizeof(u32));
  1149. break;
  1150. case SCR_ACTIVE:
  1151. ofs = SATA_ACTIVE; /* active is not with the others */
  1152. break;
  1153. default:
  1154. ofs = 0xffffffffU;
  1155. break;
  1156. }
  1157. return ofs;
  1158. }
  1159. static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
  1160. {
  1161. unsigned int ofs = mv_scr_offset(sc_reg_in);
  1162. if (ofs != 0xffffffffU) {
  1163. *val = readl(mv_ap_base(link->ap) + ofs);
  1164. return 0;
  1165. } else
  1166. return -EINVAL;
  1167. }
  1168. static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
  1169. {
  1170. unsigned int ofs = mv_scr_offset(sc_reg_in);
  1171. if (ofs != 0xffffffffU) {
  1172. void __iomem *addr = mv_ap_base(link->ap) + ofs;
  1173. struct mv_host_priv *hpriv = link->ap->host->private_data;
  1174. if (sc_reg_in == SCR_CONTROL) {
  1175. /*
  1176. * Workaround for 88SX60x1 FEr SATA#26:
  1177. *
  1178. * COMRESETs have to take care not to accidentally
  1179. * put the drive to sleep when writing SCR_CONTROL.
  1180. * Setting bits 12..15 prevents this problem.
  1181. *
  1182. * So if we see an outbound COMMRESET, set those bits.
  1183. * Ditto for the followup write that clears the reset.
  1184. *
  1185. * The proprietary driver does this for
  1186. * all chip versions, and so do we.
  1187. */
  1188. if ((val & 0xf) == 1 || (readl(addr) & 0xf) == 1)
  1189. val |= 0xf000;
  1190. if (hpriv->hp_flags & MV_HP_FIX_LP_PHY_CTL) {
  1191. void __iomem *lp_phy_addr =
  1192. mv_ap_base(link->ap) + LP_PHY_CTL;
  1193. /*
  1194. * Set PHY speed according to SControl speed.
  1195. */
  1196. u32 lp_phy_val =
  1197. LP_PHY_CTL_PIN_PU_PLL |
  1198. LP_PHY_CTL_PIN_PU_RX |
  1199. LP_PHY_CTL_PIN_PU_TX;
  1200. if ((val & 0xf0) != 0x10)
  1201. lp_phy_val |=
  1202. LP_PHY_CTL_GEN_TX_3G |
  1203. LP_PHY_CTL_GEN_RX_3G;
  1204. writelfl(lp_phy_val, lp_phy_addr);
  1205. }
  1206. }
  1207. writelfl(val, addr);
  1208. return 0;
  1209. } else
  1210. return -EINVAL;
  1211. }
  1212. static void mv6_dev_config(struct ata_device *adev)
  1213. {
  1214. /*
  1215. * Deal with Gen-II ("mv6") hardware quirks/restrictions:
  1216. *
  1217. * Gen-II does not support NCQ over a port multiplier
  1218. * (no FIS-based switching).
  1219. */
  1220. if (adev->flags & ATA_DFLAG_NCQ) {
  1221. if (sata_pmp_attached(adev->link->ap)) {
  1222. adev->flags &= ~ATA_DFLAG_NCQ;
  1223. ata_dev_info(adev,
  1224. "NCQ disabled for command-based switching\n");
  1225. }
  1226. }
  1227. }
  1228. static int mv_qc_defer(struct ata_queued_cmd *qc)
  1229. {
  1230. struct ata_link *link = qc->dev->link;
  1231. struct ata_port *ap = link->ap;
  1232. struct mv_port_priv *pp = ap->private_data;
  1233. /*
  1234. * Don't allow new commands if we're in a delayed EH state
  1235. * for NCQ and/or FIS-based switching.
  1236. */
  1237. if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
  1238. return ATA_DEFER_PORT;
  1239. /* PIO commands need exclusive link: no other commands [DMA or PIO]
  1240. * can run concurrently.
  1241. * set excl_link when we want to send a PIO command in DMA mode
  1242. * or a non-NCQ command in NCQ mode.
  1243. * When we receive a command from that link, and there are no
  1244. * outstanding commands, mark a flag to clear excl_link and let
  1245. * the command go through.
  1246. */
  1247. if (unlikely(ap->excl_link)) {
  1248. if (link == ap->excl_link) {
  1249. if (ap->nr_active_links)
  1250. return ATA_DEFER_PORT;
  1251. qc->flags |= ATA_QCFLAG_CLEAR_EXCL;
  1252. return 0;
  1253. } else
  1254. return ATA_DEFER_PORT;
  1255. }
  1256. /*
  1257. * If the port is completely idle, then allow the new qc.
  1258. */
  1259. if (ap->nr_active_links == 0)
  1260. return 0;
  1261. /*
  1262. * The port is operating in host queuing mode (EDMA) with NCQ
  1263. * enabled, allow multiple NCQ commands. EDMA also allows
  1264. * queueing multiple DMA commands but libata core currently
  1265. * doesn't allow it.
  1266. */
  1267. if ((pp->pp_flags & MV_PP_FLAG_EDMA_EN) &&
  1268. (pp->pp_flags & MV_PP_FLAG_NCQ_EN)) {
  1269. if (ata_is_ncq(qc->tf.protocol))
  1270. return 0;
  1271. else {
  1272. ap->excl_link = link;
  1273. return ATA_DEFER_PORT;
  1274. }
  1275. }
  1276. return ATA_DEFER_PORT;
  1277. }
  1278. static void mv_config_fbs(struct ata_port *ap, int want_ncq, int want_fbs)
  1279. {
  1280. struct mv_port_priv *pp = ap->private_data;
  1281. void __iomem *port_mmio;
  1282. u32 fiscfg, *old_fiscfg = &pp->cached.fiscfg;
  1283. u32 ltmode, *old_ltmode = &pp->cached.ltmode;
  1284. u32 haltcond, *old_haltcond = &pp->cached.haltcond;
  1285. ltmode = *old_ltmode & ~LTMODE_BIT8;
  1286. haltcond = *old_haltcond | EDMA_ERR_DEV;
  1287. if (want_fbs) {
  1288. fiscfg = *old_fiscfg | FISCFG_SINGLE_SYNC;
  1289. ltmode = *old_ltmode | LTMODE_BIT8;
  1290. if (want_ncq)
  1291. haltcond &= ~EDMA_ERR_DEV;
  1292. else
  1293. fiscfg |= FISCFG_WAIT_DEV_ERR;
  1294. } else {
  1295. fiscfg = *old_fiscfg & ~(FISCFG_SINGLE_SYNC | FISCFG_WAIT_DEV_ERR);
  1296. }
  1297. port_mmio = mv_ap_base(ap);
  1298. mv_write_cached_reg(port_mmio + FISCFG, old_fiscfg, fiscfg);
  1299. mv_write_cached_reg(port_mmio + LTMODE, old_ltmode, ltmode);
  1300. mv_write_cached_reg(port_mmio + EDMA_HALTCOND, old_haltcond, haltcond);
  1301. }
  1302. static void mv_60x1_errata_sata25(struct ata_port *ap, int want_ncq)
  1303. {
  1304. struct mv_host_priv *hpriv = ap->host->private_data;
  1305. u32 old, new;
  1306. /* workaround for 88SX60x1 FEr SATA#25 (part 1) */
  1307. old = readl(hpriv->base + GPIO_PORT_CTL);
  1308. if (want_ncq)
  1309. new = old | (1 << 22);
  1310. else
  1311. new = old & ~(1 << 22);
  1312. if (new != old)
  1313. writel(new, hpriv->base + GPIO_PORT_CTL);
  1314. }
  1315. /*
  1316. * mv_bmdma_enable - set a magic bit on GEN_IIE to allow bmdma
  1317. * @ap: Port being initialized
  1318. *
  1319. * There are two DMA modes on these chips: basic DMA, and EDMA.
  1320. *
  1321. * Bit-0 of the "EDMA RESERVED" register enables/disables use
  1322. * of basic DMA on the GEN_IIE versions of the chips.
  1323. *
  1324. * This bit survives EDMA resets, and must be set for basic DMA
  1325. * to function, and should be cleared when EDMA is active.
  1326. */
  1327. static void mv_bmdma_enable_iie(struct ata_port *ap, int enable_bmdma)
  1328. {
  1329. struct mv_port_priv *pp = ap->private_data;
  1330. u32 new, *old = &pp->cached.unknown_rsvd;
  1331. if (enable_bmdma)
  1332. new = *old | 1;
  1333. else
  1334. new = *old & ~1;
  1335. mv_write_cached_reg(mv_ap_base(ap) + EDMA_UNKNOWN_RSVD, old, new);
  1336. }
  1337. /*
  1338. * SOC chips have an issue whereby the HDD LEDs don't always blink
  1339. * during I/O when NCQ is enabled. Enabling a special "LED blink" mode
  1340. * of the SOC takes care of it, generating a steady blink rate when
  1341. * any drive on the chip is active.
  1342. *
  1343. * Unfortunately, the blink mode is a global hardware setting for the SOC,
  1344. * so we must use it whenever at least one port on the SOC has NCQ enabled.
  1345. *
  1346. * We turn "LED blink" off when NCQ is not in use anywhere, because the normal
  1347. * LED operation works then, and provides better (more accurate) feedback.
  1348. *
  1349. * Note that this code assumes that an SOC never has more than one HC onboard.
  1350. */
  1351. static void mv_soc_led_blink_enable(struct ata_port *ap)
  1352. {
  1353. struct ata_host *host = ap->host;
  1354. struct mv_host_priv *hpriv = host->private_data;
  1355. void __iomem *hc_mmio;
  1356. u32 led_ctrl;
  1357. if (hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN)
  1358. return;
  1359. hpriv->hp_flags |= MV_HP_QUIRK_LED_BLINK_EN;
  1360. hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no);
  1361. led_ctrl = readl(hc_mmio + SOC_LED_CTRL);
  1362. writel(led_ctrl | SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL);
  1363. }
  1364. static void mv_soc_led_blink_disable(struct ata_port *ap)
  1365. {
  1366. struct ata_host *host = ap->host;
  1367. struct mv_host_priv *hpriv = host->private_data;
  1368. void __iomem *hc_mmio;
  1369. u32 led_ctrl;
  1370. unsigned int port;
  1371. if (!(hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN))
  1372. return;
  1373. /* disable led-blink only if no ports are using NCQ */
  1374. for (port = 0; port < hpriv->n_ports; port++) {
  1375. struct ata_port *this_ap = host->ports[port];
  1376. struct mv_port_priv *pp = this_ap->private_data;
  1377. if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
  1378. return;
  1379. }
  1380. hpriv->hp_flags &= ~MV_HP_QUIRK_LED_BLINK_EN;
  1381. hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no);
  1382. led_ctrl = readl(hc_mmio + SOC_LED_CTRL);
  1383. writel(led_ctrl & ~SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL);
  1384. }
  1385. static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma)
  1386. {
  1387. u32 cfg;
  1388. struct mv_port_priv *pp = ap->private_data;
  1389. struct mv_host_priv *hpriv = ap->host->private_data;
  1390. void __iomem *port_mmio = mv_ap_base(ap);
  1391. /* set up non-NCQ EDMA configuration */
  1392. cfg = EDMA_CFG_Q_DEPTH; /* always 0x1f for *all* chips */
  1393. pp->pp_flags &=
  1394. ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY);
  1395. if (IS_GEN_I(hpriv))
  1396. cfg |= (1 << 8); /* enab config burst size mask */
  1397. else if (IS_GEN_II(hpriv)) {
  1398. cfg |= EDMA_CFG_RD_BRST_EXT | EDMA_CFG_WR_BUFF_LEN;
  1399. mv_60x1_errata_sata25(ap, want_ncq);
  1400. } else if (IS_GEN_IIE(hpriv)) {
  1401. int want_fbs = sata_pmp_attached(ap);
  1402. /*
  1403. * Possible future enhancement:
  1404. *
  1405. * The chip can use FBS with non-NCQ, if we allow it,
  1406. * But first we need to have the error handling in place
  1407. * for this mode (datasheet section 7.3.15.4.2.3).
  1408. * So disallow non-NCQ FBS for now.
  1409. */
  1410. want_fbs &= want_ncq;
  1411. mv_config_fbs(ap, want_ncq, want_fbs);
  1412. if (want_fbs) {
  1413. pp->pp_flags |= MV_PP_FLAG_FBS_EN;
  1414. cfg |= EDMA_CFG_EDMA_FBS; /* FIS-based switching */
  1415. }
  1416. cfg |= (1 << 23); /* do not mask PM field in rx'd FIS */
  1417. if (want_edma) {
  1418. cfg |= (1 << 22); /* enab 4-entry host queue cache */
  1419. if (!IS_SOC(hpriv))
  1420. cfg |= (1 << 18); /* enab early completion */
  1421. }
  1422. if (hpriv->hp_flags & MV_HP_CUT_THROUGH)
  1423. cfg |= (1 << 17); /* enab cut-thru (dis stor&forwrd) */
  1424. mv_bmdma_enable_iie(ap, !want_edma);
  1425. if (IS_SOC(hpriv)) {
  1426. if (want_ncq)
  1427. mv_soc_led_blink_enable(ap);
  1428. else
  1429. mv_soc_led_blink_disable(ap);
  1430. }
  1431. }
  1432. if (want_ncq) {
  1433. cfg |= EDMA_CFG_NCQ;
  1434. pp->pp_flags |= MV_PP_FLAG_NCQ_EN;
  1435. }
  1436. writelfl(cfg, port_mmio + EDMA_CFG);
  1437. }
  1438. static void mv_port_free_dma_mem(struct ata_port *ap)
  1439. {
  1440. struct mv_host_priv *hpriv = ap->host->private_data;
  1441. struct mv_port_priv *pp = ap->private_data;
  1442. int tag;
  1443. if (pp->crqb) {
  1444. dma_pool_free(hpriv->crqb_pool, pp->crqb, pp->crqb_dma);
  1445. pp->crqb = NULL;
  1446. }
  1447. if (pp->crpb) {
  1448. dma_pool_free(hpriv->crpb_pool, pp->crpb, pp->crpb_dma);
  1449. pp->crpb = NULL;
  1450. }
  1451. /*
  1452. * For GEN_I, there's no NCQ, so we have only a single sg_tbl.
  1453. * For later hardware, we have one unique sg_tbl per NCQ tag.
  1454. */
  1455. for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
  1456. if (pp->sg_tbl[tag]) {
  1457. if (tag == 0 || !IS_GEN_I(hpriv))
  1458. dma_pool_free(hpriv->sg_tbl_pool,
  1459. pp->sg_tbl[tag],
  1460. pp->sg_tbl_dma[tag]);
  1461. pp->sg_tbl[tag] = NULL;
  1462. }
  1463. }
  1464. }
  1465. /**
  1466. * mv_port_start - Port specific init/start routine.
  1467. * @ap: ATA channel to manipulate
  1468. *
  1469. * Allocate and point to DMA memory, init port private memory,
  1470. * zero indices.
  1471. *
  1472. * LOCKING:
  1473. * Inherited from caller.
  1474. */
  1475. static int mv_port_start(struct ata_port *ap)
  1476. {
  1477. struct device *dev = ap->host->dev;
  1478. struct mv_host_priv *hpriv = ap->host->private_data;
  1479. struct mv_port_priv *pp;
  1480. unsigned long flags;
  1481. int tag;
  1482. pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL);
  1483. if (!pp)
  1484. return -ENOMEM;
  1485. ap->private_data = pp;
  1486. pp->crqb = dma_pool_zalloc(hpriv->crqb_pool, GFP_KERNEL, &pp->crqb_dma);
  1487. if (!pp->crqb)
  1488. return -ENOMEM;
  1489. pp->crpb = dma_pool_zalloc(hpriv->crpb_pool, GFP_KERNEL, &pp->crpb_dma);
  1490. if (!pp->crpb)
  1491. goto out_port_free_dma_mem;
  1492. /* 6041/6081 Rev. "C0" (and newer) are okay with async notify */
  1493. if (hpriv->hp_flags & MV_HP_ERRATA_60X1C0)
  1494. ap->flags |= ATA_FLAG_AN;
  1495. /*
  1496. * For GEN_I, there's no NCQ, so we only allocate a single sg_tbl.
  1497. * For later hardware, we need one unique sg_tbl per NCQ tag.
  1498. */
  1499. for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
  1500. if (tag == 0 || !IS_GEN_I(hpriv)) {
  1501. pp->sg_tbl[tag] = dma_pool_alloc(hpriv->sg_tbl_pool,
  1502. GFP_KERNEL, &pp->sg_tbl_dma[tag]);
  1503. if (!pp->sg_tbl[tag])
  1504. goto out_port_free_dma_mem;
  1505. } else {
  1506. pp->sg_tbl[tag] = pp->sg_tbl[0];
  1507. pp->sg_tbl_dma[tag] = pp->sg_tbl_dma[0];
  1508. }
  1509. }
  1510. spin_lock_irqsave(ap->lock, flags);
  1511. mv_save_cached_regs(ap);
  1512. mv_edma_cfg(ap, 0, 0);
  1513. spin_unlock_irqrestore(ap->lock, flags);
  1514. return 0;
  1515. out_port_free_dma_mem:
  1516. mv_port_free_dma_mem(ap);
  1517. return -ENOMEM;
  1518. }
  1519. /**
  1520. * mv_port_stop - Port specific cleanup/stop routine.
  1521. * @ap: ATA channel to manipulate
  1522. *
  1523. * Stop DMA, cleanup port memory.
  1524. *
  1525. * LOCKING:
  1526. * This routine uses the host lock to protect the DMA stop.
  1527. */
  1528. static void mv_port_stop(struct ata_port *ap)
  1529. {
  1530. unsigned long flags;
  1531. spin_lock_irqsave(ap->lock, flags);
  1532. mv_stop_edma(ap);
  1533. mv_enable_port_irqs(ap, 0);
  1534. spin_unlock_irqrestore(ap->lock, flags);
  1535. mv_port_free_dma_mem(ap);
  1536. }
  1537. /**
  1538. * mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries
  1539. * @qc: queued command whose SG list to source from
  1540. *
  1541. * Populate the SG list and mark the last entry.
  1542. *
  1543. * LOCKING:
  1544. * Inherited from caller.
  1545. */
  1546. static void mv_fill_sg(struct ata_queued_cmd *qc)
  1547. {
  1548. struct mv_port_priv *pp = qc->ap->private_data;
  1549. struct scatterlist *sg;
  1550. struct mv_sg *mv_sg, *last_sg = NULL;
  1551. unsigned int si;
  1552. mv_sg = pp->sg_tbl[qc->hw_tag];
  1553. for_each_sg(qc->sg, sg, qc->n_elem, si) {
  1554. dma_addr_t addr = sg_dma_address(sg);
  1555. u32 sg_len = sg_dma_len(sg);
  1556. while (sg_len) {
  1557. u32 offset = addr & 0xffff;
  1558. u32 len = sg_len;
  1559. if (offset + len > 0x10000)
  1560. len = 0x10000 - offset;
  1561. mv_sg->addr = cpu_to_le32(addr & 0xffffffff);
  1562. mv_sg->addr_hi = cpu_to_le32((addr >> 16) >> 16);
  1563. mv_sg->flags_size = cpu_to_le32(len & 0xffff);
  1564. mv_sg->reserved = 0;
  1565. sg_len -= len;
  1566. addr += len;
  1567. last_sg = mv_sg;
  1568. mv_sg++;
  1569. }
  1570. }
  1571. if (likely(last_sg))
  1572. last_sg->flags_size |= cpu_to_le32(EPRD_FLAG_END_OF_TBL);
  1573. mb(); /* ensure data structure is visible to the chipset */
  1574. }
  1575. static void mv_crqb_pack_cmd(__le16 *cmdw, u8 data, u8 addr, unsigned last)
  1576. {
  1577. u16 tmp = data | (addr << CRQB_CMD_ADDR_SHIFT) | CRQB_CMD_CS |
  1578. (last ? CRQB_CMD_LAST : 0);
  1579. *cmdw = cpu_to_le16(tmp);
  1580. }
  1581. /**
  1582. * mv_sff_irq_clear - Clear hardware interrupt after DMA.
  1583. * @ap: Port associated with this ATA transaction.
  1584. *
  1585. * We need this only for ATAPI bmdma transactions,
  1586. * as otherwise we experience spurious interrupts
  1587. * after libata-sff handles the bmdma interrupts.
  1588. */
  1589. static void mv_sff_irq_clear(struct ata_port *ap)
  1590. {
  1591. mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), ERR_IRQ);
  1592. }
  1593. /**
  1594. * mv_check_atapi_dma - Filter ATAPI cmds which are unsuitable for DMA.
  1595. * @qc: queued command to check for chipset/DMA compatibility.
  1596. *
  1597. * The bmdma engines cannot handle speculative data sizes
  1598. * (bytecount under/over flow). So only allow DMA for
  1599. * data transfer commands with known data sizes.
  1600. *
  1601. * LOCKING:
  1602. * Inherited from caller.
  1603. */
  1604. static int mv_check_atapi_dma(struct ata_queued_cmd *qc)
  1605. {
  1606. struct scsi_cmnd *scmd = qc->scsicmd;
  1607. if (scmd) {
  1608. switch (scmd->cmnd[0]) {
  1609. case READ_6:
  1610. case READ_10:
  1611. case READ_12:
  1612. case WRITE_6:
  1613. case WRITE_10:
  1614. case WRITE_12:
  1615. case GPCMD_READ_CD:
  1616. case GPCMD_SEND_DVD_STRUCTURE:
  1617. case GPCMD_SEND_CUE_SHEET:
  1618. return 0; /* DMA is safe */
  1619. }
  1620. }
  1621. return -EOPNOTSUPP; /* use PIO instead */
  1622. }
  1623. /**
  1624. * mv_bmdma_setup - Set up BMDMA transaction
  1625. * @qc: queued command to prepare DMA for.
  1626. *
  1627. * LOCKING:
  1628. * Inherited from caller.
  1629. */
  1630. static void mv_bmdma_setup(struct ata_queued_cmd *qc)
  1631. {
  1632. struct ata_port *ap = qc->ap;
  1633. void __iomem *port_mmio = mv_ap_base(ap);
  1634. struct mv_port_priv *pp = ap->private_data;
  1635. mv_fill_sg(qc);
  1636. /* clear all DMA cmd bits */
  1637. writel(0, port_mmio + BMDMA_CMD);
  1638. /* load PRD table addr. */
  1639. writel((pp->sg_tbl_dma[qc->hw_tag] >> 16) >> 16,
  1640. port_mmio + BMDMA_PRD_HIGH);
  1641. writelfl(pp->sg_tbl_dma[qc->hw_tag],
  1642. port_mmio + BMDMA_PRD_LOW);
  1643. /* issue r/w command */
  1644. ap->ops->sff_exec_command(ap, &qc->tf);
  1645. }
  1646. /**
  1647. * mv_bmdma_start - Start a BMDMA transaction
  1648. * @qc: queued command to start DMA on.
  1649. *
  1650. * LOCKING:
  1651. * Inherited from caller.
  1652. */
  1653. static void mv_bmdma_start(struct ata_queued_cmd *qc)
  1654. {
  1655. struct ata_port *ap = qc->ap;
  1656. void __iomem *port_mmio = mv_ap_base(ap);
  1657. unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
  1658. u32 cmd = (rw ? 0 : ATA_DMA_WR) | ATA_DMA_START;
  1659. /* start host DMA transaction */
  1660. writelfl(cmd, port_mmio + BMDMA_CMD);
  1661. }
  1662. /**
  1663. * mv_bmdma_stop_ap - Stop BMDMA transfer
  1664. * @ap: port to stop
  1665. *
  1666. * Clears the ATA_DMA_START flag in the bmdma control register
  1667. *
  1668. * LOCKING:
  1669. * Inherited from caller.
  1670. */
  1671. static void mv_bmdma_stop_ap(struct ata_port *ap)
  1672. {
  1673. void __iomem *port_mmio = mv_ap_base(ap);
  1674. u32 cmd;
  1675. /* clear start/stop bit */
  1676. cmd = readl(port_mmio + BMDMA_CMD);
  1677. if (cmd & ATA_DMA_START) {
  1678. cmd &= ~ATA_DMA_START;
  1679. writelfl(cmd, port_mmio + BMDMA_CMD);
  1680. /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
  1681. ata_sff_dma_pause(ap);
  1682. }
  1683. }
  1684. static void mv_bmdma_stop(struct ata_queued_cmd *qc)
  1685. {
  1686. mv_bmdma_stop_ap(qc->ap);
  1687. }
  1688. /**
  1689. * mv_bmdma_status - Read BMDMA status
  1690. * @ap: port for which to retrieve DMA status.
  1691. *
  1692. * Read and return equivalent of the sff BMDMA status register.
  1693. *
  1694. * LOCKING:
  1695. * Inherited from caller.
  1696. */
  1697. static u8 mv_bmdma_status(struct ata_port *ap)
  1698. {
  1699. void __iomem *port_mmio = mv_ap_base(ap);
  1700. u32 reg, status;
  1701. /*
  1702. * Other bits are valid only if ATA_DMA_ACTIVE==0,
  1703. * and the ATA_DMA_INTR bit doesn't exist.
  1704. */
  1705. reg = readl(port_mmio + BMDMA_STATUS);
  1706. if (reg & ATA_DMA_ACTIVE)
  1707. status = ATA_DMA_ACTIVE;
  1708. else if (reg & ATA_DMA_ERR)
  1709. status = (reg & ATA_DMA_ERR) | ATA_DMA_INTR;
  1710. else {
  1711. /*
  1712. * Just because DMA_ACTIVE is 0 (DMA completed),
  1713. * this does _not_ mean the device is "done".
  1714. * So we should not yet be signalling ATA_DMA_INTR
  1715. * in some cases. Eg. DSM/TRIM, and perhaps others.
  1716. */
  1717. mv_bmdma_stop_ap(ap);
  1718. if (ioread8(ap->ioaddr.altstatus_addr) & ATA_BUSY)
  1719. status = 0;
  1720. else
  1721. status = ATA_DMA_INTR;
  1722. }
  1723. return status;
  1724. }
  1725. static void mv_rw_multi_errata_sata24(struct ata_queued_cmd *qc)
  1726. {
  1727. struct ata_taskfile *tf = &qc->tf;
  1728. /*
  1729. * Workaround for 88SX60x1 FEr SATA#24.
  1730. *
  1731. * Chip may corrupt WRITEs if multi_count >= 4kB.
  1732. * Note that READs are unaffected.
  1733. *
  1734. * It's not clear if this errata really means "4K bytes",
  1735. * or if it always happens for multi_count > 7
  1736. * regardless of device sector_size.
  1737. *
  1738. * So, for safety, any write with multi_count > 7
  1739. * gets converted here into a regular PIO write instead:
  1740. */
  1741. if ((tf->flags & ATA_TFLAG_WRITE) && is_multi_taskfile(tf)) {
  1742. if (qc->dev->multi_count > 7) {
  1743. switch (tf->command) {
  1744. case ATA_CMD_WRITE_MULTI:
  1745. tf->command = ATA_CMD_PIO_WRITE;
  1746. break;
  1747. case ATA_CMD_WRITE_MULTI_FUA_EXT:
  1748. tf->flags &= ~ATA_TFLAG_FUA; /* ugh */
  1749. fallthrough;
  1750. case ATA_CMD_WRITE_MULTI_EXT:
  1751. tf->command = ATA_CMD_PIO_WRITE_EXT;
  1752. break;
  1753. }
  1754. }
  1755. }
  1756. }
  1757. /**
  1758. * mv_qc_prep - Host specific command preparation.
  1759. * @qc: queued command to prepare
  1760. *
  1761. * This routine simply redirects to the general purpose routine
  1762. * if command is not DMA. Else, it handles prep of the CRQB
  1763. * (command request block), does some sanity checking, and calls
  1764. * the SG load routine.
  1765. *
  1766. * LOCKING:
  1767. * Inherited from caller.
  1768. */
  1769. static enum ata_completion_errors mv_qc_prep(struct ata_queued_cmd *qc)
  1770. {
  1771. struct ata_port *ap = qc->ap;
  1772. struct mv_port_priv *pp = ap->private_data;
  1773. __le16 *cw;
  1774. struct ata_taskfile *tf = &qc->tf;
  1775. u16 flags = 0;
  1776. unsigned in_index;
  1777. switch (tf->protocol) {
  1778. case ATA_PROT_DMA:
  1779. if (tf->command == ATA_CMD_DSM)
  1780. return AC_ERR_OK;
  1781. fallthrough;
  1782. case ATA_PROT_NCQ:
  1783. break; /* continue below */
  1784. case ATA_PROT_PIO:
  1785. mv_rw_multi_errata_sata24(qc);
  1786. return AC_ERR_OK;
  1787. default:
  1788. return AC_ERR_OK;
  1789. }
  1790. /* Fill in command request block
  1791. */
  1792. if (!(tf->flags & ATA_TFLAG_WRITE))
  1793. flags |= CRQB_FLAG_READ;
  1794. WARN_ON(MV_MAX_Q_DEPTH <= qc->hw_tag);
  1795. flags |= qc->hw_tag << CRQB_TAG_SHIFT;
  1796. flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
  1797. /* get current queue index from software */
  1798. in_index = pp->req_idx;
  1799. pp->crqb[in_index].sg_addr =
  1800. cpu_to_le32(pp->sg_tbl_dma[qc->hw_tag] & 0xffffffff);
  1801. pp->crqb[in_index].sg_addr_hi =
  1802. cpu_to_le32((pp->sg_tbl_dma[qc->hw_tag] >> 16) >> 16);
  1803. pp->crqb[in_index].ctrl_flags = cpu_to_le16(flags);
  1804. cw = &pp->crqb[in_index].ata_cmd[0];
  1805. /* Sadly, the CRQB cannot accommodate all registers--there are
  1806. * only 11 bytes...so we must pick and choose required
  1807. * registers based on the command. So, we drop feature and
  1808. * hob_feature for [RW] DMA commands, but they are needed for
  1809. * NCQ. NCQ will drop hob_nsect, which is not needed there
  1810. * (nsect is used only for the tag; feat/hob_feat hold true nsect).
  1811. */
  1812. switch (tf->command) {
  1813. case ATA_CMD_READ:
  1814. case ATA_CMD_READ_EXT:
  1815. case ATA_CMD_WRITE:
  1816. case ATA_CMD_WRITE_EXT:
  1817. case ATA_CMD_WRITE_FUA_EXT:
  1818. mv_crqb_pack_cmd(cw++, tf->hob_nsect, ATA_REG_NSECT, 0);
  1819. break;
  1820. case ATA_CMD_FPDMA_READ:
  1821. case ATA_CMD_FPDMA_WRITE:
  1822. mv_crqb_pack_cmd(cw++, tf->hob_feature, ATA_REG_FEATURE, 0);
  1823. mv_crqb_pack_cmd(cw++, tf->feature, ATA_REG_FEATURE, 0);
  1824. break;
  1825. default:
  1826. /* The only other commands EDMA supports in non-queued and
  1827. * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none
  1828. * of which are defined/used by Linux. If we get here, this
  1829. * driver needs work.
  1830. */
  1831. ata_port_err(ap, "%s: unsupported command: %.2x\n", __func__,
  1832. tf->command);
  1833. return AC_ERR_INVALID;
  1834. }
  1835. mv_crqb_pack_cmd(cw++, tf->nsect, ATA_REG_NSECT, 0);
  1836. mv_crqb_pack_cmd(cw++, tf->hob_lbal, ATA_REG_LBAL, 0);
  1837. mv_crqb_pack_cmd(cw++, tf->lbal, ATA_REG_LBAL, 0);
  1838. mv_crqb_pack_cmd(cw++, tf->hob_lbam, ATA_REG_LBAM, 0);
  1839. mv_crqb_pack_cmd(cw++, tf->lbam, ATA_REG_LBAM, 0);
  1840. mv_crqb_pack_cmd(cw++, tf->hob_lbah, ATA_REG_LBAH, 0);
  1841. mv_crqb_pack_cmd(cw++, tf->lbah, ATA_REG_LBAH, 0);
  1842. mv_crqb_pack_cmd(cw++, tf->device, ATA_REG_DEVICE, 0);
  1843. mv_crqb_pack_cmd(cw++, tf->command, ATA_REG_CMD, 1); /* last */
  1844. if (!(qc->flags & ATA_QCFLAG_DMAMAP))
  1845. return AC_ERR_OK;
  1846. mv_fill_sg(qc);
  1847. return AC_ERR_OK;
  1848. }
  1849. /**
  1850. * mv_qc_prep_iie - Host specific command preparation.
  1851. * @qc: queued command to prepare
  1852. *
  1853. * This routine simply redirects to the general purpose routine
  1854. * if command is not DMA. Else, it handles prep of the CRQB
  1855. * (command request block), does some sanity checking, and calls
  1856. * the SG load routine.
  1857. *
  1858. * LOCKING:
  1859. * Inherited from caller.
  1860. */
  1861. static enum ata_completion_errors mv_qc_prep_iie(struct ata_queued_cmd *qc)
  1862. {
  1863. struct ata_port *ap = qc->ap;
  1864. struct mv_port_priv *pp = ap->private_data;
  1865. struct mv_crqb_iie *crqb;
  1866. struct ata_taskfile *tf = &qc->tf;
  1867. unsigned in_index;
  1868. u32 flags = 0;
  1869. if ((tf->protocol != ATA_PROT_DMA) &&
  1870. (tf->protocol != ATA_PROT_NCQ))
  1871. return AC_ERR_OK;
  1872. if (tf->command == ATA_CMD_DSM)
  1873. return AC_ERR_OK; /* use bmdma for this */
  1874. /* Fill in Gen IIE command request block */
  1875. if (!(tf->flags & ATA_TFLAG_WRITE))
  1876. flags |= CRQB_FLAG_READ;
  1877. WARN_ON(MV_MAX_Q_DEPTH <= qc->hw_tag);
  1878. flags |= qc->hw_tag << CRQB_TAG_SHIFT;
  1879. flags |= qc->hw_tag << CRQB_HOSTQ_SHIFT;
  1880. flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
  1881. /* get current queue index from software */
  1882. in_index = pp->req_idx;
  1883. crqb = (struct mv_crqb_iie *) &pp->crqb[in_index];
  1884. crqb->addr = cpu_to_le32(pp->sg_tbl_dma[qc->hw_tag] & 0xffffffff);
  1885. crqb->addr_hi = cpu_to_le32((pp->sg_tbl_dma[qc->hw_tag] >> 16) >> 16);
  1886. crqb->flags = cpu_to_le32(flags);
  1887. crqb->ata_cmd[0] = cpu_to_le32(
  1888. (tf->command << 16) |
  1889. (tf->feature << 24)
  1890. );
  1891. crqb->ata_cmd[1] = cpu_to_le32(
  1892. (tf->lbal << 0) |
  1893. (tf->lbam << 8) |
  1894. (tf->lbah << 16) |
  1895. (tf->device << 24)
  1896. );
  1897. crqb->ata_cmd[2] = cpu_to_le32(
  1898. (tf->hob_lbal << 0) |
  1899. (tf->hob_lbam << 8) |
  1900. (tf->hob_lbah << 16) |
  1901. (tf->hob_feature << 24)
  1902. );
  1903. crqb->ata_cmd[3] = cpu_to_le32(
  1904. (tf->nsect << 0) |
  1905. (tf->hob_nsect << 8)
  1906. );
  1907. if (!(qc->flags & ATA_QCFLAG_DMAMAP))
  1908. return AC_ERR_OK;
  1909. mv_fill_sg(qc);
  1910. return AC_ERR_OK;
  1911. }
  1912. /**
  1913. * mv_sff_check_status - fetch device status, if valid
  1914. * @ap: ATA port to fetch status from
  1915. *
  1916. * When using command issue via mv_qc_issue_fis(),
  1917. * the initial ATA_BUSY state does not show up in the
  1918. * ATA status (shadow) register. This can confuse libata!
  1919. *
  1920. * So we have a hook here to fake ATA_BUSY for that situation,
  1921. * until the first time a BUSY, DRQ, or ERR bit is seen.
  1922. *
  1923. * The rest of the time, it simply returns the ATA status register.
  1924. */
  1925. static u8 mv_sff_check_status(struct ata_port *ap)
  1926. {
  1927. u8 stat = ioread8(ap->ioaddr.status_addr);
  1928. struct mv_port_priv *pp = ap->private_data;
  1929. if (pp->pp_flags & MV_PP_FLAG_FAKE_ATA_BUSY) {
  1930. if (stat & (ATA_BUSY | ATA_DRQ | ATA_ERR))
  1931. pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY;
  1932. else
  1933. stat = ATA_BUSY;
  1934. }
  1935. return stat;
  1936. }
  1937. /**
  1938. * mv_send_fis - Send a FIS, using the "Vendor-Unique FIS" register
  1939. * @ap: ATA port to send a FIS
  1940. * @fis: fis to be sent
  1941. * @nwords: number of 32-bit words in the fis
  1942. */
  1943. static unsigned int mv_send_fis(struct ata_port *ap, u32 *fis, int nwords)
  1944. {
  1945. void __iomem *port_mmio = mv_ap_base(ap);
  1946. u32 ifctl, old_ifctl, ifstat;
  1947. int i, timeout = 200, final_word = nwords - 1;
  1948. /* Initiate FIS transmission mode */
  1949. old_ifctl = readl(port_mmio + SATA_IFCTL);
  1950. ifctl = 0x100 | (old_ifctl & 0xf);
  1951. writelfl(ifctl, port_mmio + SATA_IFCTL);
  1952. /* Send all words of the FIS except for the final word */
  1953. for (i = 0; i < final_word; ++i)
  1954. writel(fis[i], port_mmio + VENDOR_UNIQUE_FIS);
  1955. /* Flag end-of-transmission, and then send the final word */
  1956. writelfl(ifctl | 0x200, port_mmio + SATA_IFCTL);
  1957. writelfl(fis[final_word], port_mmio + VENDOR_UNIQUE_FIS);
  1958. /*
  1959. * Wait for FIS transmission to complete.
  1960. * This typically takes just a single iteration.
  1961. */
  1962. do {
  1963. ifstat = readl(port_mmio + SATA_IFSTAT);
  1964. } while (!(ifstat & 0x1000) && --timeout);
  1965. /* Restore original port configuration */
  1966. writelfl(old_ifctl, port_mmio + SATA_IFCTL);
  1967. /* See if it worked */
  1968. if ((ifstat & 0x3000) != 0x1000) {
  1969. ata_port_warn(ap, "%s transmission error, ifstat=%08x\n",
  1970. __func__, ifstat);
  1971. return AC_ERR_OTHER;
  1972. }
  1973. return 0;
  1974. }
  1975. /**
  1976. * mv_qc_issue_fis - Issue a command directly as a FIS
  1977. * @qc: queued command to start
  1978. *
  1979. * Note that the ATA shadow registers are not updated
  1980. * after command issue, so the device will appear "READY"
  1981. * if polled, even while it is BUSY processing the command.
  1982. *
  1983. * So we use a status hook to fake ATA_BUSY until the drive changes state.
  1984. *
  1985. * Note: we don't get updated shadow regs on *completion*
  1986. * of non-data commands. So avoid sending them via this function,
  1987. * as they will appear to have completed immediately.
  1988. *
  1989. * GEN_IIE has special registers that we could get the result tf from,
  1990. * but earlier chipsets do not. For now, we ignore those registers.
  1991. */
  1992. static unsigned int mv_qc_issue_fis(struct ata_queued_cmd *qc)
  1993. {
  1994. struct ata_port *ap = qc->ap;
  1995. struct mv_port_priv *pp = ap->private_data;
  1996. struct ata_link *link = qc->dev->link;
  1997. u32 fis[5];
  1998. int err = 0;
  1999. ata_tf_to_fis(&qc->tf, link->pmp, 1, (void *)fis);
  2000. err = mv_send_fis(ap, fis, ARRAY_SIZE(fis));
  2001. if (err)
  2002. return err;
  2003. switch (qc->tf.protocol) {
  2004. case ATAPI_PROT_PIO:
  2005. pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY;
  2006. fallthrough;
  2007. case ATAPI_PROT_NODATA:
  2008. ap->hsm_task_state = HSM_ST_FIRST;
  2009. break;
  2010. case ATA_PROT_PIO:
  2011. pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY;
  2012. if (qc->tf.flags & ATA_TFLAG_WRITE)
  2013. ap->hsm_task_state = HSM_ST_FIRST;
  2014. else
  2015. ap->hsm_task_state = HSM_ST;
  2016. break;
  2017. default:
  2018. ap->hsm_task_state = HSM_ST_LAST;
  2019. break;
  2020. }
  2021. if (qc->tf.flags & ATA_TFLAG_POLLING)
  2022. ata_sff_queue_pio_task(link, 0);
  2023. return 0;
  2024. }
  2025. /**
  2026. * mv_qc_issue - Initiate a command to the host
  2027. * @qc: queued command to start
  2028. *
  2029. * This routine simply redirects to the general purpose routine
  2030. * if command is not DMA. Else, it sanity checks our local
  2031. * caches of the request producer/consumer indices then enables
  2032. * DMA and bumps the request producer index.
  2033. *
  2034. * LOCKING:
  2035. * Inherited from caller.
  2036. */
  2037. static unsigned int mv_qc_issue(struct ata_queued_cmd *qc)
  2038. {
  2039. static int limit_warnings = 10;
  2040. struct ata_port *ap = qc->ap;
  2041. void __iomem *port_mmio = mv_ap_base(ap);
  2042. struct mv_port_priv *pp = ap->private_data;
  2043. u32 in_index;
  2044. unsigned int port_irqs;
  2045. pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY; /* paranoia */
  2046. switch (qc->tf.protocol) {
  2047. case ATA_PROT_DMA:
  2048. if (qc->tf.command == ATA_CMD_DSM) {
  2049. if (!ap->ops->bmdma_setup) /* no bmdma on GEN_I */
  2050. return AC_ERR_OTHER;
  2051. break; /* use bmdma for this */
  2052. }
  2053. fallthrough;
  2054. case ATA_PROT_NCQ:
  2055. mv_start_edma(ap, port_mmio, pp, qc->tf.protocol);
  2056. pp->req_idx = (pp->req_idx + 1) & MV_MAX_Q_DEPTH_MASK;
  2057. in_index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
  2058. /* Write the request in pointer to kick the EDMA to life */
  2059. writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | in_index,
  2060. port_mmio + EDMA_REQ_Q_IN_PTR);
  2061. return 0;
  2062. case ATA_PROT_PIO:
  2063. /*
  2064. * Errata SATA#16, SATA#24: warn if multiple DRQs expected.
  2065. *
  2066. * Someday, we might implement special polling workarounds
  2067. * for these, but it all seems rather unnecessary since we
  2068. * normally use only DMA for commands which transfer more
  2069. * than a single block of data.
  2070. *
  2071. * Much of the time, this could just work regardless.
  2072. * So for now, just log the incident, and allow the attempt.
  2073. */
  2074. if (limit_warnings > 0 && (qc->nbytes / qc->sect_size) > 1) {
  2075. --limit_warnings;
  2076. ata_link_warn(qc->dev->link, DRV_NAME
  2077. ": attempting PIO w/multiple DRQ: "
  2078. "this may fail due to h/w errata\n");
  2079. }
  2080. fallthrough;
  2081. case ATA_PROT_NODATA:
  2082. case ATAPI_PROT_PIO:
  2083. case ATAPI_PROT_NODATA:
  2084. if (ap->flags & ATA_FLAG_PIO_POLLING)
  2085. qc->tf.flags |= ATA_TFLAG_POLLING;
  2086. break;
  2087. }
  2088. if (qc->tf.flags & ATA_TFLAG_POLLING)
  2089. port_irqs = ERR_IRQ; /* mask device interrupt when polling */
  2090. else
  2091. port_irqs = ERR_IRQ | DONE_IRQ; /* unmask all interrupts */
  2092. /*
  2093. * We're about to send a non-EDMA capable command to the
  2094. * port. Turn off EDMA so there won't be problems accessing
  2095. * shadow block, etc registers.
  2096. */
  2097. mv_stop_edma(ap);
  2098. mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), port_irqs);
  2099. mv_pmp_select(ap, qc->dev->link->pmp);
  2100. if (qc->tf.command == ATA_CMD_READ_LOG_EXT) {
  2101. struct mv_host_priv *hpriv = ap->host->private_data;
  2102. /*
  2103. * Workaround for 88SX60x1 FEr SATA#25 (part 2).
  2104. *
  2105. * After any NCQ error, the READ_LOG_EXT command
  2106. * from libata-eh *must* use mv_qc_issue_fis().
  2107. * Otherwise it might fail, due to chip errata.
  2108. *
  2109. * Rather than special-case it, we'll just *always*
  2110. * use this method here for READ_LOG_EXT, making for
  2111. * easier testing.
  2112. */
  2113. if (IS_GEN_II(hpriv))
  2114. return mv_qc_issue_fis(qc);
  2115. }
  2116. return ata_bmdma_qc_issue(qc);
  2117. }
  2118. static struct ata_queued_cmd *mv_get_active_qc(struct ata_port *ap)
  2119. {
  2120. struct mv_port_priv *pp = ap->private_data;
  2121. struct ata_queued_cmd *qc;
  2122. if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
  2123. return NULL;
  2124. qc = ata_qc_from_tag(ap, ap->link.active_tag);
  2125. if (qc && !(qc->tf.flags & ATA_TFLAG_POLLING))
  2126. return qc;
  2127. return NULL;
  2128. }
  2129. static void mv_pmp_error_handler(struct ata_port *ap)
  2130. {
  2131. unsigned int pmp, pmp_map;
  2132. struct mv_port_priv *pp = ap->private_data;
  2133. if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH) {
  2134. /*
  2135. * Perform NCQ error analysis on failed PMPs
  2136. * before we freeze the port entirely.
  2137. *
  2138. * The failed PMPs are marked earlier by mv_pmp_eh_prep().
  2139. */
  2140. pmp_map = pp->delayed_eh_pmp_map;
  2141. pp->pp_flags &= ~MV_PP_FLAG_DELAYED_EH;
  2142. for (pmp = 0; pmp_map != 0; pmp++) {
  2143. unsigned int this_pmp = (1 << pmp);
  2144. if (pmp_map & this_pmp) {
  2145. struct ata_link *link = &ap->pmp_link[pmp];
  2146. pmp_map &= ~this_pmp;
  2147. ata_eh_analyze_ncq_error(link);
  2148. }
  2149. }
  2150. ata_port_freeze(ap);
  2151. }
  2152. sata_pmp_error_handler(ap);
  2153. }
  2154. static unsigned int mv_get_err_pmp_map(struct ata_port *ap)
  2155. {
  2156. void __iomem *port_mmio = mv_ap_base(ap);
  2157. return readl(port_mmio + SATA_TESTCTL) >> 16;
  2158. }
  2159. static void mv_pmp_eh_prep(struct ata_port *ap, unsigned int pmp_map)
  2160. {
  2161. unsigned int pmp;
  2162. /*
  2163. * Initialize EH info for PMPs which saw device errors
  2164. */
  2165. for (pmp = 0; pmp_map != 0; pmp++) {
  2166. unsigned int this_pmp = (1 << pmp);
  2167. if (pmp_map & this_pmp) {
  2168. struct ata_link *link = &ap->pmp_link[pmp];
  2169. struct ata_eh_info *ehi = &link->eh_info;
  2170. pmp_map &= ~this_pmp;
  2171. ata_ehi_clear_desc(ehi);
  2172. ata_ehi_push_desc(ehi, "dev err");
  2173. ehi->err_mask |= AC_ERR_DEV;
  2174. ehi->action |= ATA_EH_RESET;
  2175. ata_link_abort(link);
  2176. }
  2177. }
  2178. }
  2179. static int mv_req_q_empty(struct ata_port *ap)
  2180. {
  2181. void __iomem *port_mmio = mv_ap_base(ap);
  2182. u32 in_ptr, out_ptr;
  2183. in_ptr = (readl(port_mmio + EDMA_REQ_Q_IN_PTR)
  2184. >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
  2185. out_ptr = (readl(port_mmio + EDMA_REQ_Q_OUT_PTR)
  2186. >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
  2187. return (in_ptr == out_ptr); /* 1 == queue_is_empty */
  2188. }
  2189. static int mv_handle_fbs_ncq_dev_err(struct ata_port *ap)
  2190. {
  2191. struct mv_port_priv *pp = ap->private_data;
  2192. int failed_links;
  2193. unsigned int old_map, new_map;
  2194. /*
  2195. * Device error during FBS+NCQ operation:
  2196. *
  2197. * Set a port flag to prevent further I/O being enqueued.
  2198. * Leave the EDMA running to drain outstanding commands from this port.
  2199. * Perform the post-mortem/EH only when all responses are complete.
  2200. * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.2).
  2201. */
  2202. if (!(pp->pp_flags & MV_PP_FLAG_DELAYED_EH)) {
  2203. pp->pp_flags |= MV_PP_FLAG_DELAYED_EH;
  2204. pp->delayed_eh_pmp_map = 0;
  2205. }
  2206. old_map = pp->delayed_eh_pmp_map;
  2207. new_map = old_map | mv_get_err_pmp_map(ap);
  2208. if (old_map != new_map) {
  2209. pp->delayed_eh_pmp_map = new_map;
  2210. mv_pmp_eh_prep(ap, new_map & ~old_map);
  2211. }
  2212. failed_links = hweight16(new_map);
  2213. ata_port_info(ap,
  2214. "%s: pmp_map=%04x qc_map=%04llx failed_links=%d nr_active_links=%d\n",
  2215. __func__, pp->delayed_eh_pmp_map,
  2216. ap->qc_active, failed_links,
  2217. ap->nr_active_links);
  2218. if (ap->nr_active_links <= failed_links && mv_req_q_empty(ap)) {
  2219. mv_process_crpb_entries(ap, pp);
  2220. mv_stop_edma(ap);
  2221. mv_eh_freeze(ap);
  2222. ata_port_info(ap, "%s: done\n", __func__);
  2223. return 1; /* handled */
  2224. }
  2225. ata_port_info(ap, "%s: waiting\n", __func__);
  2226. return 1; /* handled */
  2227. }
  2228. static int mv_handle_fbs_non_ncq_dev_err(struct ata_port *ap)
  2229. {
  2230. /*
  2231. * Possible future enhancement:
  2232. *
  2233. * FBS+non-NCQ operation is not yet implemented.
  2234. * See related notes in mv_edma_cfg().
  2235. *
  2236. * Device error during FBS+non-NCQ operation:
  2237. *
  2238. * We need to snapshot the shadow registers for each failed command.
  2239. * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.3).
  2240. */
  2241. return 0; /* not handled */
  2242. }
  2243. static int mv_handle_dev_err(struct ata_port *ap, u32 edma_err_cause)
  2244. {
  2245. struct mv_port_priv *pp = ap->private_data;
  2246. if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
  2247. return 0; /* EDMA was not active: not handled */
  2248. if (!(pp->pp_flags & MV_PP_FLAG_FBS_EN))
  2249. return 0; /* FBS was not active: not handled */
  2250. if (!(edma_err_cause & EDMA_ERR_DEV))
  2251. return 0; /* non DEV error: not handled */
  2252. edma_err_cause &= ~EDMA_ERR_IRQ_TRANSIENT;
  2253. if (edma_err_cause & ~(EDMA_ERR_DEV | EDMA_ERR_SELF_DIS))
  2254. return 0; /* other problems: not handled */
  2255. if (pp->pp_flags & MV_PP_FLAG_NCQ_EN) {
  2256. /*
  2257. * EDMA should NOT have self-disabled for this case.
  2258. * If it did, then something is wrong elsewhere,
  2259. * and we cannot handle it here.
  2260. */
  2261. if (edma_err_cause & EDMA_ERR_SELF_DIS) {
  2262. ata_port_warn(ap, "%s: err_cause=0x%x pp_flags=0x%x\n",
  2263. __func__, edma_err_cause, pp->pp_flags);
  2264. return 0; /* not handled */
  2265. }
  2266. return mv_handle_fbs_ncq_dev_err(ap);
  2267. } else {
  2268. /*
  2269. * EDMA should have self-disabled for this case.
  2270. * If it did not, then something is wrong elsewhere,
  2271. * and we cannot handle it here.
  2272. */
  2273. if (!(edma_err_cause & EDMA_ERR_SELF_DIS)) {
  2274. ata_port_warn(ap, "%s: err_cause=0x%x pp_flags=0x%x\n",
  2275. __func__, edma_err_cause, pp->pp_flags);
  2276. return 0; /* not handled */
  2277. }
  2278. return mv_handle_fbs_non_ncq_dev_err(ap);
  2279. }
  2280. return 0; /* not handled */
  2281. }
  2282. static void mv_unexpected_intr(struct ata_port *ap, int edma_was_enabled)
  2283. {
  2284. struct ata_eh_info *ehi = &ap->link.eh_info;
  2285. char *when = "idle";
  2286. ata_ehi_clear_desc(ehi);
  2287. if (edma_was_enabled) {
  2288. when = "EDMA enabled";
  2289. } else {
  2290. struct ata_queued_cmd *qc = ata_qc_from_tag(ap, ap->link.active_tag);
  2291. if (qc && (qc->tf.flags & ATA_TFLAG_POLLING))
  2292. when = "polling";
  2293. }
  2294. ata_ehi_push_desc(ehi, "unexpected device interrupt while %s", when);
  2295. ehi->err_mask |= AC_ERR_OTHER;
  2296. ehi->action |= ATA_EH_RESET;
  2297. ata_port_freeze(ap);
  2298. }
  2299. /**
  2300. * mv_err_intr - Handle error interrupts on the port
  2301. * @ap: ATA channel to manipulate
  2302. *
  2303. * Most cases require a full reset of the chip's state machine,
  2304. * which also performs a COMRESET.
  2305. * Also, if the port disabled DMA, update our cached copy to match.
  2306. *
  2307. * LOCKING:
  2308. * Inherited from caller.
  2309. */
  2310. static void mv_err_intr(struct ata_port *ap)
  2311. {
  2312. void __iomem *port_mmio = mv_ap_base(ap);
  2313. u32 edma_err_cause, eh_freeze_mask, serr = 0;
  2314. u32 fis_cause = 0;
  2315. struct mv_port_priv *pp = ap->private_data;
  2316. struct mv_host_priv *hpriv = ap->host->private_data;
  2317. unsigned int action = 0, err_mask = 0;
  2318. struct ata_eh_info *ehi = &ap->link.eh_info;
  2319. struct ata_queued_cmd *qc;
  2320. int abort = 0;
  2321. /*
  2322. * Read and clear the SError and err_cause bits.
  2323. * For GenIIe, if EDMA_ERR_TRANS_IRQ_7 is set, we also must read/clear
  2324. * the FIS_IRQ_CAUSE register before clearing edma_err_cause.
  2325. */
  2326. sata_scr_read(&ap->link, SCR_ERROR, &serr);
  2327. sata_scr_write_flush(&ap->link, SCR_ERROR, serr);
  2328. edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE);
  2329. if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
  2330. fis_cause = readl(port_mmio + FIS_IRQ_CAUSE);
  2331. writelfl(~fis_cause, port_mmio + FIS_IRQ_CAUSE);
  2332. }
  2333. writelfl(~edma_err_cause, port_mmio + EDMA_ERR_IRQ_CAUSE);
  2334. if (edma_err_cause & EDMA_ERR_DEV) {
  2335. /*
  2336. * Device errors during FIS-based switching operation
  2337. * require special handling.
  2338. */
  2339. if (mv_handle_dev_err(ap, edma_err_cause))
  2340. return;
  2341. }
  2342. qc = mv_get_active_qc(ap);
  2343. ata_ehi_clear_desc(ehi);
  2344. ata_ehi_push_desc(ehi, "edma_err_cause=%08x pp_flags=%08x",
  2345. edma_err_cause, pp->pp_flags);
  2346. if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
  2347. ata_ehi_push_desc(ehi, "fis_cause=%08x", fis_cause);
  2348. if (fis_cause & FIS_IRQ_CAUSE_AN) {
  2349. u32 ec = edma_err_cause &
  2350. ~(EDMA_ERR_TRANS_IRQ_7 | EDMA_ERR_IRQ_TRANSIENT);
  2351. sata_async_notification(ap);
  2352. if (!ec)
  2353. return; /* Just an AN; no need for the nukes */
  2354. ata_ehi_push_desc(ehi, "SDB notify");
  2355. }
  2356. }
  2357. /*
  2358. * All generations share these EDMA error cause bits:
  2359. */
  2360. if (edma_err_cause & EDMA_ERR_DEV) {
  2361. err_mask |= AC_ERR_DEV;
  2362. action |= ATA_EH_RESET;
  2363. ata_ehi_push_desc(ehi, "dev error");
  2364. }
  2365. if (edma_err_cause & (EDMA_ERR_D_PAR | EDMA_ERR_PRD_PAR |
  2366. EDMA_ERR_CRQB_PAR | EDMA_ERR_CRPB_PAR |
  2367. EDMA_ERR_INTRL_PAR)) {
  2368. err_mask |= AC_ERR_ATA_BUS;
  2369. action |= ATA_EH_RESET;
  2370. ata_ehi_push_desc(ehi, "parity error");
  2371. }
  2372. if (edma_err_cause & (EDMA_ERR_DEV_DCON | EDMA_ERR_DEV_CON)) {
  2373. ata_ehi_hotplugged(ehi);
  2374. ata_ehi_push_desc(ehi, edma_err_cause & EDMA_ERR_DEV_DCON ?
  2375. "dev disconnect" : "dev connect");
  2376. action |= ATA_EH_RESET;
  2377. }
  2378. /*
  2379. * Gen-I has a different SELF_DIS bit,
  2380. * different FREEZE bits, and no SERR bit:
  2381. */
  2382. if (IS_GEN_I(hpriv)) {
  2383. eh_freeze_mask = EDMA_EH_FREEZE_5;
  2384. if (edma_err_cause & EDMA_ERR_SELF_DIS_5) {
  2385. pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
  2386. ata_ehi_push_desc(ehi, "EDMA self-disable");
  2387. }
  2388. } else {
  2389. eh_freeze_mask = EDMA_EH_FREEZE;
  2390. if (edma_err_cause & EDMA_ERR_SELF_DIS) {
  2391. pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
  2392. ata_ehi_push_desc(ehi, "EDMA self-disable");
  2393. }
  2394. if (edma_err_cause & EDMA_ERR_SERR) {
  2395. ata_ehi_push_desc(ehi, "SError=%08x", serr);
  2396. err_mask |= AC_ERR_ATA_BUS;
  2397. action |= ATA_EH_RESET;
  2398. }
  2399. }
  2400. if (!err_mask) {
  2401. err_mask = AC_ERR_OTHER;
  2402. action |= ATA_EH_RESET;
  2403. }
  2404. ehi->serror |= serr;
  2405. ehi->action |= action;
  2406. if (qc)
  2407. qc->err_mask |= err_mask;
  2408. else
  2409. ehi->err_mask |= err_mask;
  2410. if (err_mask == AC_ERR_DEV) {
  2411. /*
  2412. * Cannot do ata_port_freeze() here,
  2413. * because it would kill PIO access,
  2414. * which is needed for further diagnosis.
  2415. */
  2416. mv_eh_freeze(ap);
  2417. abort = 1;
  2418. } else if (edma_err_cause & eh_freeze_mask) {
  2419. /*
  2420. * Note to self: ata_port_freeze() calls ata_port_abort()
  2421. */
  2422. ata_port_freeze(ap);
  2423. } else {
  2424. abort = 1;
  2425. }
  2426. if (abort) {
  2427. if (qc)
  2428. ata_link_abort(qc->dev->link);
  2429. else
  2430. ata_port_abort(ap);
  2431. }
  2432. }
  2433. static bool mv_process_crpb_response(struct ata_port *ap,
  2434. struct mv_crpb *response, unsigned int tag, int ncq_enabled)
  2435. {
  2436. u8 ata_status;
  2437. u16 edma_status = le16_to_cpu(response->flags);
  2438. /*
  2439. * edma_status from a response queue entry:
  2440. * LSB is from EDMA_ERR_IRQ_CAUSE (non-NCQ only).
  2441. * MSB is saved ATA status from command completion.
  2442. */
  2443. if (!ncq_enabled) {
  2444. u8 err_cause = edma_status & 0xff & ~EDMA_ERR_DEV;
  2445. if (err_cause) {
  2446. /*
  2447. * Error will be seen/handled by
  2448. * mv_err_intr(). So do nothing at all here.
  2449. */
  2450. return false;
  2451. }
  2452. }
  2453. ata_status = edma_status >> CRPB_FLAG_STATUS_SHIFT;
  2454. if (!ac_err_mask(ata_status))
  2455. return true;
  2456. /* else: leave it for mv_err_intr() */
  2457. return false;
  2458. }
  2459. static void mv_process_crpb_entries(struct ata_port *ap, struct mv_port_priv *pp)
  2460. {
  2461. void __iomem *port_mmio = mv_ap_base(ap);
  2462. struct mv_host_priv *hpriv = ap->host->private_data;
  2463. u32 in_index;
  2464. bool work_done = false;
  2465. u32 done_mask = 0;
  2466. int ncq_enabled = (pp->pp_flags & MV_PP_FLAG_NCQ_EN);
  2467. /* Get the hardware queue position index */
  2468. in_index = (readl(port_mmio + EDMA_RSP_Q_IN_PTR)
  2469. >> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
  2470. /* Process new responses from since the last time we looked */
  2471. while (in_index != pp->resp_idx) {
  2472. unsigned int tag;
  2473. struct mv_crpb *response = &pp->crpb[pp->resp_idx];
  2474. pp->resp_idx = (pp->resp_idx + 1) & MV_MAX_Q_DEPTH_MASK;
  2475. if (IS_GEN_I(hpriv)) {
  2476. /* 50xx: no NCQ, only one command active at a time */
  2477. tag = ap->link.active_tag;
  2478. } else {
  2479. /* Gen II/IIE: get command tag from CRPB entry */
  2480. tag = le16_to_cpu(response->id) & 0x1f;
  2481. }
  2482. if (mv_process_crpb_response(ap, response, tag, ncq_enabled))
  2483. done_mask |= 1 << tag;
  2484. work_done = true;
  2485. }
  2486. if (work_done) {
  2487. ata_qc_complete_multiple(ap, ata_qc_get_active(ap) ^ done_mask);
  2488. /* Update the software queue position index in hardware */
  2489. writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) |
  2490. (pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT),
  2491. port_mmio + EDMA_RSP_Q_OUT_PTR);
  2492. }
  2493. }
  2494. static void mv_port_intr(struct ata_port *ap, u32 port_cause)
  2495. {
  2496. struct mv_port_priv *pp;
  2497. int edma_was_enabled;
  2498. /*
  2499. * Grab a snapshot of the EDMA_EN flag setting,
  2500. * so that we have a consistent view for this port,
  2501. * even if something we call of our routines changes it.
  2502. */
  2503. pp = ap->private_data;
  2504. edma_was_enabled = (pp->pp_flags & MV_PP_FLAG_EDMA_EN);
  2505. /*
  2506. * Process completed CRPB response(s) before other events.
  2507. */
  2508. if (edma_was_enabled && (port_cause & DONE_IRQ)) {
  2509. mv_process_crpb_entries(ap, pp);
  2510. if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
  2511. mv_handle_fbs_ncq_dev_err(ap);
  2512. }
  2513. /*
  2514. * Handle chip-reported errors, or continue on to handle PIO.
  2515. */
  2516. if (unlikely(port_cause & ERR_IRQ)) {
  2517. mv_err_intr(ap);
  2518. } else if (!edma_was_enabled) {
  2519. struct ata_queued_cmd *qc = mv_get_active_qc(ap);
  2520. if (qc)
  2521. ata_bmdma_port_intr(ap, qc);
  2522. else
  2523. mv_unexpected_intr(ap, edma_was_enabled);
  2524. }
  2525. }
  2526. /**
  2527. * mv_host_intr - Handle all interrupts on the given host controller
  2528. * @host: host specific structure
  2529. * @main_irq_cause: Main interrupt cause register for the chip.
  2530. *
  2531. * LOCKING:
  2532. * Inherited from caller.
  2533. */
  2534. static int mv_host_intr(struct ata_host *host, u32 main_irq_cause)
  2535. {
  2536. struct mv_host_priv *hpriv = host->private_data;
  2537. void __iomem *mmio = hpriv->base, *hc_mmio;
  2538. unsigned int handled = 0, port;
  2539. /* If asserted, clear the "all ports" IRQ coalescing bit */
  2540. if (main_irq_cause & ALL_PORTS_COAL_DONE)
  2541. writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE);
  2542. for (port = 0; port < hpriv->n_ports; port++) {
  2543. struct ata_port *ap = host->ports[port];
  2544. unsigned int p, shift, hardport, port_cause;
  2545. MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
  2546. /*
  2547. * Each hc within the host has its own hc_irq_cause register,
  2548. * where the interrupting ports bits get ack'd.
  2549. */
  2550. if (hardport == 0) { /* first port on this hc ? */
  2551. u32 hc_cause = (main_irq_cause >> shift) & HC0_IRQ_PEND;
  2552. u32 port_mask, ack_irqs;
  2553. /*
  2554. * Skip this entire hc if nothing pending for any ports
  2555. */
  2556. if (!hc_cause) {
  2557. port += MV_PORTS_PER_HC - 1;
  2558. continue;
  2559. }
  2560. /*
  2561. * We don't need/want to read the hc_irq_cause register,
  2562. * because doing so hurts performance, and
  2563. * main_irq_cause already gives us everything we need.
  2564. *
  2565. * But we do have to *write* to the hc_irq_cause to ack
  2566. * the ports that we are handling this time through.
  2567. *
  2568. * This requires that we create a bitmap for those
  2569. * ports which interrupted us, and use that bitmap
  2570. * to ack (only) those ports via hc_irq_cause.
  2571. */
  2572. ack_irqs = 0;
  2573. if (hc_cause & PORTS_0_3_COAL_DONE)
  2574. ack_irqs = HC_COAL_IRQ;
  2575. for (p = 0; p < MV_PORTS_PER_HC; ++p) {
  2576. if ((port + p) >= hpriv->n_ports)
  2577. break;
  2578. port_mask = (DONE_IRQ | ERR_IRQ) << (p * 2);
  2579. if (hc_cause & port_mask)
  2580. ack_irqs |= (DMA_IRQ | DEV_IRQ) << p;
  2581. }
  2582. hc_mmio = mv_hc_base_from_port(mmio, port);
  2583. writelfl(~ack_irqs, hc_mmio + HC_IRQ_CAUSE);
  2584. handled = 1;
  2585. }
  2586. /*
  2587. * Handle interrupts signalled for this port:
  2588. */
  2589. port_cause = (main_irq_cause >> shift) & (DONE_IRQ | ERR_IRQ);
  2590. if (port_cause)
  2591. mv_port_intr(ap, port_cause);
  2592. }
  2593. return handled;
  2594. }
  2595. static int mv_pci_error(struct ata_host *host, void __iomem *mmio)
  2596. {
  2597. struct mv_host_priv *hpriv = host->private_data;
  2598. struct ata_port *ap;
  2599. struct ata_queued_cmd *qc;
  2600. struct ata_eh_info *ehi;
  2601. unsigned int i, err_mask, printed = 0;
  2602. u32 err_cause;
  2603. err_cause = readl(mmio + hpriv->irq_cause_offset);
  2604. dev_err(host->dev, "PCI ERROR; PCI IRQ cause=0x%08x\n", err_cause);
  2605. dev_dbg(host->dev, "%s: All regs @ PCI error\n", __func__);
  2606. mv_dump_all_regs(mmio, to_pci_dev(host->dev));
  2607. writelfl(0, mmio + hpriv->irq_cause_offset);
  2608. for (i = 0; i < host->n_ports; i++) {
  2609. ap = host->ports[i];
  2610. if (!ata_link_offline(&ap->link)) {
  2611. ehi = &ap->link.eh_info;
  2612. ata_ehi_clear_desc(ehi);
  2613. if (!printed++)
  2614. ata_ehi_push_desc(ehi,
  2615. "PCI err cause 0x%08x", err_cause);
  2616. err_mask = AC_ERR_HOST_BUS;
  2617. ehi->action = ATA_EH_RESET;
  2618. qc = ata_qc_from_tag(ap, ap->link.active_tag);
  2619. if (qc)
  2620. qc->err_mask |= err_mask;
  2621. else
  2622. ehi->err_mask |= err_mask;
  2623. ata_port_freeze(ap);
  2624. }
  2625. }
  2626. return 1; /* handled */
  2627. }
  2628. /**
  2629. * mv_interrupt - Main interrupt event handler
  2630. * @irq: unused
  2631. * @dev_instance: private data; in this case the host structure
  2632. *
  2633. * Read the read only register to determine if any host
  2634. * controllers have pending interrupts. If so, call lower level
  2635. * routine to handle. Also check for PCI errors which are only
  2636. * reported here.
  2637. *
  2638. * LOCKING:
  2639. * This routine holds the host lock while processing pending
  2640. * interrupts.
  2641. */
  2642. static irqreturn_t mv_interrupt(int irq, void *dev_instance)
  2643. {
  2644. struct ata_host *host = dev_instance;
  2645. struct mv_host_priv *hpriv = host->private_data;
  2646. unsigned int handled = 0;
  2647. int using_msi = hpriv->hp_flags & MV_HP_FLAG_MSI;
  2648. u32 main_irq_cause, pending_irqs;
  2649. spin_lock(&host->lock);
  2650. /* for MSI: block new interrupts while in here */
  2651. if (using_msi)
  2652. mv_write_main_irq_mask(0, hpriv);
  2653. main_irq_cause = readl(hpriv->main_irq_cause_addr);
  2654. pending_irqs = main_irq_cause & hpriv->main_irq_mask;
  2655. /*
  2656. * Deal with cases where we either have nothing pending, or have read
  2657. * a bogus register value which can indicate HW removal or PCI fault.
  2658. */
  2659. if (pending_irqs && main_irq_cause != 0xffffffffU) {
  2660. if (unlikely((pending_irqs & PCI_ERR) && !IS_SOC(hpriv)))
  2661. handled = mv_pci_error(host, hpriv->base);
  2662. else
  2663. handled = mv_host_intr(host, pending_irqs);
  2664. }
  2665. /* for MSI: unmask; interrupt cause bits will retrigger now */
  2666. if (using_msi)
  2667. mv_write_main_irq_mask(hpriv->main_irq_mask, hpriv);
  2668. spin_unlock(&host->lock);
  2669. return IRQ_RETVAL(handled);
  2670. }
  2671. static unsigned int mv5_scr_offset(unsigned int sc_reg_in)
  2672. {
  2673. unsigned int ofs;
  2674. switch (sc_reg_in) {
  2675. case SCR_STATUS:
  2676. case SCR_ERROR:
  2677. case SCR_CONTROL:
  2678. ofs = sc_reg_in * sizeof(u32);
  2679. break;
  2680. default:
  2681. ofs = 0xffffffffU;
  2682. break;
  2683. }
  2684. return ofs;
  2685. }
  2686. static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
  2687. {
  2688. struct mv_host_priv *hpriv = link->ap->host->private_data;
  2689. void __iomem *mmio = hpriv->base;
  2690. void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
  2691. unsigned int ofs = mv5_scr_offset(sc_reg_in);
  2692. if (ofs != 0xffffffffU) {
  2693. *val = readl(addr + ofs);
  2694. return 0;
  2695. } else
  2696. return -EINVAL;
  2697. }
  2698. static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
  2699. {
  2700. struct mv_host_priv *hpriv = link->ap->host->private_data;
  2701. void __iomem *mmio = hpriv->base;
  2702. void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
  2703. unsigned int ofs = mv5_scr_offset(sc_reg_in);
  2704. if (ofs != 0xffffffffU) {
  2705. writelfl(val, addr + ofs);
  2706. return 0;
  2707. } else
  2708. return -EINVAL;
  2709. }
  2710. static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio)
  2711. {
  2712. struct pci_dev *pdev = to_pci_dev(host->dev);
  2713. int early_5080;
  2714. early_5080 = (pdev->device == 0x5080) && (pdev->revision == 0);
  2715. if (!early_5080) {
  2716. u32 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
  2717. tmp |= (1 << 0);
  2718. writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
  2719. }
  2720. mv_reset_pci_bus(host, mmio);
  2721. }
  2722. static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
  2723. {
  2724. writel(0x0fcfffff, mmio + FLASH_CTL);
  2725. }
  2726. static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
  2727. void __iomem *mmio)
  2728. {
  2729. void __iomem *phy_mmio = mv5_phy_base(mmio, idx);
  2730. u32 tmp;
  2731. tmp = readl(phy_mmio + MV5_PHY_MODE);
  2732. hpriv->signal[idx].pre = tmp & 0x1800; /* bits 12:11 */
  2733. hpriv->signal[idx].amps = tmp & 0xe0; /* bits 7:5 */
  2734. }
  2735. static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
  2736. {
  2737. u32 tmp;
  2738. writel(0, mmio + GPIO_PORT_CTL);
  2739. /* FIXME: handle MV_HP_ERRATA_50XXB2 errata */
  2740. tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
  2741. tmp |= ~(1 << 0);
  2742. writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
  2743. }
  2744. static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
  2745. unsigned int port)
  2746. {
  2747. void __iomem *phy_mmio = mv5_phy_base(mmio, port);
  2748. const u32 mask = (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5);
  2749. u32 tmp;
  2750. int fix_apm_sq = (hpriv->hp_flags & MV_HP_ERRATA_50XXB0);
  2751. if (fix_apm_sq) {
  2752. tmp = readl(phy_mmio + MV5_LTMODE);
  2753. tmp |= (1 << 19);
  2754. writel(tmp, phy_mmio + MV5_LTMODE);
  2755. tmp = readl(phy_mmio + MV5_PHY_CTL);
  2756. tmp &= ~0x3;
  2757. tmp |= 0x1;
  2758. writel(tmp, phy_mmio + MV5_PHY_CTL);
  2759. }
  2760. tmp = readl(phy_mmio + MV5_PHY_MODE);
  2761. tmp &= ~mask;
  2762. tmp |= hpriv->signal[port].pre;
  2763. tmp |= hpriv->signal[port].amps;
  2764. writel(tmp, phy_mmio + MV5_PHY_MODE);
  2765. }
  2766. #undef ZERO
  2767. #define ZERO(reg) writel(0, port_mmio + (reg))
  2768. static void mv5_reset_hc_port(struct mv_host_priv *hpriv, void __iomem *mmio,
  2769. unsigned int port)
  2770. {
  2771. void __iomem *port_mmio = mv_port_base(mmio, port);
  2772. mv_reset_channel(hpriv, mmio, port);
  2773. ZERO(0x028); /* command */
  2774. writel(0x11f, port_mmio + EDMA_CFG);
  2775. ZERO(0x004); /* timer */
  2776. ZERO(0x008); /* irq err cause */
  2777. ZERO(0x00c); /* irq err mask */
  2778. ZERO(0x010); /* rq bah */
  2779. ZERO(0x014); /* rq inp */
  2780. ZERO(0x018); /* rq outp */
  2781. ZERO(0x01c); /* respq bah */
  2782. ZERO(0x024); /* respq outp */
  2783. ZERO(0x020); /* respq inp */
  2784. ZERO(0x02c); /* test control */
  2785. writel(0xbc, port_mmio + EDMA_IORDY_TMOUT);
  2786. }
  2787. #undef ZERO
  2788. #define ZERO(reg) writel(0, hc_mmio + (reg))
  2789. static void mv5_reset_one_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
  2790. unsigned int hc)
  2791. {
  2792. void __iomem *hc_mmio = mv_hc_base(mmio, hc);
  2793. u32 tmp;
  2794. ZERO(0x00c);
  2795. ZERO(0x010);
  2796. ZERO(0x014);
  2797. ZERO(0x018);
  2798. tmp = readl(hc_mmio + 0x20);
  2799. tmp &= 0x1c1c1c1c;
  2800. tmp |= 0x03030303;
  2801. writel(tmp, hc_mmio + 0x20);
  2802. }
  2803. #undef ZERO
  2804. static int mv5_reset_hc(struct ata_host *host, void __iomem *mmio,
  2805. unsigned int n_hc)
  2806. {
  2807. struct mv_host_priv *hpriv = host->private_data;
  2808. unsigned int hc, port;
  2809. for (hc = 0; hc < n_hc; hc++) {
  2810. for (port = 0; port < MV_PORTS_PER_HC; port++)
  2811. mv5_reset_hc_port(hpriv, mmio,
  2812. (hc * MV_PORTS_PER_HC) + port);
  2813. mv5_reset_one_hc(hpriv, mmio, hc);
  2814. }
  2815. return 0;
  2816. }
  2817. #undef ZERO
  2818. #define ZERO(reg) writel(0, mmio + (reg))
  2819. static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio)
  2820. {
  2821. struct mv_host_priv *hpriv = host->private_data;
  2822. u32 tmp;
  2823. tmp = readl(mmio + MV_PCI_MODE);
  2824. tmp &= 0xff00ffff;
  2825. writel(tmp, mmio + MV_PCI_MODE);
  2826. ZERO(MV_PCI_DISC_TIMER);
  2827. ZERO(MV_PCI_MSI_TRIGGER);
  2828. writel(0x000100ff, mmio + MV_PCI_XBAR_TMOUT);
  2829. ZERO(MV_PCI_SERR_MASK);
  2830. ZERO(hpriv->irq_cause_offset);
  2831. ZERO(hpriv->irq_mask_offset);
  2832. ZERO(MV_PCI_ERR_LOW_ADDRESS);
  2833. ZERO(MV_PCI_ERR_HIGH_ADDRESS);
  2834. ZERO(MV_PCI_ERR_ATTRIBUTE);
  2835. ZERO(MV_PCI_ERR_COMMAND);
  2836. }
  2837. #undef ZERO
  2838. static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
  2839. {
  2840. u32 tmp;
  2841. mv5_reset_flash(hpriv, mmio);
  2842. tmp = readl(mmio + GPIO_PORT_CTL);
  2843. tmp &= 0x3;
  2844. tmp |= (1 << 5) | (1 << 6);
  2845. writel(tmp, mmio + GPIO_PORT_CTL);
  2846. }
  2847. /*
  2848. * mv6_reset_hc - Perform the 6xxx global soft reset
  2849. * @mmio: base address of the HBA
  2850. *
  2851. * This routine only applies to 6xxx parts.
  2852. *
  2853. * LOCKING:
  2854. * Inherited from caller.
  2855. */
  2856. static int mv6_reset_hc(struct ata_host *host, void __iomem *mmio,
  2857. unsigned int n_hc)
  2858. {
  2859. void __iomem *reg = mmio + PCI_MAIN_CMD_STS;
  2860. int i, rc = 0;
  2861. u32 t;
  2862. /* Following procedure defined in PCI "main command and status
  2863. * register" table.
  2864. */
  2865. t = readl(reg);
  2866. writel(t | STOP_PCI_MASTER, reg);
  2867. for (i = 0; i < 1000; i++) {
  2868. udelay(1);
  2869. t = readl(reg);
  2870. if (PCI_MASTER_EMPTY & t)
  2871. break;
  2872. }
  2873. if (!(PCI_MASTER_EMPTY & t)) {
  2874. dev_err(host->dev, "PCI master won't flush\n");
  2875. rc = 1;
  2876. goto done;
  2877. }
  2878. /* set reset */
  2879. i = 5;
  2880. do {
  2881. writel(t | GLOB_SFT_RST, reg);
  2882. t = readl(reg);
  2883. udelay(1);
  2884. } while (!(GLOB_SFT_RST & t) && (i-- > 0));
  2885. if (!(GLOB_SFT_RST & t)) {
  2886. dev_err(host->dev, "can't set global reset\n");
  2887. rc = 1;
  2888. goto done;
  2889. }
  2890. /* clear reset and *reenable the PCI master* (not mentioned in spec) */
  2891. i = 5;
  2892. do {
  2893. writel(t & ~(GLOB_SFT_RST | STOP_PCI_MASTER), reg);
  2894. t = readl(reg);
  2895. udelay(1);
  2896. } while ((GLOB_SFT_RST & t) && (i-- > 0));
  2897. if (GLOB_SFT_RST & t) {
  2898. dev_err(host->dev, "can't clear global reset\n");
  2899. rc = 1;
  2900. }
  2901. done:
  2902. return rc;
  2903. }
  2904. static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
  2905. void __iomem *mmio)
  2906. {
  2907. void __iomem *port_mmio;
  2908. u32 tmp;
  2909. tmp = readl(mmio + RESET_CFG);
  2910. if ((tmp & (1 << 0)) == 0) {
  2911. hpriv->signal[idx].amps = 0x7 << 8;
  2912. hpriv->signal[idx].pre = 0x1 << 5;
  2913. return;
  2914. }
  2915. port_mmio = mv_port_base(mmio, idx);
  2916. tmp = readl(port_mmio + PHY_MODE2);
  2917. hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */
  2918. hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */
  2919. }
  2920. static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
  2921. {
  2922. writel(0x00000060, mmio + GPIO_PORT_CTL);
  2923. }
  2924. static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
  2925. unsigned int port)
  2926. {
  2927. void __iomem *port_mmio = mv_port_base(mmio, port);
  2928. u32 hp_flags = hpriv->hp_flags;
  2929. int fix_phy_mode2 =
  2930. hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
  2931. int fix_phy_mode4 =
  2932. hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
  2933. u32 m2, m3;
  2934. if (fix_phy_mode2) {
  2935. m2 = readl(port_mmio + PHY_MODE2);
  2936. m2 &= ~(1 << 16);
  2937. m2 |= (1 << 31);
  2938. writel(m2, port_mmio + PHY_MODE2);
  2939. udelay(200);
  2940. m2 = readl(port_mmio + PHY_MODE2);
  2941. m2 &= ~((1 << 16) | (1 << 31));
  2942. writel(m2, port_mmio + PHY_MODE2);
  2943. udelay(200);
  2944. }
  2945. /*
  2946. * Gen-II/IIe PHY_MODE3 errata RM#2:
  2947. * Achieves better receiver noise performance than the h/w default:
  2948. */
  2949. m3 = readl(port_mmio + PHY_MODE3);
  2950. m3 = (m3 & 0x1f) | (0x5555601 << 5);
  2951. /* Guideline 88F5182 (GL# SATA-S11) */
  2952. if (IS_SOC(hpriv))
  2953. m3 &= ~0x1c;
  2954. if (fix_phy_mode4) {
  2955. u32 m4 = readl(port_mmio + PHY_MODE4);
  2956. /*
  2957. * Enforce reserved-bit restrictions on GenIIe devices only.
  2958. * For earlier chipsets, force only the internal config field
  2959. * (workaround for errata FEr SATA#10 part 1).
  2960. */
  2961. if (IS_GEN_IIE(hpriv))
  2962. m4 = (m4 & ~PHY_MODE4_RSVD_ZEROS) | PHY_MODE4_RSVD_ONES;
  2963. else
  2964. m4 = (m4 & ~PHY_MODE4_CFG_MASK) | PHY_MODE4_CFG_VALUE;
  2965. writel(m4, port_mmio + PHY_MODE4);
  2966. }
  2967. /*
  2968. * Workaround for 60x1-B2 errata SATA#13:
  2969. * Any write to PHY_MODE4 (above) may corrupt PHY_MODE3,
  2970. * so we must always rewrite PHY_MODE3 after PHY_MODE4.
  2971. * Or ensure we use writelfl() when writing PHY_MODE4.
  2972. */
  2973. writel(m3, port_mmio + PHY_MODE3);
  2974. /* Revert values of pre-emphasis and signal amps to the saved ones */
  2975. m2 = readl(port_mmio + PHY_MODE2);
  2976. m2 &= ~MV_M2_PREAMP_MASK;
  2977. m2 |= hpriv->signal[port].amps;
  2978. m2 |= hpriv->signal[port].pre;
  2979. m2 &= ~(1 << 16);
  2980. /* according to mvSata 3.6.1, some IIE values are fixed */
  2981. if (IS_GEN_IIE(hpriv)) {
  2982. m2 &= ~0xC30FF01F;
  2983. m2 |= 0x0000900F;
  2984. }
  2985. writel(m2, port_mmio + PHY_MODE2);
  2986. }
  2987. /* TODO: use the generic LED interface to configure the SATA Presence */
  2988. /* & Acitivy LEDs on the board */
  2989. static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
  2990. void __iomem *mmio)
  2991. {
  2992. return;
  2993. }
  2994. static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
  2995. void __iomem *mmio)
  2996. {
  2997. void __iomem *port_mmio;
  2998. u32 tmp;
  2999. port_mmio = mv_port_base(mmio, idx);
  3000. tmp = readl(port_mmio + PHY_MODE2);
  3001. hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */
  3002. hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */
  3003. }
  3004. #undef ZERO
  3005. #define ZERO(reg) writel(0, port_mmio + (reg))
  3006. static void mv_soc_reset_hc_port(struct mv_host_priv *hpriv,
  3007. void __iomem *mmio, unsigned int port)
  3008. {
  3009. void __iomem *port_mmio = mv_port_base(mmio, port);
  3010. mv_reset_channel(hpriv, mmio, port);
  3011. ZERO(0x028); /* command */
  3012. writel(0x101f, port_mmio + EDMA_CFG);
  3013. ZERO(0x004); /* timer */
  3014. ZERO(0x008); /* irq err cause */
  3015. ZERO(0x00c); /* irq err mask */
  3016. ZERO(0x010); /* rq bah */
  3017. ZERO(0x014); /* rq inp */
  3018. ZERO(0x018); /* rq outp */
  3019. ZERO(0x01c); /* respq bah */
  3020. ZERO(0x024); /* respq outp */
  3021. ZERO(0x020); /* respq inp */
  3022. ZERO(0x02c); /* test control */
  3023. writel(0x800, port_mmio + EDMA_IORDY_TMOUT);
  3024. }
  3025. #undef ZERO
  3026. #define ZERO(reg) writel(0, hc_mmio + (reg))
  3027. static void mv_soc_reset_one_hc(struct mv_host_priv *hpriv,
  3028. void __iomem *mmio)
  3029. {
  3030. void __iomem *hc_mmio = mv_hc_base(mmio, 0);
  3031. ZERO(0x00c);
  3032. ZERO(0x010);
  3033. ZERO(0x014);
  3034. }
  3035. #undef ZERO
  3036. static int mv_soc_reset_hc(struct ata_host *host,
  3037. void __iomem *mmio, unsigned int n_hc)
  3038. {
  3039. struct mv_host_priv *hpriv = host->private_data;
  3040. unsigned int port;
  3041. for (port = 0; port < hpriv->n_ports; port++)
  3042. mv_soc_reset_hc_port(hpriv, mmio, port);
  3043. mv_soc_reset_one_hc(hpriv, mmio);
  3044. return 0;
  3045. }
  3046. static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
  3047. void __iomem *mmio)
  3048. {
  3049. return;
  3050. }
  3051. static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio)
  3052. {
  3053. return;
  3054. }
  3055. static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv,
  3056. void __iomem *mmio, unsigned int port)
  3057. {
  3058. void __iomem *port_mmio = mv_port_base(mmio, port);
  3059. u32 reg;
  3060. reg = readl(port_mmio + PHY_MODE3);
  3061. reg &= ~(0x3 << 27); /* SELMUPF (bits 28:27) to 1 */
  3062. reg |= (0x1 << 27);
  3063. reg &= ~(0x3 << 29); /* SELMUPI (bits 30:29) to 1 */
  3064. reg |= (0x1 << 29);
  3065. writel(reg, port_mmio + PHY_MODE3);
  3066. reg = readl(port_mmio + PHY_MODE4);
  3067. reg &= ~0x1; /* SATU_OD8 (bit 0) to 0, reserved bit 16 must be set */
  3068. reg |= (0x1 << 16);
  3069. writel(reg, port_mmio + PHY_MODE4);
  3070. reg = readl(port_mmio + PHY_MODE9_GEN2);
  3071. reg &= ~0xf; /* TXAMP[3:0] (bits 3:0) to 8 */
  3072. reg |= 0x8;
  3073. reg &= ~(0x1 << 14); /* TXAMP[4] (bit 14) to 0 */
  3074. writel(reg, port_mmio + PHY_MODE9_GEN2);
  3075. reg = readl(port_mmio + PHY_MODE9_GEN1);
  3076. reg &= ~0xf; /* TXAMP[3:0] (bits 3:0) to 8 */
  3077. reg |= 0x8;
  3078. reg &= ~(0x1 << 14); /* TXAMP[4] (bit 14) to 0 */
  3079. writel(reg, port_mmio + PHY_MODE9_GEN1);
  3080. }
  3081. /*
  3082. * soc_is_65 - check if the soc is 65 nano device
  3083. *
  3084. * Detect the type of the SoC, this is done by reading the PHYCFG_OFS
  3085. * register, this register should contain non-zero value and it exists only
  3086. * in the 65 nano devices, when reading it from older devices we get 0.
  3087. */
  3088. static bool soc_is_65n(struct mv_host_priv *hpriv)
  3089. {
  3090. void __iomem *port0_mmio = mv_port_base(hpriv->base, 0);
  3091. if (readl(port0_mmio + PHYCFG_OFS))
  3092. return true;
  3093. return false;
  3094. }
  3095. static void mv_setup_ifcfg(void __iomem *port_mmio, int want_gen2i)
  3096. {
  3097. u32 ifcfg = readl(port_mmio + SATA_IFCFG);
  3098. ifcfg = (ifcfg & 0xf7f) | 0x9b1000; /* from chip spec */
  3099. if (want_gen2i)
  3100. ifcfg |= (1 << 7); /* enable gen2i speed */
  3101. writelfl(ifcfg, port_mmio + SATA_IFCFG);
  3102. }
  3103. static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
  3104. unsigned int port_no)
  3105. {
  3106. void __iomem *port_mmio = mv_port_base(mmio, port_no);
  3107. /*
  3108. * The datasheet warns against setting EDMA_RESET when EDMA is active
  3109. * (but doesn't say what the problem might be). So we first try
  3110. * to disable the EDMA engine before doing the EDMA_RESET operation.
  3111. */
  3112. mv_stop_edma_engine(port_mmio);
  3113. writelfl(EDMA_RESET, port_mmio + EDMA_CMD);
  3114. if (!IS_GEN_I(hpriv)) {
  3115. /* Enable 3.0gb/s link speed: this survives EDMA_RESET */
  3116. mv_setup_ifcfg(port_mmio, 1);
  3117. }
  3118. /*
  3119. * Strobing EDMA_RESET here causes a hard reset of the SATA transport,
  3120. * link, and physical layers. It resets all SATA interface registers
  3121. * (except for SATA_IFCFG), and issues a COMRESET to the dev.
  3122. */
  3123. writelfl(EDMA_RESET, port_mmio + EDMA_CMD);
  3124. udelay(25); /* allow reset propagation */
  3125. writelfl(0, port_mmio + EDMA_CMD);
  3126. hpriv->ops->phy_errata(hpriv, mmio, port_no);
  3127. if (IS_GEN_I(hpriv))
  3128. usleep_range(500, 1000);
  3129. }
  3130. static void mv_pmp_select(struct ata_port *ap, int pmp)
  3131. {
  3132. if (sata_pmp_supported(ap)) {
  3133. void __iomem *port_mmio = mv_ap_base(ap);
  3134. u32 reg = readl(port_mmio + SATA_IFCTL);
  3135. int old = reg & 0xf;
  3136. if (old != pmp) {
  3137. reg = (reg & ~0xf) | pmp;
  3138. writelfl(reg, port_mmio + SATA_IFCTL);
  3139. }
  3140. }
  3141. }
  3142. static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
  3143. unsigned long deadline)
  3144. {
  3145. mv_pmp_select(link->ap, sata_srst_pmp(link));
  3146. return sata_std_hardreset(link, class, deadline);
  3147. }
  3148. static int mv_softreset(struct ata_link *link, unsigned int *class,
  3149. unsigned long deadline)
  3150. {
  3151. mv_pmp_select(link->ap, sata_srst_pmp(link));
  3152. return ata_sff_softreset(link, class, deadline);
  3153. }
  3154. static int mv_hardreset(struct ata_link *link, unsigned int *class,
  3155. unsigned long deadline)
  3156. {
  3157. struct ata_port *ap = link->ap;
  3158. struct mv_host_priv *hpriv = ap->host->private_data;
  3159. struct mv_port_priv *pp = ap->private_data;
  3160. void __iomem *mmio = hpriv->base;
  3161. int rc, attempts = 0, extra = 0;
  3162. u32 sstatus;
  3163. bool online;
  3164. mv_reset_channel(hpriv, mmio, ap->port_no);
  3165. pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
  3166. pp->pp_flags &=
  3167. ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY);
  3168. /* Workaround for errata FEr SATA#10 (part 2) */
  3169. do {
  3170. const unsigned long *timing =
  3171. sata_ehc_deb_timing(&link->eh_context);
  3172. rc = sata_link_hardreset(link, timing, deadline + extra,
  3173. &online, NULL);
  3174. rc = online ? -EAGAIN : rc;
  3175. if (rc)
  3176. return rc;
  3177. sata_scr_read(link, SCR_STATUS, &sstatus);
  3178. if (!IS_GEN_I(hpriv) && ++attempts >= 5 && sstatus == 0x121) {
  3179. /* Force 1.5gb/s link speed and try again */
  3180. mv_setup_ifcfg(mv_ap_base(ap), 0);
  3181. if (time_after(jiffies + HZ, deadline))
  3182. extra = HZ; /* only extend it once, max */
  3183. }
  3184. } while (sstatus != 0x0 && sstatus != 0x113 && sstatus != 0x123);
  3185. mv_save_cached_regs(ap);
  3186. mv_edma_cfg(ap, 0, 0);
  3187. return rc;
  3188. }
  3189. static void mv_eh_freeze(struct ata_port *ap)
  3190. {
  3191. mv_stop_edma(ap);
  3192. mv_enable_port_irqs(ap, 0);
  3193. }
  3194. static void mv_eh_thaw(struct ata_port *ap)
  3195. {
  3196. struct mv_host_priv *hpriv = ap->host->private_data;
  3197. unsigned int port = ap->port_no;
  3198. unsigned int hardport = mv_hardport_from_port(port);
  3199. void __iomem *hc_mmio = mv_hc_base_from_port(hpriv->base, port);
  3200. void __iomem *port_mmio = mv_ap_base(ap);
  3201. u32 hc_irq_cause;
  3202. /* clear EDMA errors on this port */
  3203. writel(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
  3204. /* clear pending irq events */
  3205. hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport);
  3206. writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE);
  3207. mv_enable_port_irqs(ap, ERR_IRQ);
  3208. }
  3209. /**
  3210. * mv_port_init - Perform some early initialization on a single port.
  3211. * @port: libata data structure storing shadow register addresses
  3212. * @port_mmio: base address of the port
  3213. *
  3214. * Initialize shadow register mmio addresses, clear outstanding
  3215. * interrupts on the port, and unmask interrupts for the future
  3216. * start of the port.
  3217. *
  3218. * LOCKING:
  3219. * Inherited from caller.
  3220. */
  3221. static void mv_port_init(struct ata_ioports *port, void __iomem *port_mmio)
  3222. {
  3223. void __iomem *serr, *shd_base = port_mmio + SHD_BLK;
  3224. /* PIO related setup
  3225. */
  3226. port->data_addr = shd_base + (sizeof(u32) * ATA_REG_DATA);
  3227. port->error_addr =
  3228. port->feature_addr = shd_base + (sizeof(u32) * ATA_REG_ERR);
  3229. port->nsect_addr = shd_base + (sizeof(u32) * ATA_REG_NSECT);
  3230. port->lbal_addr = shd_base + (sizeof(u32) * ATA_REG_LBAL);
  3231. port->lbam_addr = shd_base + (sizeof(u32) * ATA_REG_LBAM);
  3232. port->lbah_addr = shd_base + (sizeof(u32) * ATA_REG_LBAH);
  3233. port->device_addr = shd_base + (sizeof(u32) * ATA_REG_DEVICE);
  3234. port->status_addr =
  3235. port->command_addr = shd_base + (sizeof(u32) * ATA_REG_STATUS);
  3236. /* special case: control/altstatus doesn't have ATA_REG_ address */
  3237. port->altstatus_addr = port->ctl_addr = shd_base + SHD_CTL_AST;
  3238. /* Clear any currently outstanding port interrupt conditions */
  3239. serr = port_mmio + mv_scr_offset(SCR_ERROR);
  3240. writelfl(readl(serr), serr);
  3241. writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
  3242. /* unmask all non-transient EDMA error interrupts */
  3243. writelfl(~EDMA_ERR_IRQ_TRANSIENT, port_mmio + EDMA_ERR_IRQ_MASK);
  3244. }
  3245. static unsigned int mv_in_pcix_mode(struct ata_host *host)
  3246. {
  3247. struct mv_host_priv *hpriv = host->private_data;
  3248. void __iomem *mmio = hpriv->base;
  3249. u32 reg;
  3250. if (IS_SOC(hpriv) || !IS_PCIE(hpriv))
  3251. return 0; /* not PCI-X capable */
  3252. reg = readl(mmio + MV_PCI_MODE);
  3253. if ((reg & MV_PCI_MODE_MASK) == 0)
  3254. return 0; /* conventional PCI mode */
  3255. return 1; /* chip is in PCI-X mode */
  3256. }
  3257. static int mv_pci_cut_through_okay(struct ata_host *host)
  3258. {
  3259. struct mv_host_priv *hpriv = host->private_data;
  3260. void __iomem *mmio = hpriv->base;
  3261. u32 reg;
  3262. if (!mv_in_pcix_mode(host)) {
  3263. reg = readl(mmio + MV_PCI_COMMAND);
  3264. if (reg & MV_PCI_COMMAND_MRDTRIG)
  3265. return 0; /* not okay */
  3266. }
  3267. return 1; /* okay */
  3268. }
  3269. static void mv_60x1b2_errata_pci7(struct ata_host *host)
  3270. {
  3271. struct mv_host_priv *hpriv = host->private_data;
  3272. void __iomem *mmio = hpriv->base;
  3273. /* workaround for 60x1-B2 errata PCI#7 */
  3274. if (mv_in_pcix_mode(host)) {
  3275. u32 reg = readl(mmio + MV_PCI_COMMAND);
  3276. writelfl(reg & ~MV_PCI_COMMAND_MWRCOM, mmio + MV_PCI_COMMAND);
  3277. }
  3278. }
  3279. static int mv_chip_id(struct ata_host *host, unsigned int board_idx)
  3280. {
  3281. struct pci_dev *pdev = to_pci_dev(host->dev);
  3282. struct mv_host_priv *hpriv = host->private_data;
  3283. u32 hp_flags = hpriv->hp_flags;
  3284. switch (board_idx) {
  3285. case chip_5080:
  3286. hpriv->ops = &mv5xxx_ops;
  3287. hp_flags |= MV_HP_GEN_I;
  3288. switch (pdev->revision) {
  3289. case 0x1:
  3290. hp_flags |= MV_HP_ERRATA_50XXB0;
  3291. break;
  3292. case 0x3:
  3293. hp_flags |= MV_HP_ERRATA_50XXB2;
  3294. break;
  3295. default:
  3296. dev_warn(&pdev->dev,
  3297. "Applying 50XXB2 workarounds to unknown rev\n");
  3298. hp_flags |= MV_HP_ERRATA_50XXB2;
  3299. break;
  3300. }
  3301. break;
  3302. case chip_504x:
  3303. case chip_508x:
  3304. hpriv->ops = &mv5xxx_ops;
  3305. hp_flags |= MV_HP_GEN_I;
  3306. switch (pdev->revision) {
  3307. case 0x0:
  3308. hp_flags |= MV_HP_ERRATA_50XXB0;
  3309. break;
  3310. case 0x3:
  3311. hp_flags |= MV_HP_ERRATA_50XXB2;
  3312. break;
  3313. default:
  3314. dev_warn(&pdev->dev,
  3315. "Applying B2 workarounds to unknown rev\n");
  3316. hp_flags |= MV_HP_ERRATA_50XXB2;
  3317. break;
  3318. }
  3319. break;
  3320. case chip_604x:
  3321. case chip_608x:
  3322. hpriv->ops = &mv6xxx_ops;
  3323. hp_flags |= MV_HP_GEN_II;
  3324. switch (pdev->revision) {
  3325. case 0x7:
  3326. mv_60x1b2_errata_pci7(host);
  3327. hp_flags |= MV_HP_ERRATA_60X1B2;
  3328. break;
  3329. case 0x9:
  3330. hp_flags |= MV_HP_ERRATA_60X1C0;
  3331. break;
  3332. default:
  3333. dev_warn(&pdev->dev,
  3334. "Applying B2 workarounds to unknown rev\n");
  3335. hp_flags |= MV_HP_ERRATA_60X1B2;
  3336. break;
  3337. }
  3338. break;
  3339. case chip_7042:
  3340. hp_flags |= MV_HP_PCIE | MV_HP_CUT_THROUGH;
  3341. if (pdev->vendor == PCI_VENDOR_ID_TTI &&
  3342. (pdev->device == 0x2300 || pdev->device == 0x2310))
  3343. {
  3344. /*
  3345. * Highpoint RocketRAID PCIe 23xx series cards:
  3346. *
  3347. * Unconfigured drives are treated as "Legacy"
  3348. * by the BIOS, and it overwrites sector 8 with
  3349. * a "Lgcy" metadata block prior to Linux boot.
  3350. *
  3351. * Configured drives (RAID or JBOD) leave sector 8
  3352. * alone, but instead overwrite a high numbered
  3353. * sector for the RAID metadata. This sector can
  3354. * be determined exactly, by truncating the physical
  3355. * drive capacity to a nice even GB value.
  3356. *
  3357. * RAID metadata is at: (dev->n_sectors & ~0xfffff)
  3358. *
  3359. * Warn the user, lest they think we're just buggy.
  3360. */
  3361. dev_warn(&pdev->dev, "Highpoint RocketRAID"
  3362. " BIOS CORRUPTS DATA on all attached drives,"
  3363. " regardless of if/how they are configured."
  3364. " BEWARE!\n");
  3365. dev_warn(&pdev->dev, "For data safety, do not"
  3366. " use sectors 8-9 on \"Legacy\" drives,"
  3367. " and avoid the final two gigabytes on"
  3368. " all RocketRAID BIOS initialized drives.\n");
  3369. }
  3370. fallthrough;
  3371. case chip_6042:
  3372. hpriv->ops = &mv6xxx_ops;
  3373. hp_flags |= MV_HP_GEN_IIE;
  3374. if (board_idx == chip_6042 && mv_pci_cut_through_okay(host))
  3375. hp_flags |= MV_HP_CUT_THROUGH;
  3376. switch (pdev->revision) {
  3377. case 0x2: /* Rev.B0: the first/only public release */
  3378. hp_flags |= MV_HP_ERRATA_60X1C0;
  3379. break;
  3380. default:
  3381. dev_warn(&pdev->dev,
  3382. "Applying 60X1C0 workarounds to unknown rev\n");
  3383. hp_flags |= MV_HP_ERRATA_60X1C0;
  3384. break;
  3385. }
  3386. break;
  3387. case chip_soc:
  3388. if (soc_is_65n(hpriv))
  3389. hpriv->ops = &mv_soc_65n_ops;
  3390. else
  3391. hpriv->ops = &mv_soc_ops;
  3392. hp_flags |= MV_HP_FLAG_SOC | MV_HP_GEN_IIE |
  3393. MV_HP_ERRATA_60X1C0;
  3394. break;
  3395. default:
  3396. dev_alert(host->dev, "BUG: invalid board index %u\n", board_idx);
  3397. return -EINVAL;
  3398. }
  3399. hpriv->hp_flags = hp_flags;
  3400. if (hp_flags & MV_HP_PCIE) {
  3401. hpriv->irq_cause_offset = PCIE_IRQ_CAUSE;
  3402. hpriv->irq_mask_offset = PCIE_IRQ_MASK;
  3403. hpriv->unmask_all_irqs = PCIE_UNMASK_ALL_IRQS;
  3404. } else {
  3405. hpriv->irq_cause_offset = PCI_IRQ_CAUSE;
  3406. hpriv->irq_mask_offset = PCI_IRQ_MASK;
  3407. hpriv->unmask_all_irqs = PCI_UNMASK_ALL_IRQS;
  3408. }
  3409. return 0;
  3410. }
  3411. /**
  3412. * mv_init_host - Perform some early initialization of the host.
  3413. * @host: ATA host to initialize
  3414. *
  3415. * If possible, do an early global reset of the host. Then do
  3416. * our port init and clear/unmask all/relevant host interrupts.
  3417. *
  3418. * LOCKING:
  3419. * Inherited from caller.
  3420. */
  3421. static int mv_init_host(struct ata_host *host)
  3422. {
  3423. int rc = 0, n_hc, port, hc;
  3424. struct mv_host_priv *hpriv = host->private_data;
  3425. void __iomem *mmio = hpriv->base;
  3426. rc = mv_chip_id(host, hpriv->board_idx);
  3427. if (rc)
  3428. goto done;
  3429. if (IS_SOC(hpriv)) {
  3430. hpriv->main_irq_cause_addr = mmio + SOC_HC_MAIN_IRQ_CAUSE;
  3431. hpriv->main_irq_mask_addr = mmio + SOC_HC_MAIN_IRQ_MASK;
  3432. } else {
  3433. hpriv->main_irq_cause_addr = mmio + PCI_HC_MAIN_IRQ_CAUSE;
  3434. hpriv->main_irq_mask_addr = mmio + PCI_HC_MAIN_IRQ_MASK;
  3435. }
  3436. /* initialize shadow irq mask with register's value */
  3437. hpriv->main_irq_mask = readl(hpriv->main_irq_mask_addr);
  3438. /* global interrupt mask: 0 == mask everything */
  3439. mv_set_main_irq_mask(host, ~0, 0);
  3440. n_hc = mv_get_hc_count(host->ports[0]->flags);
  3441. for (port = 0; port < host->n_ports; port++)
  3442. if (hpriv->ops->read_preamp)
  3443. hpriv->ops->read_preamp(hpriv, port, mmio);
  3444. rc = hpriv->ops->reset_hc(host, mmio, n_hc);
  3445. if (rc)
  3446. goto done;
  3447. hpriv->ops->reset_flash(hpriv, mmio);
  3448. hpriv->ops->reset_bus(host, mmio);
  3449. hpriv->ops->enable_leds(hpriv, mmio);
  3450. for (port = 0; port < host->n_ports; port++) {
  3451. struct ata_port *ap = host->ports[port];
  3452. void __iomem *port_mmio = mv_port_base(mmio, port);
  3453. mv_port_init(&ap->ioaddr, port_mmio);
  3454. }
  3455. for (hc = 0; hc < n_hc; hc++) {
  3456. void __iomem *hc_mmio = mv_hc_base(mmio, hc);
  3457. dev_dbg(host->dev, "HC%i: HC config=0x%08x HC IRQ cause "
  3458. "(before clear)=0x%08x\n", hc,
  3459. readl(hc_mmio + HC_CFG),
  3460. readl(hc_mmio + HC_IRQ_CAUSE));
  3461. /* Clear any currently outstanding hc interrupt conditions */
  3462. writelfl(0, hc_mmio + HC_IRQ_CAUSE);
  3463. }
  3464. if (!IS_SOC(hpriv)) {
  3465. /* Clear any currently outstanding host interrupt conditions */
  3466. writelfl(0, mmio + hpriv->irq_cause_offset);
  3467. /* and unmask interrupt generation for host regs */
  3468. writelfl(hpriv->unmask_all_irqs, mmio + hpriv->irq_mask_offset);
  3469. }
  3470. /*
  3471. * enable only global host interrupts for now.
  3472. * The per-port interrupts get done later as ports are set up.
  3473. */
  3474. mv_set_main_irq_mask(host, 0, PCI_ERR);
  3475. mv_set_irq_coalescing(host, irq_coalescing_io_count,
  3476. irq_coalescing_usecs);
  3477. done:
  3478. return rc;
  3479. }
  3480. static int mv_create_dma_pools(struct mv_host_priv *hpriv, struct device *dev)
  3481. {
  3482. hpriv->crqb_pool = dmam_pool_create("crqb_q", dev, MV_CRQB_Q_SZ,
  3483. MV_CRQB_Q_SZ, 0);
  3484. if (!hpriv->crqb_pool)
  3485. return -ENOMEM;
  3486. hpriv->crpb_pool = dmam_pool_create("crpb_q", dev, MV_CRPB_Q_SZ,
  3487. MV_CRPB_Q_SZ, 0);
  3488. if (!hpriv->crpb_pool)
  3489. return -ENOMEM;
  3490. hpriv->sg_tbl_pool = dmam_pool_create("sg_tbl", dev, MV_SG_TBL_SZ,
  3491. MV_SG_TBL_SZ, 0);
  3492. if (!hpriv->sg_tbl_pool)
  3493. return -ENOMEM;
  3494. return 0;
  3495. }
  3496. static void mv_conf_mbus_windows(struct mv_host_priv *hpriv,
  3497. const struct mbus_dram_target_info *dram)
  3498. {
  3499. int i;
  3500. for (i = 0; i < 4; i++) {
  3501. writel(0, hpriv->base + WINDOW_CTRL(i));
  3502. writel(0, hpriv->base + WINDOW_BASE(i));
  3503. }
  3504. for (i = 0; i < dram->num_cs; i++) {
  3505. const struct mbus_dram_window *cs = dram->cs + i;
  3506. writel(((cs->size - 1) & 0xffff0000) |
  3507. (cs->mbus_attr << 8) |
  3508. (dram->mbus_dram_target_id << 4) | 1,
  3509. hpriv->base + WINDOW_CTRL(i));
  3510. writel(cs->base, hpriv->base + WINDOW_BASE(i));
  3511. }
  3512. }
  3513. /**
  3514. * mv_platform_probe - handle a positive probe of an soc Marvell
  3515. * host
  3516. * @pdev: platform device found
  3517. *
  3518. * LOCKING:
  3519. * Inherited from caller.
  3520. */
  3521. static int mv_platform_probe(struct platform_device *pdev)
  3522. {
  3523. const struct mv_sata_platform_data *mv_platform_data;
  3524. const struct mbus_dram_target_info *dram;
  3525. const struct ata_port_info *ppi[] =
  3526. { &mv_port_info[chip_soc], NULL };
  3527. struct ata_host *host;
  3528. struct mv_host_priv *hpriv;
  3529. struct resource *res;
  3530. int n_ports = 0, irq = 0;
  3531. int rc;
  3532. int port;
  3533. ata_print_version_once(&pdev->dev, DRV_VERSION);
  3534. /*
  3535. * Simple resource validation ..
  3536. */
  3537. if (unlikely(pdev->num_resources != 1)) {
  3538. dev_err(&pdev->dev, "invalid number of resources\n");
  3539. return -EINVAL;
  3540. }
  3541. /*
  3542. * Get the register base first
  3543. */
  3544. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  3545. if (res == NULL)
  3546. return -EINVAL;
  3547. /* allocate host */
  3548. if (pdev->dev.of_node) {
  3549. rc = of_property_read_u32(pdev->dev.of_node, "nr-ports",
  3550. &n_ports);
  3551. if (rc) {
  3552. dev_err(&pdev->dev,
  3553. "error parsing nr-ports property: %d\n", rc);
  3554. return rc;
  3555. }
  3556. if (n_ports <= 0) {
  3557. dev_err(&pdev->dev, "nr-ports must be positive: %d\n",
  3558. n_ports);
  3559. return -EINVAL;
  3560. }
  3561. irq = irq_of_parse_and_map(pdev->dev.of_node, 0);
  3562. } else {
  3563. mv_platform_data = dev_get_platdata(&pdev->dev);
  3564. n_ports = mv_platform_data->n_ports;
  3565. irq = platform_get_irq(pdev, 0);
  3566. }
  3567. if (irq < 0)
  3568. return irq;
  3569. if (!irq)
  3570. return -EINVAL;
  3571. host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
  3572. hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
  3573. if (!host || !hpriv)
  3574. return -ENOMEM;
  3575. hpriv->port_clks = devm_kcalloc(&pdev->dev,
  3576. n_ports, sizeof(struct clk *),
  3577. GFP_KERNEL);
  3578. if (!hpriv->port_clks)
  3579. return -ENOMEM;
  3580. hpriv->port_phys = devm_kcalloc(&pdev->dev,
  3581. n_ports, sizeof(struct phy *),
  3582. GFP_KERNEL);
  3583. if (!hpriv->port_phys)
  3584. return -ENOMEM;
  3585. host->private_data = hpriv;
  3586. hpriv->board_idx = chip_soc;
  3587. host->iomap = NULL;
  3588. hpriv->base = devm_ioremap(&pdev->dev, res->start,
  3589. resource_size(res));
  3590. if (!hpriv->base)
  3591. return -ENOMEM;
  3592. hpriv->base -= SATAHC0_REG_BASE;
  3593. hpriv->clk = clk_get(&pdev->dev, NULL);
  3594. if (IS_ERR(hpriv->clk))
  3595. dev_notice(&pdev->dev, "cannot get optional clkdev\n");
  3596. else
  3597. clk_prepare_enable(hpriv->clk);
  3598. for (port = 0; port < n_ports; port++) {
  3599. char port_number[16];
  3600. sprintf(port_number, "%d", port);
  3601. hpriv->port_clks[port] = clk_get(&pdev->dev, port_number);
  3602. if (!IS_ERR(hpriv->port_clks[port]))
  3603. clk_prepare_enable(hpriv->port_clks[port]);
  3604. sprintf(port_number, "port%d", port);
  3605. hpriv->port_phys[port] = devm_phy_optional_get(&pdev->dev,
  3606. port_number);
  3607. if (IS_ERR(hpriv->port_phys[port])) {
  3608. rc = PTR_ERR(hpriv->port_phys[port]);
  3609. hpriv->port_phys[port] = NULL;
  3610. if (rc != -EPROBE_DEFER)
  3611. dev_warn(&pdev->dev, "error getting phy %d", rc);
  3612. /* Cleanup only the initialized ports */
  3613. hpriv->n_ports = port;
  3614. goto err;
  3615. } else
  3616. phy_power_on(hpriv->port_phys[port]);
  3617. }
  3618. /* All the ports have been initialized */
  3619. hpriv->n_ports = n_ports;
  3620. /*
  3621. * (Re-)program MBUS remapping windows if we are asked to.
  3622. */
  3623. dram = mv_mbus_dram_info();
  3624. if (dram)
  3625. mv_conf_mbus_windows(hpriv, dram);
  3626. rc = mv_create_dma_pools(hpriv, &pdev->dev);
  3627. if (rc)
  3628. goto err;
  3629. /*
  3630. * To allow disk hotplug on Armada 370/XP SoCs, the PHY speed must be
  3631. * updated in the LP_PHY_CTL register.
  3632. */
  3633. if (pdev->dev.of_node &&
  3634. of_device_is_compatible(pdev->dev.of_node,
  3635. "marvell,armada-370-sata"))
  3636. hpriv->hp_flags |= MV_HP_FIX_LP_PHY_CTL;
  3637. /* initialize adapter */
  3638. rc = mv_init_host(host);
  3639. if (rc)
  3640. goto err;
  3641. dev_info(&pdev->dev, "slots %u ports %d\n",
  3642. (unsigned)MV_MAX_Q_DEPTH, host->n_ports);
  3643. rc = ata_host_activate(host, irq, mv_interrupt, IRQF_SHARED, &mv6_sht);
  3644. if (!rc)
  3645. return 0;
  3646. err:
  3647. if (!IS_ERR(hpriv->clk)) {
  3648. clk_disable_unprepare(hpriv->clk);
  3649. clk_put(hpriv->clk);
  3650. }
  3651. for (port = 0; port < hpriv->n_ports; port++) {
  3652. if (!IS_ERR(hpriv->port_clks[port])) {
  3653. clk_disable_unprepare(hpriv->port_clks[port]);
  3654. clk_put(hpriv->port_clks[port]);
  3655. }
  3656. phy_power_off(hpriv->port_phys[port]);
  3657. }
  3658. return rc;
  3659. }
  3660. /*
  3661. *
  3662. * mv_platform_remove - unplug a platform interface
  3663. * @pdev: platform device
  3664. *
  3665. * A platform bus SATA device has been unplugged. Perform the needed
  3666. * cleanup. Also called on module unload for any active devices.
  3667. */
  3668. static int mv_platform_remove(struct platform_device *pdev)
  3669. {
  3670. struct ata_host *host = platform_get_drvdata(pdev);
  3671. struct mv_host_priv *hpriv = host->private_data;
  3672. int port;
  3673. ata_host_detach(host);
  3674. if (!IS_ERR(hpriv->clk)) {
  3675. clk_disable_unprepare(hpriv->clk);
  3676. clk_put(hpriv->clk);
  3677. }
  3678. for (port = 0; port < host->n_ports; port++) {
  3679. if (!IS_ERR(hpriv->port_clks[port])) {
  3680. clk_disable_unprepare(hpriv->port_clks[port]);
  3681. clk_put(hpriv->port_clks[port]);
  3682. }
  3683. phy_power_off(hpriv->port_phys[port]);
  3684. }
  3685. return 0;
  3686. }
  3687. #ifdef CONFIG_PM_SLEEP
  3688. static int mv_platform_suspend(struct platform_device *pdev, pm_message_t state)
  3689. {
  3690. struct ata_host *host = platform_get_drvdata(pdev);
  3691. if (host)
  3692. ata_host_suspend(host, state);
  3693. return 0;
  3694. }
  3695. static int mv_platform_resume(struct platform_device *pdev)
  3696. {
  3697. struct ata_host *host = platform_get_drvdata(pdev);
  3698. const struct mbus_dram_target_info *dram;
  3699. int ret;
  3700. if (host) {
  3701. struct mv_host_priv *hpriv = host->private_data;
  3702. /*
  3703. * (Re-)program MBUS remapping windows if we are asked to.
  3704. */
  3705. dram = mv_mbus_dram_info();
  3706. if (dram)
  3707. mv_conf_mbus_windows(hpriv, dram);
  3708. /* initialize adapter */
  3709. ret = mv_init_host(host);
  3710. if (ret) {
  3711. dev_err(&pdev->dev, "Error during HW init\n");
  3712. return ret;
  3713. }
  3714. ata_host_resume(host);
  3715. }
  3716. return 0;
  3717. }
  3718. #else
  3719. #define mv_platform_suspend NULL
  3720. #define mv_platform_resume NULL
  3721. #endif
  3722. #ifdef CONFIG_OF
  3723. static const struct of_device_id mv_sata_dt_ids[] = {
  3724. { .compatible = "marvell,armada-370-sata", },
  3725. { .compatible = "marvell,orion-sata", },
  3726. { /* sentinel */ }
  3727. };
  3728. MODULE_DEVICE_TABLE(of, mv_sata_dt_ids);
  3729. #endif
  3730. static struct platform_driver mv_platform_driver = {
  3731. .probe = mv_platform_probe,
  3732. .remove = mv_platform_remove,
  3733. .suspend = mv_platform_suspend,
  3734. .resume = mv_platform_resume,
  3735. .driver = {
  3736. .name = DRV_NAME,
  3737. .of_match_table = of_match_ptr(mv_sata_dt_ids),
  3738. },
  3739. };
  3740. #ifdef CONFIG_PCI
  3741. static int mv_pci_init_one(struct pci_dev *pdev,
  3742. const struct pci_device_id *ent);
  3743. #ifdef CONFIG_PM_SLEEP
  3744. static int mv_pci_device_resume(struct pci_dev *pdev);
  3745. #endif
  3746. static struct pci_driver mv_pci_driver = {
  3747. .name = DRV_NAME,
  3748. .id_table = mv_pci_tbl,
  3749. .probe = mv_pci_init_one,
  3750. .remove = ata_pci_remove_one,
  3751. #ifdef CONFIG_PM_SLEEP
  3752. .suspend = ata_pci_device_suspend,
  3753. .resume = mv_pci_device_resume,
  3754. #endif
  3755. };
  3756. /**
  3757. * mv_print_info - Dump key info to kernel log for perusal.
  3758. * @host: ATA host to print info about
  3759. *
  3760. * FIXME: complete this.
  3761. *
  3762. * LOCKING:
  3763. * Inherited from caller.
  3764. */
  3765. static void mv_print_info(struct ata_host *host)
  3766. {
  3767. struct pci_dev *pdev = to_pci_dev(host->dev);
  3768. struct mv_host_priv *hpriv = host->private_data;
  3769. u8 scc;
  3770. const char *scc_s, *gen;
  3771. /* Use this to determine the HW stepping of the chip so we know
  3772. * what errata to workaround
  3773. */
  3774. pci_read_config_byte(pdev, PCI_CLASS_DEVICE, &scc);
  3775. if (scc == 0)
  3776. scc_s = "SCSI";
  3777. else if (scc == 0x01)
  3778. scc_s = "RAID";
  3779. else
  3780. scc_s = "?";
  3781. if (IS_GEN_I(hpriv))
  3782. gen = "I";
  3783. else if (IS_GEN_II(hpriv))
  3784. gen = "II";
  3785. else if (IS_GEN_IIE(hpriv))
  3786. gen = "IIE";
  3787. else
  3788. gen = "?";
  3789. dev_info(&pdev->dev, "Gen-%s %u slots %u ports %s mode IRQ via %s\n",
  3790. gen, (unsigned)MV_MAX_Q_DEPTH, host->n_ports,
  3791. scc_s, (MV_HP_FLAG_MSI & hpriv->hp_flags) ? "MSI" : "INTx");
  3792. }
  3793. /**
  3794. * mv_pci_init_one - handle a positive probe of a PCI Marvell host
  3795. * @pdev: PCI device found
  3796. * @ent: PCI device ID entry for the matched host
  3797. *
  3798. * LOCKING:
  3799. * Inherited from caller.
  3800. */
  3801. static int mv_pci_init_one(struct pci_dev *pdev,
  3802. const struct pci_device_id *ent)
  3803. {
  3804. unsigned int board_idx = (unsigned int)ent->driver_data;
  3805. const struct ata_port_info *ppi[] = { &mv_port_info[board_idx], NULL };
  3806. struct ata_host *host;
  3807. struct mv_host_priv *hpriv;
  3808. int n_ports, port, rc;
  3809. ata_print_version_once(&pdev->dev, DRV_VERSION);
  3810. /* allocate host */
  3811. n_ports = mv_get_hc_count(ppi[0]->flags) * MV_PORTS_PER_HC;
  3812. host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
  3813. hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
  3814. if (!host || !hpriv)
  3815. return -ENOMEM;
  3816. host->private_data = hpriv;
  3817. hpriv->n_ports = n_ports;
  3818. hpriv->board_idx = board_idx;
  3819. /* acquire resources */
  3820. rc = pcim_enable_device(pdev);
  3821. if (rc)
  3822. return rc;
  3823. rc = pcim_iomap_regions(pdev, 1 << MV_PRIMARY_BAR, DRV_NAME);
  3824. if (rc == -EBUSY)
  3825. pcim_pin_device(pdev);
  3826. if (rc)
  3827. return rc;
  3828. host->iomap = pcim_iomap_table(pdev);
  3829. hpriv->base = host->iomap[MV_PRIMARY_BAR];
  3830. rc = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
  3831. if (rc) {
  3832. dev_err(&pdev->dev, "DMA enable failed\n");
  3833. return rc;
  3834. }
  3835. rc = mv_create_dma_pools(hpriv, &pdev->dev);
  3836. if (rc)
  3837. return rc;
  3838. for (port = 0; port < host->n_ports; port++) {
  3839. struct ata_port *ap = host->ports[port];
  3840. void __iomem *port_mmio = mv_port_base(hpriv->base, port);
  3841. unsigned int offset = port_mmio - hpriv->base;
  3842. ata_port_pbar_desc(ap, MV_PRIMARY_BAR, -1, "mmio");
  3843. ata_port_pbar_desc(ap, MV_PRIMARY_BAR, offset, "port");
  3844. }
  3845. /* initialize adapter */
  3846. rc = mv_init_host(host);
  3847. if (rc)
  3848. return rc;
  3849. /* Enable message-switched interrupts, if requested */
  3850. if (msi && pci_enable_msi(pdev) == 0)
  3851. hpriv->hp_flags |= MV_HP_FLAG_MSI;
  3852. mv_dump_pci_cfg(pdev, 0x68);
  3853. mv_print_info(host);
  3854. pci_set_master(pdev);
  3855. pci_try_set_mwi(pdev);
  3856. return ata_host_activate(host, pdev->irq, mv_interrupt, IRQF_SHARED,
  3857. IS_GEN_I(hpriv) ? &mv5_sht : &mv6_sht);
  3858. }
  3859. #ifdef CONFIG_PM_SLEEP
  3860. static int mv_pci_device_resume(struct pci_dev *pdev)
  3861. {
  3862. struct ata_host *host = pci_get_drvdata(pdev);
  3863. int rc;
  3864. rc = ata_pci_device_do_resume(pdev);
  3865. if (rc)
  3866. return rc;
  3867. /* initialize adapter */
  3868. rc = mv_init_host(host);
  3869. if (rc)
  3870. return rc;
  3871. ata_host_resume(host);
  3872. return 0;
  3873. }
  3874. #endif
  3875. #endif
  3876. static int __init mv_init(void)
  3877. {
  3878. int rc = -ENODEV;
  3879. #ifdef CONFIG_PCI
  3880. rc = pci_register_driver(&mv_pci_driver);
  3881. if (rc < 0)
  3882. return rc;
  3883. #endif
  3884. rc = platform_driver_register(&mv_platform_driver);
  3885. #ifdef CONFIG_PCI
  3886. if (rc < 0)
  3887. pci_unregister_driver(&mv_pci_driver);
  3888. #endif
  3889. return rc;
  3890. }
  3891. static void __exit mv_exit(void)
  3892. {
  3893. #ifdef CONFIG_PCI
  3894. pci_unregister_driver(&mv_pci_driver);
  3895. #endif
  3896. platform_driver_unregister(&mv_platform_driver);
  3897. }
  3898. MODULE_AUTHOR("Brett Russ");
  3899. MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers");
  3900. MODULE_LICENSE("GPL v2");
  3901. MODULE_DEVICE_TABLE(pci, mv_pci_tbl);
  3902. MODULE_VERSION(DRV_VERSION);
  3903. MODULE_ALIAS("platform:" DRV_NAME);
  3904. module_init(mv_init);
  3905. module_exit(mv_exit);